
(QF\FORSHGLD�RI�
,QIRUPDWLRQ�6FLHQFH�DQG�
7HFKQRORJ\��7KLUG�(GLWLRQ

0HKGL�.KRVURZ�3RXU
,QIRUPDWLRQ�5HVRXUFHV�0DQDJHPHQW�$VVRFLDWLRQ��86$

$�YROXPH�LQ�WKH�

�6

&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

���

)RUPDO�9HULۋFDWLRQ�0HWKRGV

%$&.*5281'

On June 1, 2009, Air France Flight 447 from Rio
de Janeiro to Paris crashed into the Atlantic Ocean,
killing all 216 passengers and 12 crew members.
Prior to the disappearance of the A330 aircraft, the
automatic reporting system sent messages indicating
disagreement in the airspeed readings, which led in-
vestigators to believe that the pilot probe sensors did
not “accurately” measure airspeed and the autopilot
may have automatically disengaged. Like the above
probes, many systems are increasingly being used in
safety-critical domains, such as medicine, transporta-
tion systems, chemical plants, etc. There is hence a
dire need to ensure the accuracy of such systems as a
system bug, or error, may endanger human life or lead
to a significant financial loss.

In order to ensure error-free systems, the system
design process is usually accompanied by a rigorous
system analysis to check if the designed system would
exhibit the desired behavior. The core of system analy-
sis is based on mathematics and the fundamental idea
is to create a mathematical model of the system and
then use logical or mathematical reasoning to verify
that the desired properties hold for this model. Tradi-
tionally, system analysis is done by paper-and-pencil
proof methods. However, considering the complex-
ity of present age systems, such kind of analysis is
notoriously difficult, if not impossible, and is quite
error prone due to the human error factor. Moreover,
it is quite often the case that mathematicians forget
to pen down all the assumptions that are required for
the validity of their analysis. This fact may also result
in designing erroneous systems. With the advent of
computers, many computer based software tools based
on the principle of testing or simulation have been
introduced for system verification. Due to the reliable

and efficient bookkeeping characteristic of comput-
ers, large systems can be analyzed and thus one of the
limitations of paper-and-pencil proof methods can be
overcome. However, the main problem with such kind
of analysis is its completeness as the system is checked
only for a subset of possible inputs since exhaustive
testing is not possible for any system with a significant
number of inputs due to the exponential growth of the
test patterns. In Dijkstra’s words “Program testing
can be a very effective way to show the presence of
bugs, but it is hopelessly inadequate for showing their
absence.” Moreover, testing or simulation cannot be
used to precisely verify properties about continuous
systems due to the usage of computer arithmetic, like
floating-point or fixed-point representations of real
numbers. The above mentioned inaccuracy limitations
of commonly used system analysis techniques can be
held responsible for many unfortunate incidents that
happened due to an erroneous system deployed in a
safety-critical domain For example, the Therac-25
software bug and the Intel Pentium’s floating-point
division unit error).

,1752'8&7,21

In order to raise the reliability of system analysis, a
system analysis technique is required that can have
the precision of paper-and-pencil based mathematical
proofs, and thus does not rely upon computer-arithmetic,
and utilizes the computers for bookkeeping, to be able to
handle complex systems without having to worry about
human-errors. Formal verification methods, which
are primarily based on theoretical computer science
fundamentals like logic calculi, automata theory and
strongly type systems, fulfill these requirements. The
main principle behind formal analysis of a system is

Osman Hasan
National University of Sciences and Technology, Pakistan

Sofiène Tahar
Concordia University, Canada

DOI: 10.4018/978-1-4666-5888-2.ch706

)RUPDO�9HUL¿FDWLRQ�0HWKRGV&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ

�6�6

&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ)RUPDO�9HUL¿FDWLRQ�0HWKRGV

���

to construct a computer based mathematical model of
the given system and formally verify, within a com-
puter, that this model meets rigorous specifications of
intended behavior. Due to the mathematical nature of
the analysis, 100% accuracy can be guaranteed.

The history of formal methods dates back to Knuth
and Dijkstra as both of them advocated the topic. For-
mal verification methods started to be investigated as
computer-aided design (CAD) tools in the 1970s for
software verification. However, the interest was marred
by the fact that the software bugs can be easily fixed by
releasing a software patch and thus the added reliability
of software is not worth the rigorous exercise of formal
verification. There was some research activity related
to the formal verification of security systems funded
by the US National Security Agency in the 1980s
but the real catalyst for the active research interest in
formal verification was their usage in verifying digital
hardware systems in late 1980s. This is mainly because
hardware descriptions are often more regular and hi-
erarchical than software ones, hardware primitives are
less obscure than the ones used in software and the cost
of an uncaught design bug in hardware is much more
profound than software since the hardware silicon chip
once fabricated cannot be fixed by releasing a patch
but instead has to be re-designed and re-fabricated,
which costs considerable amount of time and money.
The Intel floating-point division bug in 1994 further
enhanced the interest in formal hardware verification
and the industry started to adopt formal hardware
verification tools in their design flows in late 1990s
(Kropf, 1999). With the success of formal verification
in hardware and due to some interesting developments
in the underlying technologies, it started to be used
again for software, transportation and security system
analysis domains. Moreover, researchers started to
explore the formal verification of physical systems,
such as control systems, robotics and analog circuits,
and biological systems by using powerful abstraction
techniques to reduce the complexity of observable
phenomena to what is relevant for a particular purpose.
Recently, formal verification methods have also been
used to verify complete system models, along with their
continuous and unpredictable physical realities. The
future of formal methods seems to be quite promising
and besides academia, industry giants, like Intel and
Microsoft, are also actively involved in formal methods
related research.

The added benefits of formal verification methods
come mainly at the cost of extreme rigor. Generally
speaking, the expressiveness of a formal verification
method is in direct proportion with the amount of
required user intervention. Thus, formal verification
of complex systems is more challenging and time
consuming. Therefore, the general trend is to use a
lightweight approach, i.e., use traditional verification
methods, like simulation or testing, where accuracy of
the analysis is not a big concern while using formal
verification methods for the critical sections of the
systems. On similar lines, hybrid formal verification
methods are also being developed which allow us to
partition the overall system model based on its com-
plexity levels and thus facilitate using automatic formal
verification methods for the rather simpler sections of
the system while using the interactive methods with
the complex sections.

Generally, formal verification methods are classi-
fied based on their underlying logic, expressiveness
and decidability. The most commonly used formal
verification methods include theorem proving, symbolic
simulation and model checking. All of these have their
own strengths and weaknesses. They have been used
successfully to verify a variety of real-world systems. In
the rest of this chapter, we provide a brief introduction
to these widely used formal verification methods along
with some of their practical applications. Finally, the
chapter ends with some discussions and conclusions.

7+(25(0�3529,1*

Theorem proving or automated reasoning is one of
the most generic and widely used formal verifica-
tion method. The system that needs to be analyzed is
mathematically modeled in an appropriate logic and
the properties of interest are verified using computer
based software tools usually called theorem provers.
The use of formal logics as a modeling medium makes
theorem proving a very flexible verification method as
it is possible to formally verify any system that can be
described mathematically. The core of theorem provers
usually consists of some well-known axioms and primi-
tive inference rules. Soundness is assured as every new
theorem must be created from these basic axioms and
primitive inference rules or any other already proven
theorems or inference rules. A question that may arise

�6

&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ)RUPDO�9HUL¿FDWLRQ�0HWKRGV)RUPDO�9HUL¿FDWLRQ�0HWKRGV&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ

�6

���

here is that why do we need logic to model the system
and why natural languages like English or other com-
monly used programming languages like C++ or Java
may not suffice for carrying out theorem proving. The
foremost answer to this question is that the meanings
of these languages can be ambiguous and can lead to
multiple interpretations depending on the context and
implicit assumptions. Thus, statements specified in such
languages cannot be used for theorem proving where
the main goal is to verify formulas based on precise
rigorous reasoning and we need a logical language with
a syntax that can be described using a few basic rules
and a semantics that can be unambiguously defined.

The human interaction or the manual proof effort
required for proving logical formulas in a theorem
prover varies from trivial to complex depending on
the underlying logic. For instance, propositional logic
is the logic of propositions or declarative sentences
which can be true or false. The propositions can be
combined using Boolean operators: and (˄), or (˅), not
(¬), implication (⇒) and equivalence (⇔). Theoreti-
cally speaking, propositional logic is decidable, i.e.,
the logical correctness of a formula specified in propo-
sitional logic can be automatically verified using an
algorithm. The main limitation of propositional logic
is its limited expressiveness as it cannot be used to
represent verification problems for all sorts of systems.
First-order logic extends propositional calculus with
quantifiers, i.e., for all (∀) and there exists (∃), and
predicates, which are functions that return a Boolean
value. One can declare constants, function names and
free variables in first-order logic, which gives a con-
siderable amount of flexibility in terms of expression.
However, first-order logic is not completely decidable
and is usually referred to as semi-decidable since all
statements expressed in first-order logic cannot be
automatically verified by a computer algorithm. Thus,
the user of first-order-logic theorem provers may have
to interactively verify some formulas by providing
inputs to assist the tools. Finally, higher-order logic is
the most expressive form of logic that allows quanti-
fication over functions and sets. These features make
it so expressive that any system, along with its con-
tinuous and unpredictable elements, can be described
using higher-order logic given that its behavior can be
expressed in a closed mathematical form. This expres-
siveness comes at the cost of manual verification where
user input is required to verify all formulas expressed
in higher-order-logic, due to its un-decidable nature.

Based on the required user intervention in the proof
process, theorem proving can be broadly classified into
two sub branches, i.e., automated theorem proving and
interactive theorem proving.

$XWRPDWHG�7KHRUHP�3URYLQJ

Automated theorem provers are primarily based upon
propositional or first-order logics. The propositional
logic is decidable theoretically, but in practice, ex-
ponential-time algorithms are required for automatic
proofs. Thus, automatic proofs are mainly done by first
reducing the formula to be verified to a propositional
tautology or Boolean satisfiability checking problem.
This way, efficient algorithms like Binary decision
diagrams (BDD), Davis–Putnam–Logemann–Love-
land (DPLL) based SAT (satisfiability) solvers or
Stakmarck’s procedure may be used to automatically
check the validity of the formula. Recently, Satisfiability
Modulo Theories (SMT) solvers (Nieuwenhuis, 2006)
extend the capabilities of SAT solvers by handling
arithmetic and some other decidable theories and have
revolutionized the area of automated theorem proving.

From the automated theorem proving user’s per-
spective, formal verification can be done by developing
a formal model of the system under verification using
the available logic, i.e., propositional or first-order logic.
The next step is to formally specify the property that
needs to be verified for the given system. This property
can then be verified using the automatic verification
utilities like SMT solvers.

Various standalone automated theorem proving
tools have been developed and some of the prominent
ones include ACL2, E, Key, MetiTarski, Prover 9 and
Vampire. Some of the successful SMT solvers are
mathsat 4, yices and Z3. In terms of real-world ap-
plications of automated theorem proving, digital logic
circuits are primarily based on propositional logic so
automated theorem provers find a direct application in
their verification. The ability of the first-order logic to
formalize axiomatic systems makes it very useful for
formal verification and this fact along with the powerful
automatic verifiers, like SAT and SMT solvers, have
facilitated the usage of automated theorem proving to
verify a wide variety of applications including both
software (Denney, 2006; Beckert, 2007) and hardware
(Flatau, 2002; Ray, 2010) designs. Despite these suc-
cessful examples, automated theorem proving cannot

)RUPDO�9HUL¿FDWLRQ�0HWKRGV&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ

�6�6

&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ)RUPDO�9HUL¿FDWLRQ�0HWKRGV

���

be used with systems that involve data types with an
infinite domain, such as the real line, due to the limita-
tions of the underlying logic.

,QWHUDFWLYH�7KHRUHP�3URYLQJ

In system analysis, we often come across systems, such
as analog circuits or optical systems, whose behavior can
only be described in terms of more general mathematics
involving infinite sets, real numbers, etc. As described
earlier, first-order logic cannot be used to model these
kinds of systems and thus we have to use higher-order
logic and interactive theorem proving, where the user
is involved in the formal verification process along
with the machine. Edinburgh LCF (Logic for Com-
putable Functions) is one of the most commonly used
methods for developing interactive theorem provers.
LCF style theorem provers are implemented using the
strongly-typed functional programming language ML
(Meta Language) or its variants. An ML abstract data
type is used to represent higher-order-logic theorems
and the only way to interact with the theorem prover
is by executing ML procedures that operate on values
of these data types. The Interactive theorem provers
usually include many automatic proof assistants and
automatic proof procedures to assist their user in the
verification process. The user interacts with a proof
editor and provides it with the necessary tactics to
prove goals while using automatic proof procedures
whenever the problem is reduced to a decidable sub-
set. This process could be very tedious and usually
takes thousands of lines of proof script and hundreds
of man-hours for verifying the mathematical analysis
presented in a couple of pages. However, the ability to
build upon already verified results is a big strength of
this technique, which allows us to broaden the scope
of interactive theorem proving.

Some widely used theorem provers include HOL,
Isabelle, PVS and CoQ. Many interesting formaliza-
tions, including real analysis theory (Harrison, 1998),
C programming language (Norrish, 1998), Euclidian
geometry (Harrison, 2005) and probability theory
(Mhamdi, 2011), have been developed using interac-
tive theorem proving. Moreover, these foundations
have been utilized to verify real-world systems, like
programming language compilers (Strecker, 2002),
floating-point algorithms (Harrison, 2006), DSP

systems (Akbarpour, 2006), optical systems (Hasan,
2009) and wireless sensor networks (Elleuch, 2011).

For illustration purposes, consider the formal verifi-
cation of an algorithm that returns the minimum value
of an array of real numbers. Due to the involvement
of real numbers and an arbitrary number of elements,
higher-order logic theorem proving is used for the
verification. The first step in analyzing this algorithm
is to formalize it in higher-order logic. This can be
mainly done by the following recursive definition:

˄ x. min_list () (x:real) = x ∀ ޲
∀ h t x. min_list (h::t) x = minimum (min_list t h) x

where the function minimum takes two real numbers
and returns the lesser one out of them and the symbol::
denotes the cons operation between the head and tail of
an array. The function recursively finds the minimum
real number of a list of real numbers and another real
number x.

The next step after the formalization of the algorithm
is to formalize the property of interest as a proof goal
in the theorem prover. The following property serves
this purpose:

 x. MEM x L ⇒ min_list (TL (L)) (L: real list) ∀ ޲
(HD L) ≤ x

The predicate MEM x L ensures that x is a member
of list L and the functions HD and TL return the head
and tail of their list argument, respectively. Thus, the
goal guarantees that the value returned by the function
min_list is less than or equal to all values of list L. This
theorem can now be verified in a theorem prover using
induction on the variable L. The rest of the reasoning is
based on the above mentioned definitions and proper-
ties of real numbers and lists. The main strength of the
analysis presented above is its generic nature, which
is evident from the usage of the “for all” quantifier
for variables L and x, and guaranteed accuracy, based
on the inherent soundness of a theorem prover. How-
ever, on the downside, the formalization involves the
understanding of higher-order logic and the theories
of real numbers and lists. Moreover, the verification
required human guidance and was done interactively.

�6

&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ)RUPDO�9HUL¿FDWLRQ�0HWKRGV)RUPDO�9HUL¿FDWLRQ�0HWKRGV&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ

�6

���

6<0%2/,&�6,08/$7,21

Symbolic simulation (Bryant, 1990) bridges the gap
between the traditional simulation or testing approach
and formal verification. The main idea is to use symbols
(or variables) instead of the actual values in simulation
and thus consider multiple executions of the system
simultaneously. This way the number of test cases re-
duces and thus exhaustive simulation becomes realistic.
For example, consider the case of verifying a 4-input
and gate. In traditional simulation, this verification
would require 24=16 test vectors but using symbolic
simulation, we can assign Boolean variables to each
input, say x1, x2, x3 and x4, and check if the output is
equal to x1 ˄ x2 ˄ x3 ˄ x4 in one test run.

The Boolean expressions with the symbolic vari-
ables are generally expressed using canonical represen-
tations like the Reduced Order Binary Decision Dia-
grams (ROBDDs). This way, checking the equivalence
between two circuits becomes very straightforward as
we just have to make sure that the two circuits have the
same directed acyclic graph. The main computationally
expensive step is the composition of operations to obtain
the final ROBDD. Symbolic simulation is often used
in conjunction with ternary simulation where besides
true and false a don’t care (X) value is also considered.
Symbolic simulation methods are quite frequently used
with model checking. The main concept in this regard
is Symbolic Trajectory Evaluation (STE), which is an
extension for symbolic simulation and allows users to
specify time dependent properties using temporal logic
over bounded trajectories (Case, 2011).

One of the most common uses of symbolic simula-
tion is for functional equivalence checking of digital
designs. The field is quite mature and industrial tools
are available for conducting symbolic simulations based
equivalence checking. Examples include ESP-CV from
Synopsys, Insight from Avery Design Systems and the
Blue Pearl software, which uses symbolic simulation
to speed-up timing closure of RTL designs. One of the
main reasons why symbolic simulation has paved its
way to the industry is its user friendliness since the tools
usually accept hardware descriptive languages, like
Verilog or VHDL, and work in a push button fashion.
More recently, the usage of symbolic simulation in
software verification has also been investigated and
has brought promising results (Cadar, 2011).

02'(/�&+(&.,1*

Model checking is primary used as the verification
technique for reactive systems, i.e., the systems that
exhibit a behavior that is dependent on time and their
environment, like controller units of digital circuits
and communication protocols. The inputs to a model
checker include the finite-state model of the system
that needs to be analyzed along with the intended
system properties, which are expressed in temporal
logic. The model checker automatically verifies if the
properties hold for the given system while providing
an error trace in case of a failing property. The main
verification principle behind model-checking is to
construct a precise state-based model of the given
system and exhaustively verify the given property for
each state of this model. The analysis is automatic
which is why model checking is one of the most widely
used formal verification technique. On the other hand,
model-checking is limited to systems that can only
be expressed as finite state machines. Another major
limitation of the probabilistic model checking approach
is state space explosion. The state space of a system
can be very large, or sometimes even infinite. Thus,
it becomes computationally impossible to explore the
entire state space with limited resources of time and
memory. This problem is usually resolved by working
with abstract, less complex, models of the system by
somewhat compromising the accuracy of the analysis.

Many techniques have been proposed to minimize
the memory and computation requirements of model
checking. Symbolic model checking (McMillan, 1993)
is based on the idea of grouping multiple states to-
gether and assigning them a unique symbol and then
running model checking algorithms on this symbolic
state-space. The most commonly used data structure
in symbolic model checking is BDDs. Bounded model
checking (BMC) (Biere, 1999) is an extension of sym-
bolic model checking and the main idea is to encode
states as propositional logic formulas and then use
SAT solvers for the analysis. A subset of executions
with an upper bound on length, say k, is chosen and the
counter-example is searched in this subset in BMC. If
a contradiction is not found then the algorithm is run
again with a higher k.

The above mentioned methods along with appropri-
ate usage of abstraction have enabled a wide usage of
model checking. Some of the commonly used model
checking tools include SPIN (used for distributed sys-

)RUPDO�9HUL¿FDWLRQ�0HWKRGV&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ

�6�6

&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ)RUPDO�9HUL¿FDWLRQ�0HWKRGV

���

tems; mostly software), NuSMV (used for concurrent
systems including digital hardware), Uppaal (Real-
Time Systems), Hytech (Hybrid Systems) and PRISM
(probabilistic model checking). Candence Design Sys-
tems had released a commercial model checking tool
FormalCheck in late 1990s that was capable of reading
synthesizable Verilog code and thus the user of the tool
had to only specify the properties to be verified and
the rest of the analysis was automatic. However, most
of the models checking tools do not offer such kind
of a luxury and the users have to encode the model in
the language of the tool. For example, SPIN accepts
Promela models only. Model checking has been used
to formally verify a wide variety of systems including
software (Berard, 2010), digital hardware (Raffelsieper,
2009), security protocols (Armando, 2008), analog and
mixed signal circuits (Zaki, 2008), etc.

For illustration purpose, consider a simple auto-
matic bank teller machine (ATM): The first step to
initiate a transaction is to insert the ATM card. Next,
the user may make a request, like requesting and
depositing money, or do nothing. If a request is made
then it is serviced and the card is ejected else the card
is ejected without providing any service to the user.
The first step in analyzing this system using model
checking is to construct a state-based model, depicted
in Figure 1, for this system in the language supported
by the model checker. It is interesting to note that
more than one transition is possible from the state s1.
To model such cases, all model checking languages
support non-deterministic assignments.

Now, we may check that eventually the card is
ejected for all executions. This property can be specified
in linear temporal logic (LTL) as GF (card eject), where
the temporal operator G represents the global validity
of a property and F represents eventual verification
of a property in the future. The model checker can be
invoked to check the correctness of this property and it

automatically returns False with the counter-example
path: s0,s1,s2,s3,s1….This is the case when the user
always initiates another request just when her previous
request was serviced. Similarly, another property could
be that every request is eventually serviced. This can
be modeled in LTL as G(request → F response) and
can be automatically verified by the model checker
since it is valid for all possible state-paths.

The above example illustrates that model check-
ing is a rigorous method and unlike testing it verifies
a property only if it is true for all possible executions.
This is a very useful feature as the verification engineer
does not need to think about creating smart test cases
to identify system problems. However, due to the same
rigorous nature of verification, the technique may not
be used for larger models.

&21&/86,21

This chapter provides a brief overview of formal
verification methods, their strengths, weaknesses and
applications. Formal verification provides precise
system analysis, which is a dire need in safety-critical
system design. However, this precision comes at the
cost of extensive engineering time and effort. Theorem
proving is one of the most generic formal verification
methods as it can automatically handle the analysis of
systems that can be expressed using propositional or
first-order logic and can also handle complex systems,
involving continuous and unpredictable components,
using higher-order logic at the cost of significant
manual effort. Symbolic simulation is an automatic
and user friendly formal verification method but has
a very limited scope in terms of the systems that can
be analyzed. Finally, model checking requires manual
efforts in formal specification of the system and proper-

Figure 1. State Transition System for the Simple ATM

�6

&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ)RUPDO�9HUL¿FDWLRQ�0HWKRGV)RUPDO�9HUL¿FDWLRQ�0HWKRGV&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ

�6

���

ties but the verification is done automatically. However,
it is limited by the state-space explosion problem and
thus cannot handle very large systems. One of the
recent trends in formal verification methods is to use
a hybrid approach, i.e., leverage upon the strengths of
each method to develop hybrid tools, e.g., KeYmaera
combines model checking, theorem proving and sym-
bolic methods to verify hybrid systems.

)8785(�5(6($5&+�',5(&7,216

The chapter also provides some examples of using
formal methods for ensuring the correctness of some
real-world systems. It is interesting to note that besides
the traditional computing problems, formal methods
are also being widely explored these days in verifying
some exotic problems involving the domains of phys-
ics, biology, economics, law, etc. However, most of
these existing works have been conducted by academic
research groups and the usage of formal methods in
the industry has been somewhat scarce. Some of the
main reasons include the time-to-market pressures, the
non-friendly nature of available formal method tools
and the challenges associated with the identification
of the most appropriate formal method for a particular
application. The situation can be improved by providing
appropriate training to industrial engineers as they are
usually not very savvy with formal methods and their
notations. Similarly, regulations and standards impos-
ing the usage of formal methods are also expected to
improve the situation. In the past decade, some indus-
tries, including SAP, Siemens, Intel and SSF, which
are involved in developing safety-critical systems, have
started to utilize formal methods and a comprehensive
survey of industrial usage of formal methods and their
impact is presented in (FM4industry, 2013). Similarly,
a worth reading motivating story about the adoption
of formal methods by the railway signaling division
of General Electric Transportation Systems (GETS)
is presented in (Bacherini, 2006).

5()(5(1&(6

Akbarpour, B., & Tahar, S. (2006). An Approach for
the Formal Verification of DSP Designs using Theo-
rem Proving. IEEE Transactions on CAD of Integrated
Circuits & Systems, 25(8), 1141–1457. doi:10.1109/
TCAD.2005.857314

Arm&o, A., & Compagna, L. (2008). SAT-based
Model-Checking for Security Protocols Analysis. In-
ternational Journal of Information Security, 7(1), 3-32.

Bacherini, S., Fantechi, A., Tempestini, M., & Zingori,
N. (2006). A Story about Formal Methods Adoption by
a Railway Signaling Manufacturer. In Formal Methods
(pp 179–189).

Beckert, B., Hähnle, R., & Schmitt, P. H. (2007).
Verification of Object-Oriented Software: The KeY
Approach. Springer.

Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit,
A., Petrucci, L., & Schnoebelen, P. (2010). Systems &
Software Verification: Model-Checking Techniques &
Tools. Springer.

Biere, C. Fujita, & Zhu. (1999).Symbolic Model Check-
ing using SAT Procedures instead of BDDs. Design
Automation Conference (pp. 317-320).

Bryant, R. E. (1990). Symbolic Simulation—Tech-
niques and Applications. In Design Automation Con-
ference (pp. 517-521).

Cadar, C., Godefroid, P., Khurshid, S., Pasareanu,
C. S., Sen, K., Tillmann, N., & Visser, W. (2011).
Symbolic Execution for Software Testing in Practice
– Preliminary Assessment. In Software Engineering
(1066-1071).

Case, M., Baumgartner, J., Mony, H., & Kanzelman,
R. (2011). Approximate Reachability with Combined
Symbolic and Ternary Simulation (pp. 109–115).
Formal Methods in Computer-Aided Design.

Denney, E., Fischer, B., & Schumann, J. (2006). An
Empirical Evaluation of Automated Theorem Provers
in Software Certification. International Journal of Ar-
tificial Intelligence Tools, 15(1), 81–107. doi:10.1142/
S0218213006002576

http://dx.doi.org/10.1109/TCAD.2005.857314
http://dx.doi.org/10.1109/TCAD.2005.857314
http://dx.doi.org/10.1142/S0218213006002576
http://dx.doi.org/10.1142/S0218213006002576

)RUPDO�9HUL¿FDWLRQ�0HWKRGV&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ

�6�6

&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ)RUPDO�9HUL¿FDWLRQ�0HWKRGV

���

Elleuch, M., Hasan, O., Tahar, S., & Abid, M. (2011).
Formal Analysis of a Scheduling Algorithm for Wireless
Sensor Networks (pp. 388–403). Formal Engineering
Methods. doi:10.1007/978-3-642-24559-6_27

FM4Industry. (2013) Retrieved from http://www.
fm4industry.org

Flatau, A., Kaufmann, M., Reed, D. F., Russinoff, D.,
Smith, E., & Sumners, R. (2002). Formal Verification
of Microprocessors at AMD. In Designing Correct
Circuits.

Harrison, J. (1998). Theorem Proving with the Real
Numbers. Springer. doi:10.1007/978-1-4471-1591-5

Harrison, J. (2005). A HOL Theory of Euclidean
Space. In Theorem Proving in Higher Order Logic
(pp. 114-129).

Harrison, J. (2006). Floating-Point Verification using
Theorem Proving. In Formal Methods for the Design
of Computer (pp. 211–242). Communication, and
Software Systems.

Hasan, O., Afshar, S. K., & Tahar, S. (2009). For-
mal Analysis of Optical Waveguides in HOL (pp.
228–243). Theorem Proving in Higher-Order Logics.
doi:10.1007/978-3-642-03359-9_17

Hasan, O., & Tahar, S. (2010). Formally Analyzing Ex-
pected Time Complexity of Algorithms using Theorem
Proving. Journal of Computer Science & Technology,
25(6), 1305–1320. doi:10.1007/s11390-010-9407-0

Kropf, T. (1999). Introduction to Formal Hardware Ver-
ification. Springer. doi:10.1007/978-3-662-03809-3

McMillan. K. L., (1993). Symbolic Model Checking.
Kluwer Academic Publishers.

Mhamdi, T. Hasan, O., & Tahar, S. (2011). Formaliza-
tion of Entropy Measures in HOL. Interactive Theorem
Proving (pp. 233-248).

Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006).
Solving SAT & SAT Modulo Theories: From an
abstract Davis-Putnam-Logemann-Lovel & Proce-
dure to DPLL. Journal of the ACM, 53(6), 937–977.
doi:10.1145/1217856.1217859

Norrish, M. (1998). C Formalised in HOL. PhD Thesis,
University of Cambridge, UK.

Raffelsieper, M., Roorda, J.-W., & Mousavi, M.-R.
(2009). Model Checking Verilog Descriptions of
Cell Libraries. Application of Concurrency to System
Design (pp. 128-137).

Ray, S., Bhadra, J., Portlock, T., & Syzdek, R. (2010).
Modeling & Verification of Industrial Flash Memories
(pp. 705–712). Quality Electronic Design.

Strecker, M. (2002). Formal Verification of a Java Com-
piler in Isabelle. In Automated Deduction (pp. 63–77).

Zaki, M., Tahar, S., & Bois, G. (2008). Formal
Verification of Analog & Mixed Signal Designs: A
Survey. Microelectronics Journal, 39(12), 1395–1404.
doi:10.1016/j.mejo.2008.05.013

$'',7,21$/�5($',1*

Abrial, J. R. (2009). Faultless Systems: Yes We Can!
Computer, 42(9), 30–36. doi:10.1109/MC.2009.283

Baier, C., & Katoen, J. P. (2008). Principles of Model
Checking. MIT Press.

Boca, P. P., Bowen, J. P., & Siddiqi, J. I. (2009). Formal
Methods: State of the Art & New Directions. Springer.

Hall, A. (2007). Realizing the Benefits of Formal
Methods. Journal of Universal Computer Science,
13(5), 669–678.

Harrison, J. (2009). H&book of Practical Logic & Au-
tomated Reasoning. Cambridge U. Press. doi:10.1017/
CBO9780511576430

.(<�7(506�$1'�'(),1,7,216

Binary Decision Diagram (BDD): A representa-
tion of a Boolean expression using a rooted directed
acyclic graph (DAG) that consists of terminal (with
constant values 0 or 1) or non-terminal nodes (vari-
ables). A Reduced ordered BDD (ROBDD), which is
a widely used data structure in formal verification, is
a BDD with a particular variable order where identical
nodes are shared and redundant tests are eliminated.

Formal Verification Methods: Mathematical
techniques, often supported by computer-based tools,

�6

&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ)RUPDO�9HUL¿FDWLRQ�0HWKRGV)RUPDO�9HUL¿FDWLRQ�0HWKRGV&DWHJRU\��6\VWHPV�DQG�6RIWZDUH�(QJLQHHULQJ

�6

���

for the specification and verification of software and
hardware systems. The main principle behind formal
analysis of a system is to construct a computer based
mathematical model of the given system and formally
verify, within a computer, that this model meets rigor-
ous specifications of intended behavior.

Higher-Order Logic: A system of deduction
with a precise semantics. It differs from the more
commonly-known predicate and first-order logics by
allowing quantification over function variables. This
extension substantially increases the expressiveness
of the logic and thus higher-order logic can be used
for the formal specification of most mathematical
concepts and theories.

Satisfiability: A logical formula is termed to be
satisfiable if and only if it is true for at least one com-
bination of its variables.

Tautology: A logical formula is termed to be a
tautology (valid) if and only if it is true for all the pos-
sible values of its variables. In other words, a formula

is a tautology if its negation (¬F) is unsatisfiable. This
relationship between satisfiablity and tautology is one
of the foundational principles of using SAT solving for
equivalence checking.

Temporal Logic: Temporal logic allows us to
formally represent time-dependent propositions. For
example, propositions like an event would happen in
the next time step or sometime in the future or would
never happen in the future, can be expressed using
temporal logic operators. Temporal logic is used in
model-checking to express the properties of interest
about the reactive systems.

	Instructions

	Title Page
	Formal Verification Methods

