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Abstract The applicability of intelligent techniques for the safety assessment of oil
and gas pipelines is investigated in this study. Crude oil and natural gas are usually
transmitted through metallic pipelines. Working under unforgiving environments,
these pipelines may extend to hundreds of kilometers, which make them very
susceptible to physical damage such as dents, cracks, corrosion, etc. These defects,
if not managed properly, can lead to catastrophic consequences in terms of both
financial losses and human life. Thus, effective and efficient systems for pipeline
safety assessment that are capable of detecting defects, estimating defects sizes, and
classifying defects are urgently needed. Such systems often require collecting
diagnostic data that are gathered using different monitoring tools such as ultra-
sound, magnetic flux leakage, and Closed Circuit Television (CCTV) surveys. The
volume of the data collected by these tools is staggering. Relying on traditional
pipeline safety assessment techniques to analyze such huge data is neither efficient
nor effective. Intelligent techniques such as data mining techniques, neural net-
works, and hybrid neuro-fuzzy systems are promising alternatives. In this paper,
different intelligent techniques proposed in the literature are examined; and their
merits and shortcomings are highlighted.
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1 Introduction

Oil and gas are the leading sources of energy the world relies on today; and
pipelines are viewed as one of the most cost efficient ways to move that energy and
deliver it to consumers. The latest data, in 2015, gives a total of more than 3.5
million km of pipeline in 124 countries of the world. Many other thousands of
kilometers of pipelines are planned and under construction. Pump stations, along
the pipeline, move oil and gas through the pipelines. Because the pipeline walls are
under constant pressure, tiny cracks may arise in the steel. Under the continuous
load, they can then grow into critical cracks or even leaks. Pipelines conveying
flammable or explosive material, such as natural gas or oil, pose special safety
concerns; and various accidents have been reported [1]. Damage to the pipeline
may cause the occurrence of large and enormous human and economic losses.
Moreover, damaged pipelines obviously represent an environmental hazard.
Therefore, pipeline operators must identify and remove pipeline failures caused by
corrosion and other types of defects as early as possible.

Today, inspection tools, called “Pipeline Inspection Gauges” or “Smart Pigs”,
employ complex measuring techniques such as ultrasound and magnetic flux
leakage. They are used for the inspection of such pipelines, and have become major
components to pipeline safety and accident prevention. These smart pigs are
equipped with hundreds of highly tuned sensors that produce data that can be used
to locate and determine the thickness of cracks, fissures, erosion and other problems
that may affect the integrity of the pipeline. In each inspection passage, huge
amounts of data (several hundred gigabytes) are collected. A team of experts will
look at these data and assess the health of the pipeline segments.

Because of the size and complexity of pipeline systems and the huge amounts of
data collected, human inspection alone is neither feasible nor reliable. Automating
the inspection process and the evaluation and interpretation of the collected data
have been an important goal for the pipeline industry for a number of years.
Significant progress has been made in that regard, and we currently have a number
of techniques available that can make the highly challenging and computationally-
intensive task of automating pipeline inspection possible. These techniques range
from analytical modeling, to numerical computations, to methods employing arti-
ficial intelligence techniques such as artificial neural networks. This paper presents
a survey of the state-of-the-art in methods used to assess the safety of the oil and gas
pipelines, with emphasis on intelligent techniques. The paper explains the princi-
ples behind each method, highlights the settings where each method is most
effective, and shows how several methods can be combined to achieve higher
accuracy.

The rest of the paper is organized as follows. In Sect. 2, we review the five
stages of the pipeline reliability assessment process. The theoretical principals
behind the intelligent techniques surveyed in this study are discussed in Sect. 3. In
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Sect. 4, the pipeline safety assessment approaches using the intelligent techniques
reported in Sect. 3 are presented and analyzed. We conclude with final remarks in
Sect. 5.

2 Safety Assessment in Oil and Gas Pipelines

The pipeline reliability assessment process is basically composed of five stages,
namely data processing, defect detection, determination of defect size, assessment
of defect severity, and repair management. Once a defect is detected, the defect
assessment unit proceeds by determining the size (the defect’s depth and length) of
the defect. This is really an important step as the severity of the defect is based on
its physical characteristics. Based on the severity level of the detected defect, an
appropriate action is taken by the repair management. These five stages of the
pipeline assessment process are summarized in the following subsections.

2.1 Big Data Processing

The most common nondestructive evaluation (NDE) method of scanning oil and
gas pipelines for possible pipeline defects utilizes magnetic flux leakage
(MFL) technology [2], in which autonomous devices containing magnetic sensors
are sent on periodic basis into the pipeline under inspection. The magnetic sensors
are used to measure MFL signals every three-millimeters along the pipeline length.
Figure 1 shows a rolled-out representation of a pipeline wall. The MFL sensors are
equally distributed around the circumference of the pipeline and move parallel to
the axis of the pipeline.

For pipelines that extend hundreds of kilometers, the data sets collected by the
MFL sensors are so big and complex that traditional data processing techniques to
analyze such data are inadequate. To reduce the quantity of the data, redundant and

Fig. 1 Rolled-out representation of pipeline wall
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irrelevant data are removed using feature extraction and selection techniques. The
most relevant features are selected, and then used to determine the depth and length
of the detected defect.

2.2 Defect Detection

In this stage, the diagnostic data are examined for the existence of possible defects
in the pipeline. To detect and identify the location of potential defects, wavelet
techniques are widely used [3]. They are very powerful mathematical methods [4–
6]. They were reported in many applications such as data compression [7], data
analysis and classification [8], and de-noising [9–11].

2.3 Determination of Defect Size

To determine the severity level of the detected defect, the defect’s depth and length
are calculated. However, the relationship between the given MFL signals and
particular defect type and shape is not well-known. Hence, it is very difficult to
derive an analytical model to describe this relationship. To deal with this problem,
researchers resort to intelligent techniques to estimate the required parameters. One
of these intelligent tools is the Adaptive Neuro-Fuzzy Inference System (ANFIS).

2.4 Assessment of Defect Severity

Based on the defect parameters (i.e., depth and length) obtained in the previous
stage, an industry standard known as ASME B31G is often used to assess the
severity level of the defect [12]. It specifies the pipeline stress under operating
pressure and what defect parameters that may fail the hydro pressure test [13].

2.5 Repair Management

In order to determine an appropriate maintenance action, the repair management
classifies the severity level of pipeline defects into three basic categories, namely:
severe, moderate, and acceptable. Severe defects are given the highest priority and
an immediate action is often required. The other two severity levels are not deemed
critical, thus, a repair action can be scheduled for moderate and acceptable defects.
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3 Computational Intelligence

As mentioned in the previous section, MFL signals are widely used to determine the
depth and length of potential defects. From recorded data, it has been observed that
the magnitude of MFL signals varies from one defect depth and length to another.
In the absence of analytical models that can describe the relationship between the
amplitude of MFL signals and their corresponding defect dimensions, computa-
tional intelligence provides an alternative approach. Given sufficient MFL data,
there are different computational techniques such as data mining techniques, arti-
ficial neural networks, and hybrid neuro-fuzzy systems that can be utilized to learn
such relationships. In the following, the theoretical principals behind each of these
techniques are summarized.

3.1 Data Mining

The k-nearest neighbor (k-NN) and support vector machines (SVM) are widely
used in data mining to solve classification problems. Within the context of the
safety assessment in oil and gas pipelines, these two techniques can be employed to
assign detected defects to a certain severity level.

3.1.1 K-Nearest Neighbor (KNN)

The KKN is a non-parametric learning algorithm as it does not make any
assumptions on the underlying data distribution. This may come in handy since
many real world problems do not follow such assumptions. The KNN learning
algorithm is also referred to as a lazy algorithm because it does not use the training
data points to do any generalization. Thus, there is no training stage in the learning
process, but rather KNN makes its decision based on the entire training data set.
The learning algorithm assumes that all instances correspond to points in the
n-dimensional space. The nearest neighbors of an instance are identified using the
standard Euclidean distance. Let us assume that a given defect x is characterized by
a feature vector:

⟨a1ðxÞ, a2ðxÞ, . . . , anðxÞ⟩, ð1Þ

where ar xð Þ denotes the value of the rth attribute of instance x. Thus, the distance
d between two instances xi and xj is calculated as follows:

d xi, xj
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

r=1
ar xið Þ− ar xj

� �� �2s
, ð2Þ
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For the safety assessment in oil and gas pipeline application, the target function
is discrete. That is, it assigns the feature vector of the detected defect to one of the
three severity levels severe, moderate, or acceptable. If we suppose k=1, then the
1-nearest neighbor assigns the feature vector to the severity level where the training
instance of that severity level is nearest to the feature vector. For larger values of k,
the algorithm assigns the most common severity level among the k nearest training
examples. e only assumption made is that the data is in a feature space.

3.1.2 Support Vector Machine (SVM)

The SVM is a discriminant classifier defined by a separating hyperplane. Given
labeled training data, the SVM algorithm outputs an optimal hyperplane that can
categorize new examples. Support vector machines are originally designed for
binary classification problems. For a linearly separable set of 2D-points, there will
be multiple straight lines that may offer a solution to the problem. However, a line is
considered bad if it passes too close to the points because it will be susceptible to
noise. The task of the SVM algorithm is to find the hyperplane that gives the largest
minimum distance (i.e., margin) to the training examples.

To solve multi-class classification problems, the SVM should be extended. The
training algorithms of SVMs look for the optimal separating hyperplane which has
a maximized margin between the hyperplane and the data, which in turn, minimizes
the classification error. The separating hyperplane is represented by a small number
of training data, called support vectors (SVs). However, the real data cannot be
separated linearly, thus the data are mapped into a higher dimensional space.
Practically, a kernel function is utilized to calculate the inner product of the
transformed data. The efficiency of the SVM depends mainly on the kernel.

Formally, the hyperplane is defined as follows:

f ðxÞ= β0 + βTx, ð3Þ

where β is known as the weight vector and β0 as the bias. The optimal hyperplane
can be represented in an infinite number of different ways by scaling of β and β0.
The hyperplane chosen is:

β0 + βTx
�� ��=1, ð4Þ

where x symbolizes the training examples closest to the hyperplane, which are
called support vectors. The distance between a point x and a hyperplane ( β,β0) can
be calculated as:

distance=
β0 + βTx
�� ��

βk k , ð5Þ

For the canonical hyperplane, the numerator is equal to one, thus,
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distance=
β0 + βTx
�� ��

βk k =
1
βk k , ð6Þ

The margin (M) is twice the distance to the closest examples:

M =
2
βk k , ð7Þ

Now, maximizing M is equivalent to the problem of minimizing a function L βð Þ
subject to some constrains as follows:

min
β, β0

L βð Þ= 1
2
βj j2, ð8Þ

subject to:

yi = βTxi + β0
� �

≥ 1∀i, ð9Þ

where yi represents each of the labels of the training examples.

3.2 Artificial Neural Networks

Artificial neural networks (ANN) are suitable for the safety assessment in oil and
gas pipelines as they are capable of solving ill-defined problems. Essentially they
attempt to simulate the neural structure of the human brain and its functionality.

The multi-layer perceptron (MLP) with the back propagation learning algorithm
is considered the most common neural network and being widely used in a large
number of applications. A typical MLP neural network of one hidden layer is
depicted in Fig. 2. There are d inputs (example, d dimensions of input pattern X), h
hidden nodes, and c outputs nodes.

The output of the jth hidden node is zj = fjðajÞ, where aj = ∑d
i=0 wjixi, and fjð.Þ is

an activation function associated with hidden node j. wji is the connection weight
from the input node i to j, and wj0 denotes the bias for the hidden node j. For an
input node k, its output is yk = fkðakÞ, where ak = ∑h

j=0 wkjzj, and fkð.Þ is the acti-
vation function associated with output node k. wkj is the connection weight from
hidden node j to output node k. wk0 denotes the bias for output node k. The acti-
vation function is often chosen as the unipolar sigmoidal function:

f ðaÞ= 1
1+ expð− γaÞ , ð10Þ
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In MLP, the back propagation learning algorithm is used to update weights so as
to minimize the following squared error function:

JðwÞ= 1
2
∑
c

k=1
ðek − ykðXÞÞ2, ð11Þ

3.3 Hybrid Neuro-Fuzzy Systems

The focus of intelligent hybrid systems in this study will be on the combination of
neural networks and fuzzy inference systems. One of these systems is the adaptive
neuro-fuzzy inference system (ANFIS), which will be used as an illustrative
example of such hybrid systems. ANFIS, as introduced by Jang [14], utilizes fuzzy
IF-THEN rules, where the membership function parameters can be learned from
training data, instead of being obtained from an expert [15–23]. Whether the
domain knowledge is available or not, the adaptive property of some of its nodes
allows the network to generate the fuzzy rules that approximate a desired set of
input-output pairs. In the following, we briefly introduce the ANFIS architecture as
proposed in [14]. The structure of the ANFIS model is basically a feedforward
multi-layer network. The nodes in each layer are characterized by their specific
function, and their outputs serve as inputs to the succeeding nodes. Only the
parameters of the adaptive nodes (i.e., square nodes in Fig. 3) are adjustable during
the training session. Parameters of the other nodes (i.e., circle nodes in Fig. 3) are
fixed.

Fig. 2 A multi-layer perceptron neural network
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Suppose there are two inputs x, y, and one output f. Let us also assume that the
fuzzy rule in the fuzzy inference system is depicted by one degree of Sugeno’s
function [14].

Rule 1: if x is A1 and y is B1 then f = p1x+ q1y+ r1
Rule 2: if x is A2 and y is B2 then f = p2x+ q2y+ r2

where pi, qi, ri are adaptable parameters.
The node functions in each layer are described in the sequel.

Layer 1: Each node in this layer is an adaptive node and is given as follows:

o1i = μAiðxÞ, i=1, 2

o1i = μBi− 2ðyÞ, i=3, 4

where x and y are inputs to the layer nodes, and Ai and Bi− 2 are linguistic
variables. The maximum and minimum of the bell-shaped membership
function are 1 and 0, respectively. The membership function has the
following form:

μAiðxÞ=
1

1+ x− ci
ai

� �2
� 	bi , ð12Þ

where the set ai, bi, cif g represents the premise parameters of the
membership function. The bell-shaped function changes according to the
change of values in these parameters.

Layer 2: Each node in this layer is a fixed node. Its output is the product of the
two input signals as follows:

Fig. 3 The architecture of ANFIS
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o2i =wi = μAiðxÞμBiðyÞ, i=1, 2, ð13Þ

where wi refers to the firing strength of a rule.
Layer 3: Each node in this layer is a fixed node. Its function is to normalize the

firing strength as follows:

o3i =w′′

i =
wi

w1 +w2
, i=1, 2 ð14Þ

Layer 4: Each node in this layer is adaptive and adjusted as follows:

o4i =w′′

i fi =w′′

i pix+ qiy+ rið Þ, i=1, 2 ð15Þ

where w′′

i is the output of layer 3 and fpi + qi + rig is the consequent
parameter set.

Layer 5: Each node in this layer is fixed and computes its output as follows:

o5i = ∑
2

i=1
w′′

i fi =
∑
2

i=1
wifi


 �

w1 +w2
, ð16Þ

The output of layer 5 sums the outputs of nodes in layer 4 to be the output of the
whole network. If the parameters of the premise part are fixed, the output of the
whole network will be the linear combination of the consequent parameters, i.e.,

f =
w1

w1 +w2
f1 +

w2

w1 +w2
f2, ð17Þ

The adopted training technique is hybrid, in which, the network node outputs go
forward till layer 4, and the resulting parameters are identified by the least square
method. The error signal, however, goes backward till layer 1, and the premise
parameters are updated according to the descent gradient method. It has been shown
in the literature that the hybrid-learning technique can obtain the optimal premise
and consequent parameters in the learning process [14].

4 Pipeline Safety Assessment Using Intelligent Techniques

In this section, pipeline safety assessment approaches using the above intelligent
techniques that are reported in the literature are presented and analyzed. Most of
these have been proposed for either predicting pipeline defect dimensions or
detecting and classifying defect types [24].
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4.1 Data Mining-Based Techniques

A recognition and classification of pipe cracks using images analysis and a
neuro-fuzzy algorithm is proposed [25]. In the preprocessing step the scanned
images of the pipe are analyzed and crack features are extracted. In the classification
step the neuro-fuzzy algorithm is developed that employs a fuzzy membership
function and an error back-propagation algorithm. The classification of under-
ground pipe defects is carried out using the Euclidean distance method, a
fuzzy-KNN algorithm, a conventional back-propagation neural network, and a
neuro-fuzzy algorithm. The theoretical backgrounds of all classifiers are presented
and their relative advantages are discussed. In conventional recognition methods,
the Euclidean distance has been commonly used as a distance measure between two
vectors. The Euclidean distance is defined by Eq. 2.

The fuzzy k-NN algorithm assigns class membership to a sample observation
based on the observation distance from its k-nearest neighbors and their member-
ship. The neural network universal approximation property guarantees that any
sufficiently smooth function can be approximated using a two-layer network.
Neuro-fuzzy systems belong to hybrid intelligent systems. Neural networks are
good for numerical knowledge (data sets), fuzzy logic systems are good for lin-
guistic information (fuzzy sets). The proposed neuro-fuzzy algorithm is a mixture,
where the input and the output of the ANN is a fuzzy entity. Fuzzy neural networks
such as the ones proposed in this study provide more flexibility in representing the
input space by integrating vagueness usually associated with fuzzy patterns with
learning capabilities of neural networks. In fact, by using fuzzy variables as input to
the neural network structure, the boundaries of the decision space become repre-
sented in a less restrictive manner (unlike the conventional structure of neural
networks where the input are required to be crisp), and permits the representation of
data possibly belonging to overlapping boundaries. As such more information could
be represented without having recourse to the storage of a huge amount of data,
which are usually required for the training and testing of conventional “crisp-based
data training” neural networks.

The main disadvantage of the KNN algorithm, in addition to determining the
value of the parameter k, is that, for a large number of images or MFL data, the
computation cost is high because we need to compute the distance of each instance
to all training samples. Moreover, it takes up a lot of memory to store all the image
properties and features of MFL samples. However, it is simple and effective due to
the large data.

SVM-based approaches are reported in [26–28]. In [26], the proposed approach
aims at detecting, identifying, and verifying construction features while inspection
the condition of underground pipelines. The SVM is used to classify features
extracted from the signals of a NDE sensor. The SVM model to be trained for this
work uses the RFT data and the ground truth labels to learn how to separate
construction features (CF) from other data (non-CF) from CCTV images. The CFs
represent pipeline features such as joints, flanges, and elbows. The learned SVM

Using Computational Intelligence for the Safety Assessment … 199



model is later employed to detect CF in unseen data. In [27], the authors propose an
SVM method to reconstruct defects shape features. To create a defect feature
picture, a large number of samples are collected for each defect. The SVM model
reconstruction error is below 4%. For the analysis of magnetic flux leakage images
in pipeline inspection, the authors in [28] apply support vector regression among
other techniques. In this paper, the focus is on the binary detection problem of
classifying anomalous image segments into one of two classes: the first class is the
one which consists of injurious or non-benign defects such as various crack-like
anomalies and metal losses in girth welds, long-seam welds, or in the pipe wall
itself, which if left untreated, could lead to pipeline rupture. The second class
consists of non-injurious or benign objects such as noise events, safe and
non-harmful pipeline deformations, manufacturing irregularities, etc.

Although finding the right kernel for the SVM classifier is a challenge, but once
obtained, it can work well despite the fact that the MFL data is not linearly sepa-
rable. The main disadvantage is that it is fundamentally a binary classifier; thus,
there is no particular way for dealing with multi-defect pipeline problems.

4.2 Neural Network-Based Techniques

Artificial neural networks have been used extensively in safety assessment in oil
and gas pipelines [29–33]. In [29], Carvalho et al. propose an artificial neural
network approach for detection and classification of pipe weld defects. These
defects were manufactured and deliberately implanted. The ANN was able to
distinguish between defect and non-defect signals with great accuracy (94.2%). For
a particular type of defect signals, the ANN recognized them 92.5% of the time. In
[29], a Radial Basis Function Neural Network (RBFNN) is deemed to be a suitable
technique and a corrosion inspection tool to recognize and quantify the corrosion
characteristics. An Immune RBFNN (IRBFNN) algorithm is proposed to process
the MFL data to determine the location and size of the corrosion spots on the
pipeline. El Abbasy et al. in [31] propose an artificial neural network models to
evaluate and predict the condition of offshore oil and gas pipelines. The inspection
data for selected factors are used to train the ANN in order to obtain ANN-based
condition prediction models. The inspection data points were divided randomly into
three sets: (1) 60% for training; (2) 20% for testing; and (3) 20% for validation. The
training set is used to train the network whereas the testing set is used to test the
network during the development/training and also to continuously correct it by
adjusting the weights of network links. The authors in [32] propose a machine
learning approach for big data in oil and gas pipelines, in which three different
network architectures are examined, namely static feedforward neural networks
(static FFNN), cascaded FFNN, and dynamic FFNN as shown in Figs. 4, 5, and 6,
respectively.

In the static FFNN architecture, the extracted feature vector is fed into the first
hidden layer. Weight connections, based on the number of neurons in each layer,
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are assigned between every adjacent layers. While in the cascaded FFNN archi-
tecture, include a weight connection from the input layer to each other layer, and
from each layer to the successive layers. In the dynamic architecture, the network
outputs depend not only on the current input feature vector, but also on the previous
inputs and outputs of the network. Compared with the performance of pipeline
inspection techniques reported by service providers such as GE and ROSEN, the
results obtained using the method we proposed are promising. For instance, within
±10% error-tolerance range, the obtained estimation accuracy is 86%, compared to
only 80% reported by GE; and within ±15% error-tolerance range, the achieved
estimation accuracy is 89% compared to 80% reported by ROSEN.

Mohamed et al. propose a self-organizing map-based feature visualization and
selection for defect depth estimation in oil and gas pipelines in [33]. The authors
use the self-organizing maps (SOMs) as feature visualization tool for the purpose of

Fig. 4 Architecture of static FFNN

Fig. 5 Architecture of cascaded FFNN

Fig. 6 Architecture of dynamic FFNN
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selecting the most appropriate features. The SOM weights for each individual input
feature (weight plane) are displayed then visually analyzed. Irrelevant and redun-
dant features can be efficiently spotted and removed. The remaining “good” features
(i.e., selected features) are then used as an input to a feedforward neural network for
defect depth estimation. An example of the SOM weights are shown in Fig. 7. The
21 features selected by the SOM approach are used to evaluate the performance of
the three FFNN structures. Experimental work has shown the effectiveness of the
proposed approach. For instance, within ±5% error-tolerance range, the obtained
estimation accuracy, using the SOM-based feature selection, is 93.1%, compared to
74% when all input features are used (i.e., no feature selection is performed); and
within ±10% error-tolerance range, the obtained estimation accuracy, using the
SOM-based feature selection, is 97.5%, compared to 86% when all the input fea-
tures are used (i.e., no feature selection is performed).

The disadvantage of using neural networks is that the neural network structure
(i.e., number of neurons, hidden layers, etc.) is determined by trial and error
approach. Moreover, the learning process can take very long due to the large
number of MFL samples. The main advantage is that there is no need to find a
mathematical model that describes the relationship between MFL signals and
pipeline defects.

Fig. 7 SOM weights for each input feature [33]

202 A. Mohamed et al.



4.3 Hybrid Neuro-Fuzzy Systems-Based Techniques

Several approaches that utilize hybrid systems have been reported in the literature.
In [34], the authors propose a neuro-fuzzy classifier for the classification of defects
by extracting features in segmented buried pipe images. It combines a fuzzy
membership function with a projection neural network where the former handles
feature variations and the latter leads to good learning efficiency as illustrated in
Fig. 8. Sometimes the variation of feature values is large, in which case it is difficult
to classify objects correctly based on these feature values. Thus, as shown in the
figure, the input feature is converted into fuzzified data which are input to the
projection neural network. The projection network combines the utility of both the
restricted coulomb energy (RCE) network and backpropagation approaches. A hy-
persphere classifier such as RCE places hyper-spherical prototypes around training
data points and adjusts their radii. The neural network inputs are projected onto a
hypersphere in one higher dimension and the input and weight vectors are confined
to lie on this hypersphere. By projecting the input vector onto a hypersphere in one
higher dimension, prototype nodes can be created with closed or open classification
surfaces all within the framework of a backpropagation trained feedforward neural
network. In general, a neural network passes through two phases: training and
testing. During the training phase, supervised learning is used to assign the output
membership values ranging in [0,1] to the training input vectors. Each error in
membership assignment is fed back and the connection weights of the network are
appropriately updated. The back-propagated error is computed with respect to each
desired output, which is a membership value denoting the degree of belongingness
of the input vector to a certain class. The testing phase in a fuzzy network is
equivalent to the conventional network.

Fig. 8 A hybrid neuro-fuzzy classifier
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In [35], a classification of underground pipe scanned images using feature
extraction and neuro-fuzzy algorithm is proposed. The concept of the proposed
fuzzy input and output module and neural network module is illustrated in Fig. 9.
The fuzzy ANN model has three modules: the fuzzy input module, the neural
network module, and the fuzzy output module. The neural network module is
aconventional feedforward artificial neural network. A simple three-layer network
with a backpropagation training algorithm is used in this study. To increase the rate
of convergence, a momentum term and a modified backpropagation training rule
called the delta–delta rule are used. The input layer of this network consists of 36
nodes (because of the use of fuzzy sets to screen the 12 input variables; and the
output layer consists of seven nodes (trained with fuzzy output values). As shown in
Fig. 9, the input layer of this fuzzy ANN model is actually an output of the input
module. On the other hand, the output layer becomes an input to the output module.
The input and output modules, for preprocessing and post-processing purposes,
respectively, are designed to deal with the data of the ANN using fuzzy sets theory.

In [36], an adaptive neuro-fuzzy inference system (ANFIS)-based approach is
proposed to estimate defect depths from MFL signals. To reduce data dimension-
ality, discriminant features are first extracted from the raw MFL signals. Repre-
sentative features that characterize the original MFL signals can lead to a better
performance for the ANFIS model and reduce the training session. The following
features are extracted: maximum magnitude, peak-to-peak distance, integral of the
normalized signal, mean average, and standard deviation. Moreover, MFL signals
can be approximated by polynomial series of the form, anXn + . . . + a1X + a0. The
proposed approach is tested for different levels of error-tolerance. At the levels of

Fig. 9 Neuro-fuzzy neural network architecture
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±15, ±20, ±25, ±30, ±35, and ±40%, the best defect depth estimates obtained by
the new approach are 80.39, 87.75, 91.18, 95.59, 97.06, and 98.04%, respectively.

The advantages of using ANFIS is that the MFL data can be exploited to learn
the fuzzy rules required to model the pipeline defects, and it converges faster than
typical feedforward neural networks. However, the number of rules extracted is
exponential with the number of used MFL features, which may prolong the learning
process.

5 Conclusion

In this paper, the applicability of computational intelligence in the safety assess-
ment in oil and gas pipelines is surveyed and examined. The survey covers safety
assessment approaches that utilize data mining techniques, artificial neural net-
works, and hybrid neuro-fuzzy systems, for the purpose of detecting pipeline
defects, estimating their dimensions, and identifying (classifying) their severity
level. Obviously, techniques of computational intelligence offer an attractive
alternative to traditional approaches as they can cope with complexity resulting
from the uncertainty accompanying the collected diagnostic data, as well from the
large size of the collected data. For intelligent techniques such as KNN, SVM,
neural networks, and ANFIS, there is no need to derive a mathematical model that
describes the relationship between pipeline defects and the diagnostic data (i.e.,
MFL and ultra sound signals, images, etc.). For typically large MFL data, KNN and
SVM classifiers perform well and can provide optimal results. However, KNN may
require large memory to store MFL samples. Obtaining suitable kernel functions for
the SVM model has proven to be difficult. While, large MFL data may effectively
be used to train different types and structures of neural networks, the learning
process may take long time. Moreover, appropriate fuzzy rules can be extracted
from the MFL data for the ANFIS model, which has the advantage of converging
much faster than regular neural networks. The number of rules extracted, however,
may increase exponentially with the number of the used MFL features.
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