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On June 1, 2009, Air France Flight 447 from Rio 
de Janeiro to Paris crashed into the Atlantic Ocean, 
killing all 216 passengers and 12 crew members. 
Prior to the disappearance of the A330 aircraft, the 
automatic reporting system sent messages indicating 
disagreement in the airspeed readings, which led in-
vestigators to believe that the pilot probe sensors did 
not “accurately” measure airspeed and the autopilot 
may have automatically disengaged. Like the above 
probes, many systems are increasingly being used in 
safety-critical domains, such as medicine, transporta-
tion systems, chemical plants, etc. There is hence a 
dire need to ensure the accuracy of such systems as a 
system bug, or error, may endanger human life or lead 
to a significant financial loss.

In order to ensure error-free systems, the system 
design process is usually accompanied by a rigorous 
system analysis to check if the designed system would 
exhibit the desired behavior. The core of system analy-
sis is based on mathematics and the fundamental idea 
is to create a mathematical model of the system and 
then use logical or mathematical reasoning to verify 
that the desired properties hold for this model. Tradi-
tionally, system analysis is done by paper-and-pencil 
proof methods. However, considering the complex-
ity of present age systems, such kind of analysis is 
notoriously difficult, if not impossible, and is quite 
error prone due to the human error factor. Moreover, 
it is quite often the case that mathematicians forget 
to pen down all the assumptions that are required for 
the validity of their analysis. This fact may also result 
in designing erroneous systems. With the advent of 
computers, many computer based software tools based 
on the principle of testing or simulation have been 
introduced for system verification. Due to the reliable 

and efficient bookkeeping characteristic of comput-
ers, large systems can be analyzed and thus one of the 
limitations of paper-and-pencil proof methods can be 
overcome. However, the main problem with such kind 
of analysis is its completeness as the system is checked 
only for a subset of possible inputs since exhaustive 
testing is not possible for any system with a significant 
number of inputs due to the exponential growth of the 
test patterns. In Dijkstra’s words “Program testing 
can be a very effective way to show the presence of 
bugs, but it is hopelessly inadequate for showing their 
absence.” Moreover, testing or simulation cannot be 
used to precisely verify properties about continuous 
systems due to the usage of computer arithmetic, like 
floating-point or fixed-point representations of real 
numbers. The above mentioned inaccuracy limitations 
of commonly used system analysis techniques can be 
held responsible for many unfortunate incidents that 
happened due to an erroneous system deployed in a 
safety-critical domain For example, the Therac-25 
software bug and the Intel Pentium’s floating-point 
division unit error).

,1752'8&7,21

In order to raise the reliability of system analysis, a 
system analysis technique is required that can have 
the precision of paper-and-pencil based mathematical 
proofs, and thus does not rely upon computer-arithmetic, 
and utilizes the computers for bookkeeping, to be able to 
handle complex systems without having to worry about 
human-errors. Formal verification methods, which 
are primarily based on theoretical computer science 
fundamentals like logic calculi, automata theory and 
strongly type systems, fulfill these requirements. The 
main principle behind formal analysis of a system is 
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to construct a computer based mathematical model of 
the given system and formally verify, within a com-
puter, that this model meets rigorous specifications of 
intended behavior. Due to the mathematical nature of 
the analysis, 100% accuracy can be guaranteed.

The history of formal methods dates back to Knuth 
and Dijkstra as both of them advocated the topic. For-
mal verification methods started to be investigated as 
computer-aided design (CAD) tools in the 1970s for 
software verification. However, the interest was marred 
by the fact that the software bugs can be easily fixed by 
releasing a software patch and thus the added reliability 
of software is not worth the rigorous exercise of formal 
verification. There was some research activity related 
to the formal verification of security systems funded 
by the US National Security Agency in the 1980s 
but the real catalyst for the active research interest in 
formal verification was their usage in verifying digital 
hardware systems in late 1980s. This is mainly because 
hardware descriptions are often more regular and hi-
erarchical than software ones, hardware primitives are 
less obscure than the ones used in software and the cost 
of an uncaught design bug in hardware is much more 
profound than software since the hardware silicon chip 
once fabricated cannot be fixed by releasing a patch 
but instead has to be re-designed and re-fabricated, 
which costs considerable amount of time and money. 
The Intel floating-point division bug in 1994 further 
enhanced the interest in formal hardware verification 
and the industry started to adopt formal hardware 
verification tools in their design flows in late 1990s 
(Kropf, 1999). With the success of formal verification 
in hardware and due to some interesting developments 
in the underlying technologies, it started to be used 
again for software, transportation and security system 
analysis domains. Moreover, researchers started to 
explore the formal verification of physical systems, 
such as control systems, robotics and analog circuits, 
and biological systems by using powerful abstraction 
techniques to reduce the complexity of observable 
phenomena to what is relevant for a particular purpose. 
Recently, formal verification methods have also been 
used to verify complete system models, along with their 
continuous and unpredictable physical realities. The 
future of formal methods seems to be quite promising 
and besides academia, industry giants, like Intel and 
Microsoft, are also actively involved in formal methods 
related research.

The added benefits of formal verification methods 
come mainly at the cost of extreme rigor. Generally 
speaking, the expressiveness of a formal verification 
method is in direct proportion with the amount of 
required user intervention. Thus, formal verification 
of complex systems is more challenging and time 
consuming. Therefore, the general trend is to use a 
lightweight approach, i.e., use traditional verification 
methods, like simulation or testing, where accuracy of 
the analysis is not a big concern while using formal 
verification methods for the critical sections of the 
systems. On similar lines, hybrid formal verification 
methods are also being developed which allow us to 
partition the overall system model based on its com-
plexity levels and thus facilitate using automatic formal 
verification methods for the rather simpler sections of 
the system while using the interactive methods with 
the complex sections.

Generally, formal verification methods are classi-
fied based on their underlying logic, expressiveness 
and decidability. The most commonly used formal 
verification methods include theorem proving, symbolic 
simulation and model checking. All of these have their 
own strengths and weaknesses. They have been used 
successfully to verify a variety of real-world systems. In 
the rest of this chapter, we provide a brief introduction 
to these widely used formal verification methods along 
with some of their practical applications. Finally, the 
chapter ends with some discussions and conclusions.

7+(25(0�3529,1*

Theorem proving or automated reasoning is one of 
the most generic and widely used formal verifica-
tion method. The system that needs to be analyzed is 
mathematically modeled in an appropriate logic and 
the properties of interest are verified using computer 
based software tools usually called theorem provers. 
The use of formal logics as a modeling medium makes 
theorem proving a very flexible verification method as 
it is possible to formally verify any system that can be 
described mathematically. The core of theorem provers 
usually consists of some well-known axioms and primi-
tive inference rules. Soundness is assured as every new 
theorem must be created from these basic axioms and 
primitive inference rules or any other already proven 
theorems or inference rules. A question that may arise 
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here is that why do we need logic to model the system 
and why natural languages like English or other com-
monly used programming languages like C++ or Java 
may not suffice for carrying out theorem proving. The 
foremost answer to this question is that the meanings 
of these languages can be ambiguous and can lead to 
multiple interpretations depending on the context and 
implicit assumptions. Thus, statements specified in such 
languages cannot be used for theorem proving where 
the main goal is to verify formulas based on precise 
rigorous reasoning and we need a logical language with 
a syntax that can be described using a few basic rules 
and a semantics that can be unambiguously defined.

The human interaction or the manual proof effort 
required for proving logical formulas in a theorem 
prover varies from trivial to complex depending on 
the underlying logic. For instance, propositional logic 
is the logic of propositions or declarative sentences 
which can be true or false. The propositions can be 
combined using Boolean operators: and (˄), or (˅), not 
(¬), implication (⇒) and equivalence (⇔). Theoreti-
cally speaking, propositional logic is decidable, i.e., 
the logical correctness of a formula specified in propo-
sitional logic can be automatically verified using an 
algorithm. The main limitation of propositional logic 
is its limited expressiveness as it cannot be used to 
represent verification problems for all sorts of systems. 
First-order logic extends propositional calculus with 
quantifiers, i.e., for all (∀) and there exists (∃), and 
predicates, which are functions that return a Boolean 
value. One can declare constants, function names and 
free variables in first-order logic, which gives a con-
siderable amount of flexibility in terms of expression. 
However, first-order logic is not completely decidable 
and is usually referred to as semi-decidable since all 
statements expressed in first-order logic cannot be 
automatically verified by a computer algorithm. Thus, 
the user of first-order-logic theorem provers may have 
to interactively verify some formulas by providing 
inputs to assist the tools. Finally, higher-order logic is 
the most expressive form of logic that allows quanti-
fication over functions and sets. These features make 
it so expressive that any system, along with its con-
tinuous and unpredictable elements, can be described 
using higher-order logic given that its behavior can be 
expressed in a closed mathematical form. This expres-
siveness comes at the cost of manual verification where 
user input is required to verify all formulas expressed 
in higher-order-logic, due to its un-decidable nature. 

Based on the required user intervention in the proof 
process, theorem proving can be broadly classified into 
two sub branches, i.e., automated theorem proving and 
interactive theorem proving.

$XWRPDWHG�7KHRUHP�3URYLQJ

Automated theorem provers are primarily based upon 
propositional or first-order logics. The propositional 
logic is decidable theoretically, but in practice, ex-
ponential-time algorithms are required for automatic 
proofs. Thus, automatic proofs are mainly done by first 
reducing the formula to be verified to a propositional 
tautology or Boolean satisfiability checking problem. 
This way, efficient algorithms like Binary decision 
diagrams (BDD), Davis–Putnam–Logemann–Love-
land (DPLL) based SAT (satisfiability) solvers or 
Stakmarck’s procedure may be used to automatically 
check the validity of the formula. Recently, Satisfiability 
Modulo Theories (SMT) solvers (Nieuwenhuis, 2006) 
extend the capabilities of SAT solvers by handling 
arithmetic and some other decidable theories and have 
revolutionized the area of automated theorem proving.

From the automated theorem proving user’s per-
spective, formal verification can be done by developing 
a formal model of the system under verification using 
the available logic, i.e., propositional or first-order logic. 
The next step is to formally specify the property that 
needs to be verified for the given system. This property 
can then be verified using the automatic verification 
utilities like SMT solvers.

Various standalone automated theorem proving 
tools have been developed and some of the prominent 
ones include ACL2, E, Key, MetiTarski, Prover 9 and 
Vampire. Some of the successful SMT solvers are 
mathsat 4, yices and Z3. In terms of real-world ap-
plications of automated theorem proving, digital logic 
circuits are primarily based on propositional logic so 
automated theorem provers find a direct application in 
their verification. The ability of the first-order logic to 
formalize axiomatic systems makes it very useful for 
formal verification and this fact along with the powerful 
automatic verifiers, like SAT and SMT solvers, have 
facilitated the usage of automated theorem proving to 
verify a wide variety of applications including both 
software (Denney, 2006; Beckert, 2007) and hardware 
(Flatau, 2002; Ray, 2010) designs. Despite these suc-
cessful examples, automated theorem proving cannot 
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be used with systems that involve data types with an 
infinite domain, such as the real line, due to the limita-
tions of the underlying logic.

,QWHUDFWLYH�7KHRUHP�3URYLQJ

In system analysis, we often come across systems, such 
as analog circuits or optical systems, whose behavior can 
only be described in terms of more general mathematics 
involving infinite sets, real numbers, etc. As described 
earlier, first-order logic cannot be used to model these 
kinds of systems and thus we have to use higher-order 
logic and interactive theorem proving, where the user 
is involved in the formal verification process along 
with the machine. Edinburgh LCF (Logic for Com-
putable Functions) is one of the most commonly used 
methods for developing interactive theorem provers. 
LCF style theorem provers are implemented using the 
strongly-typed functional programming language ML 
(Meta Language) or its variants. An ML abstract data 
type is used to represent higher-order-logic theorems 
and the only way to interact with the theorem prover 
is by executing ML procedures that operate on values 
of these data types. The Interactive theorem provers 
usually include many automatic proof assistants and 
automatic proof procedures to assist their user in the 
verification process. The user interacts with a proof 
editor and provides it with the necessary tactics to 
prove goals while using automatic proof procedures 
whenever the problem is reduced to a decidable sub-
set. This process could be very tedious and usually 
takes thousands of lines of proof script and hundreds 
of man-hours for verifying the mathematical analysis 
presented in a couple of pages. However, the ability to 
build upon already verified results is a big strength of 
this technique, which allows us to broaden the scope 
of interactive theorem proving.

Some widely used theorem provers include HOL, 
Isabelle, PVS and CoQ. Many interesting formaliza-
tions, including real analysis theory (Harrison, 1998), 
C programming language (Norrish, 1998), Euclidian 
geometry (Harrison, 2005) and probability theory 
(Mhamdi, 2011), have been developed using interac-
tive theorem proving. Moreover, these foundations 
have been utilized to verify real-world systems, like 
programming language compilers (Strecker, 2002), 
floating-point algorithms (Harrison, 2006), DSP 

systems (Akbarpour, 2006), optical systems (Hasan, 
2009) and wireless sensor networks (Elleuch, 2011).

For illustration purposes, consider the formal verifi-
cation of an algorithm that returns the minimum value 
of an array of real numbers. Due to the involvement 
of real numbers and an arbitrary number of elements, 
higher-order logic theorem proving is used for the 
verification. The first step in analyzing this algorithm 
is to formalize it in higher-order logic. This can be 
mainly done by the following recursive definition:

˄ x. min_list () (x:real) = x ∀ ޲
∀ h t x. min_list (h::t) x = minimum (min_list t h) x

where the function minimum takes two real numbers 
and returns the lesser one out of them and the symbol:: 
denotes the cons operation between the head and tail of 
an array. The function recursively finds the minimum 
real number of a list of real numbers and another real 
number x.

The next step after the formalization of the algorithm 
is to formalize the property of interest as a proof goal 
in the theorem prover. The following property serves 
this purpose:

 x. MEM x L ⇒ min_list (TL (L)) (L: real list) ∀ ޲
(HD L) ≤ x

The predicate MEM x L ensures that x is a member 
of list L and the functions HD and TL return the head 
and tail of their list argument, respectively. Thus, the 
goal guarantees that the value returned by the function 
min_list is less than or equal to all values of list L. This 
theorem can now be verified in a theorem prover using 
induction on the variable L. The rest of the reasoning is 
based on the above mentioned definitions and proper-
ties of real numbers and lists. The main strength of the 
analysis presented above is its generic nature, which 
is evident from the usage of the “for all” quantifier 
for variables L and x, and guaranteed accuracy, based 
on the inherent soundness of a theorem prover. How-
ever, on the downside, the formalization involves the 
understanding of higher-order logic and the theories 
of real numbers and lists. Moreover, the verification 
required human guidance and was done interactively.
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Symbolic simulation (Bryant, 1990) bridges the gap 
between the traditional simulation or testing approach 
and formal verification. The main idea is to use symbols 
(or variables) instead of the actual values in simulation 
and thus consider multiple executions of the system 
simultaneously. This way the number of test cases re-
duces and thus exhaustive simulation becomes realistic. 
For example, consider the case of verifying a 4-input 
and gate. In traditional simulation, this verification 
would require 24=16 test vectors but using symbolic 
simulation, we can assign Boolean variables to each 
input, say x1, x2, x3 and x4, and check if the output is 
equal to x1 ˄ x2 ˄ x3 ˄ x4 in one test run.

The Boolean expressions with the symbolic vari-
ables are generally expressed using canonical represen-
tations like the Reduced Order Binary Decision Dia-
grams (ROBDDs). This way, checking the equivalence 
between two circuits becomes very straightforward as 
we just have to make sure that the two circuits have the 
same directed acyclic graph. The main computationally 
expensive step is the composition of operations to obtain 
the final ROBDD. Symbolic simulation is often used 
in conjunction with ternary simulation where besides 
true and false a don’t care (X) value is also considered. 
Symbolic simulation methods are quite frequently used 
with model checking. The main concept in this regard 
is Symbolic Trajectory Evaluation (STE), which is an 
extension for symbolic simulation and allows users to 
specify time dependent properties using temporal logic 
over bounded trajectories (Case, 2011).

One of the most common uses of symbolic simula-
tion is for functional equivalence checking of digital 
designs. The field is quite mature and industrial tools 
are available for conducting symbolic simulations based 
equivalence checking. Examples include ESP-CV from 
Synopsys, Insight from Avery Design Systems and the 
Blue Pearl software, which uses symbolic simulation 
to speed-up timing closure of RTL designs. One of the 
main reasons why symbolic simulation has paved its 
way to the industry is its user friendliness since the tools 
usually accept hardware descriptive languages, like 
Verilog or VHDL, and work in a push button fashion. 
More recently, the usage of symbolic simulation in 
software verification has also been investigated and 
has brought promising results (Cadar, 2011).

02'(/�&+(&.,1*

Model checking is primary used as the verification 
technique for reactive systems, i.e., the systems that 
exhibit a behavior that is dependent on time and their 
environment, like controller units of digital circuits 
and communication protocols. The inputs to a model 
checker include the finite-state model of the system 
that needs to be analyzed along with the intended 
system properties, which are expressed in temporal 
logic. The model checker automatically verifies if the 
properties hold for the given system while providing 
an error trace in case of a failing property. The main 
verification principle behind model-checking is to 
construct a precise state-based model of the given 
system and exhaustively verify the given property for 
each state of this model. The analysis is automatic 
which is why model checking is one of the most widely 
used formal verification technique. On the other hand, 
model-checking is limited to systems that can only 
be expressed as finite state machines. Another major 
limitation of the probabilistic model checking approach 
is state space explosion. The state space of a system 
can be very large, or sometimes even infinite. Thus, 
it becomes computationally impossible to explore the 
entire state space with limited resources of time and 
memory. This problem is usually resolved by working 
with abstract, less complex, models of the system by 
somewhat compromising the accuracy of the analysis.

Many techniques have been proposed to minimize 
the memory and computation requirements of model 
checking. Symbolic model checking (McMillan, 1993) 
is based on the idea of grouping multiple states to-
gether and assigning them a unique symbol and then 
running model checking algorithms on this symbolic 
state-space. The most commonly used data structure 
in symbolic model checking is BDDs. Bounded model 
checking (BMC) (Biere, 1999) is an extension of sym-
bolic model checking and the main idea is to encode 
states as propositional logic formulas and then use 
SAT solvers for the analysis. A subset of executions 
with an upper bound on length, say k, is chosen and the 
counter-example is searched in this subset in BMC. If 
a contradiction is not found then the algorithm is run 
again with a higher k.

The above mentioned methods along with appropri-
ate usage of abstraction have enabled a wide usage of 
model checking. Some of the commonly used model 
checking tools include SPIN (used for distributed sys-
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tems; mostly software), NuSMV (used for concurrent 
systems including digital hardware), Uppaal (Real-
Time Systems), Hytech (Hybrid Systems) and PRISM 
(probabilistic model checking). Candence Design Sys-
tems had released a commercial model checking tool 
FormalCheck in late 1990s that was capable of reading 
synthesizable Verilog code and thus the user of the tool 
had to only specify the properties to be verified and 
the rest of the analysis was automatic. However, most 
of the models checking tools do not offer such kind 
of a luxury and the users have to encode the model in 
the language of the tool. For example, SPIN accepts 
Promela models only. Model checking has been used 
to formally verify a wide variety of systems including 
software (Berard, 2010), digital hardware (Raffelsieper, 
2009), security protocols (Armando, 2008), analog and 
mixed signal circuits (Zaki, 2008), etc.

For illustration purpose, consider a simple auto-
matic bank teller machine (ATM): The first step to 
initiate a transaction is to insert the ATM card. Next, 
the user may make a request, like requesting and 
depositing money, or do nothing. If a request is made 
then it is serviced and the card is ejected else the card 
is ejected without providing any service to the user. 
The first step in analyzing this system using model 
checking is to construct a state-based model, depicted 
in Figure 1, for this system in the language supported 
by the model checker. It is interesting to note that 
more than one transition is possible from the state s1. 
To model such cases, all model checking languages 
support non-deterministic assignments.

Now, we may check that eventually the card is 
ejected for all executions. This property can be specified 
in linear temporal logic (LTL) as GF (card eject), where 
the temporal operator G represents the global validity 
of a property and F represents eventual verification 
of a property in the future. The model checker can be 
invoked to check the correctness of this property and it 

automatically returns False with the counter-example 
path: s0,s1,s2,s3,s1….This is the case when the user 
always initiates another request just when her previous 
request was serviced. Similarly, another property could 
be that every request is eventually serviced. This can 
be modeled in LTL as G(request → F response) and 
can be automatically verified by the model checker 
since it is valid for all possible state-paths.

The above example illustrates that model check-
ing is a rigorous method and unlike testing it verifies 
a property only if it is true for all possible executions. 
This is a very useful feature as the verification engineer 
does not need to think about creating smart test cases 
to identify system problems. However, due to the same 
rigorous nature of verification, the technique may not 
be used for larger models.

&21&/86,21

This chapter provides a brief overview of formal 
verification methods, their strengths, weaknesses and 
applications. Formal verification provides precise 
system analysis, which is a dire need in safety-critical 
system design. However, this precision comes at the 
cost of extensive engineering time and effort. Theorem 
proving is one of the most generic formal verification 
methods as it can automatically handle the analysis of 
systems that can be expressed using propositional or 
first-order logic and can also handle complex systems, 
involving continuous and unpredictable components, 
using higher-order logic at the cost of significant 
manual effort. Symbolic simulation is an automatic 
and user friendly formal verification method but has 
a very limited scope in terms of the systems that can 
be analyzed. Finally, model checking requires manual 
efforts in formal specification of the system and proper-

Figure 1. State Transition System for the Simple ATM
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ties but the verification is done automatically. However, 
it is limited by the state-space explosion problem and 
thus cannot handle very large systems. One of the 
recent trends in formal verification methods is to use 
a hybrid approach, i.e., leverage upon the strengths of 
each method to develop hybrid tools, e.g., KeYmaera 
combines model checking, theorem proving and sym-
bolic methods to verify hybrid systems.

)8785(�5(6($5&+�',5(&7,216

The chapter also provides some examples of using 
formal methods for ensuring the correctness of some 
real-world systems. It is interesting to note that besides 
the traditional computing problems, formal methods 
are also being widely explored these days in verifying 
some exotic problems involving the domains of phys-
ics, biology, economics, law, etc. However, most of 
these existing works have been conducted by academic 
research groups and the usage of formal methods in 
the industry has been somewhat scarce. Some of the 
main reasons include the time-to-market pressures, the 
non-friendly nature of available formal method tools 
and the challenges associated with the identification 
of the most appropriate formal method for a particular 
application. The situation can be improved by providing 
appropriate training to industrial engineers as they are 
usually not very savvy with formal methods and their 
notations. Similarly, regulations and standards impos-
ing the usage of formal methods are also expected to 
improve the situation. In the past decade, some indus-
tries, including SAP, Siemens, Intel and SSF, which 
are involved in developing safety-critical systems, have 
started to utilize formal methods and a comprehensive 
survey of industrial usage of formal methods and their 
impact is presented in (FM4industry, 2013). Similarly, 
a worth reading motivating story about the adoption 
of formal methods by the railway signaling division 
of General Electric Transportation Systems (GETS) 
is presented in (Bacherini, 2006).
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Binary Decision Diagram (BDD): A representa-
tion of a Boolean expression using a rooted directed 
acyclic graph (DAG) that consists of terminal (with 
constant values 0 or 1) or non-terminal nodes (vari-
ables). A Reduced ordered BDD (ROBDD), which is 
a widely used data structure in formal verification, is 
a BDD with a particular variable order where identical 
nodes are shared and redundant tests are eliminated.

Formal Verification Methods: Mathematical 
techniques, often supported by computer-based tools, 
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for the specification and verification of software and 
hardware systems. The main principle behind formal 
analysis of a system is to construct a computer based 
mathematical model of the given system and formally 
verify, within a computer, that this model meets rigor-
ous specifications of intended behavior.

Higher-Order Logic: A system of deduction 
with a precise semantics. It differs from the more 
commonly-known predicate and first-order logics by 
allowing quantification over function variables. This 
extension substantially increases the expressiveness 
of the logic and thus higher-order logic can be used 
for the formal specification of most mathematical 
concepts and theories.

Satisfiability: A logical formula is termed to be 
satisfiable if and only if it is true for at least one com-
bination of its variables.

Tautology: A logical formula is termed to be a 
tautology (valid) if and only if it is true for all the pos-
sible values of its variables. In other words, a formula 

is a tautology if its negation (¬F) is unsatisfiable. This 
relationship between satisfiablity and tautology is one 
of the foundational principles of using SAT solving for 
equivalence checking.

Temporal Logic: Temporal logic allows us to 
formally represent time-dependent propositions. For 
example, propositions like an event would happen in 
the next time step or sometime in the future or would 
never happen in the future, can be expressed using 
temporal logic operators. Temporal logic is used in 
model-checking to express the properties of interest 
about the reactive systems.
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