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1. I n t r o d u c t i o n  

1.1 Mot iva t ions  

Formal verification methods can be classified into two main categories: inter- 
active verification using a theorem prover and automated finite state machine 
(FSM) verification based on state enumeration [Gupt92]. 

The most general approach to verification is to state the correctness con- 
dition for a system as a theorem in a mathematical logic and to generate 
a proof of this theorem that is verified using a general-purpose theorem- 
prover. Theorem provers use powerful formalisms such as higher-order logic 
[GoMe93] that allow the verification problem to be stated at many levels of 
abstraction. This approach has attained significant success in verifying micro- 
processor designs, for example [Hunt85, Joyc90, SrMi95, TaKu95]. However, 
theorem-proving-based verification has a drawback, viz. the user is respons- 
ible for coming up with the proof of correctness and for feeding it to the 
theorem prover, which can be quite difficult and time consuming. 

At the other extreme of the spectrum lies state space exploration of finite 
state machines. State enumeration techniques permit automatic behavioral 
comparison and model checking [TSLB90, BCLM94]. They are effective for 
detecting design errors in finite-state systems. The major problem with these 
methods is that the size of the state space may grow very rapidly with the 
size of the model. This is known as the state explosion problem. 

Many strategies have been proposed to alleviate the state explosion prob- 
lem [BoFi89a, BrBS91, BCLM94, CHJP90, CPVM91, CoMa90, TSLB90]. 
They exploit Bryant's Reduced Ordered Binary Decision Diagrams (ROB- 
DDs) [Brya86] to encode sets of states and to perform an implicit enumeration 
of the state space, making it possible to verify FSMs with a large number 
of states. For some specific circuits with datapath, these methods achieve 
linear complexity with respect to the data width. However, these methods 
are not adequate in general for verifying circuits with large and complex 
datapaths, still leading to the state explosion problem. Even the ROBDD 
encoding cannot resolve the problem because of the binary representation of 
the circuit. More specifically, every individual bit of every data signal must 
be represented by a separate Boolean variable, while the size of an ROBDD 
grows, sometimes exponentially, with the number of variables. This means 
that ROBDD-based verification methods often take too much time, or run 
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out of memory, when applied to circuits having a complex data path. Further- 
more, these methods do not permit an abstract representation of the circuit, 
in contrast to the approaches based on theorem proving. 

To overcome some of the above drawbacks, we present here a new veri- 
fication approach based on abstract descriptions of state machines (ASM) 
which are encoded by a new class of decision graphs, called Muttiway De- 
cision Graphs (MDGs) [CZSL94], of which ROBDDs are a special case. The 
essential contribution of MDGs is that they make it possible to integrate two 
verification techniques that have been very successful: implicit state enumer- 
ation on one hand, and the use of abstract sorts and uninterpreted function 
symbols on the other. MDGs are decision graphs that can represent relations 
as well as sets of states. They allow sharing of isomorphic subgraphs which 
decreases the size of the graphs. MDGs incorporate variables of abstract types 
to denote data values and uninterpreted function symbols to denote data op- 
erations. This means that sequential circuits can be verified with a runtime 
that is independent of the width of the datapath. In MDG-based verification, 
abstract descriptions of state machines (ASM) are used to model the sys- 
tems. Note that the ASMs are not a new kind of a state machine, but rather 
a new way of describing state machines at a higher level of abstraction. While 
the state machines that we want to verify are ordinary finite state machines 
(FSM), the abstract descriptions admit non-finite state machines as models 
in addition to their intended finite interpretations. The motivation for such 
abstract descriptions is eminently practical: it is possible to verify a circuit 
at the register transfer (RT) level without getting bogged down in the details 
of a gate-level implementation. Thus, we can raise the level of abstraction 
of automated verification methods to approach those of interactive methods, 
without sacrificing automation. 

1.2 L imi ta t ions  of  the  approach  

Our approach, on the other hand, has its own significant limitations. First, 
the fact that function symbols denoting data operations are uninterpreted 
means that correctness must not depend on their intended denotation. That 
is, the implementation and the specification must be stated in terms of the 
same uninterpreted function symbols, and the correctness statement to be 
verified must hold for any allowable interpretation of those function symbols. 
For example, a circuit that computes the GCD of two numbers by repeated 
subtraction cannot be compared against a specification where the GCD is 
computed by repeated division, since the implementation and the specifica- 
tion use different function symbols in this case, and correctness depends on 
the arithmetic meaning of those symbols. 

This limitation can be alleviated by the use of term rewriting or other 
automated deduction techniques. A conditional term rewriting algorithm for 
MDGs is provided with the MDG package, but will be described elsewhere. 
Rewrite rules can be viewed as axioms that limit the range of allowable 
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interpretations of the function symbols that denote data operations. (Some 
authors say that the function symbols become partially interpreted.) The 
use of rewrite rules extends the class of verification problems that can be 
solved but reduces the degree of automation, since the user has to provide a 
problem-specific set of rules. The possibility of combining rewriting and other 
automated deduction techniques with state exploration opens up exciting 
possibilities for further research. 

A second limitation is the fact that the computation of the set of reach- 
able states does not always terminate. This is discussed in Section 4.2.3. A 
third limitation is the fact that we have not implemented algorithms for the 
verification of liveness properties. We expect to be able to do this in the 
future. 

1.3 R e l a t e d  W o r k  

Interactive verification by theorem proving does not require a Boolean repres- 
entation of the circuit: it is usually carried out at a higher level of abstraction. 
Indeed, part of the inspiration for our work comes from prior work on inter- 
active verification, and in particular from the fact that Joyce verified the 
Tamarack-3 microprocessor at such a high level of abstraction that he did 
not even mention the width of the datapath [Joyc90]. This is in striking con- 
trast with ROBDD-based methods, where an increase in the width of the 
datapath often makes verification impossible. 

In the automated verification community, the difficulties faced by Boolean 
methods when verifying circuits with a substantial datapath are well known, 
and have been tackled by many researchers. 

Clarke, Grumberg, and Long [C1GL92, Long93] have shown examples 
where verifications problems involving circuits with wide datapaths can be 
reduced by a data abstraction technique to simpler problems involving para- 
meterized circuit descriptions where the datapath is only a few bits wide. 
These simpler problems can then be solved by ROBDD-based model checking. 
However, the fact that correctness of the simpler circuit implies correctness 
of the original circuit is not always obvious, and is not verified mechanically. 
Also, the data abstraction function has to be provided by the user; this may 
require considerable ingenuity, and has to be done anew for each verification 
problem. Similarly, Kurshan [Kurs89] has proposed the use of homomorphic 
reductions to simplify verification problems stated as tests of w-language con- 
tainment. Again, each problem requires its own homomorphism, which has 
to be provided by the user. 

Wolper [Wolp86] has shown that data independent systems can be verified 
by reducing the domain of data values to a very small set. But data inde- 
pendent systems are essentially systems that transfer data without observing 
it or performing any computation on it, and thus the method is not widely 
applicable. 
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In some cases it is possible to restate a verification problem concerning a 
circuit that consists of a datapath and a controller in terms of the controller 
only [VLAD92, Fuji92]. In this case the CPU time needed for verification is 
of course independent of the width of the datapath, which is not the case for 
the data abstraction method of [C1GL92]. However this is practically feasible 
only when the interface between the datapath and the control circuitry is 
easy to specify, and the equivalence of the original problem to the restated 
one is not verified mechanically. 

In contrast to these problem reduction techniques, new representation 
tools have been developed which expand the range of circuits that can be 
verified directly, without recourse to ingenious problem transformations. Re- 
cently, a number of ROBDD extensions such as BMDs [BrCh95], HDDs 
[C1FZ95] and K*BMDs [DrBR95] have been developed to represent func- 
tions that map Boolean variables to integer values. They are mainly useful 
for verifying arithmetic circuits. 

Our approach has its roots in the work of Langevin and Cerny [LaCe91, 
LaCe91a, LaCe94] and Corella [Core93, Core94], who have independently de- 
veloped similar techniques based on the use of variables of abstract type to 
denote data values and uninterpreted function symbols to denote data opera- 
tions. These approaches are well-suited for verifying simple microprocessors, 
as well as circuits produced by high-level synthesis, since in both cases data 
operations are viewed as black boxes. However, explicit control state enu- 
meration was used, and this is not adequate for circuits containing complex 
controllers. 

The immediate precursors of MDGs are Langevin and Cerny's EOB- 
DDs [LaCe94]. EOBDDs were used to represent the transition and output 
relation of a sequential circuit. However, they were not used to represent sets 
o] states. With MDGs we go one step further: we are able to represent sets of 
abstract states, just like ROBDDs can be used to represent sets of states in 
the Boolean domain. We are thus able to lift the technique of implicit state 
enumeration from the Boolean domain (where ROBDDs are used) to the do- 
main of abstract types (where MDGs are used); we call the lifted technique 
abstract implicit enumeration. 

MDGs are similar in name and structure to the Multivalued Decision 
Diagrams (MDDs) of [SKMB90], but the similarity is superficial. MDDs and 
MDGs have in common that any number of edges can issue from a given 
node. In MDDs, however, those edges are labeled by constants that denote 
pairwise distinct values comprising the entire range of values for the node. In 
MDGs the labels of the edges can be first-order terms, need not be mutually 
exclusive, and need not denote all the values in a given range. This makes it 
possible to use variables of abstract type and uninterpreted function symbols 
in MDGs, which is not possible in MDDs. 

More recently, a number of automatic verification methods emerged which 
are also based on the use of abstract sorts and uninterpreted function sym- 
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bols. Burch and Dill [BuDi94, JoDi95] used a validity checking algorithm 
for instruction-set processor verification. A logic expression representing the 
correctness statement is generated using symbolic simulation. The algorithm 
is then used to check its validity. The authors verified a subset of the RISC 
pipeline processor DLX [BuDi94] and a protocol processor (PP) [JoDi95], 
using problem-specific heuristics. 

Gaiter [Galt94] also presented a similar symbolic approach for the veri- 
fication of processors. Two IF-expressions (If-Then-Else) which represent the 
functions of the specification and the implementation are derived using sym- 
bolic execution. They are then compared for syntactic equivalence. As IF- 
expressions may grow exponentially, a technique called IF-algebra was de- 
veloped to simplify the expressions. The benchmark Tamarack-3 micropro- 
cessor was verified using the method. 

Barringer [Barr95] proposed a verification methodology which can be 
characterized as symbolic simulation plus theorem proving. The symbolic 
simulation is performed on the implementation and the specification for a 
finite number (system-dependent) of steps, generating a pair of logical ex- 
pressions which represent the circuit behaviors. These two expressions are 
further analyzed automatically and decomposed into sets of smaller expres- 
sions called equivalent verification conditions which are then checked by the 
theorem prover PVS. 

Cyrluk and Narendran [CRSS94] defined a first-order temporal logic - 
Ground Temporal Logic (GTL) which also uses uninterpreted function sym- 
bols. Using a decidable fragment of GTL, they are able to automate part of 
the verification at a higher level of abstraction in the PVS theorem-proving 
system. 

All the above methods are in fact validity checking procedures of logic 
formulas. Therefore, they are not applicable to state exploration-based veri- 
fication such as model checking or behavioral equivalence checking. In con- 
trast, MDGs are capable of both validity checking and verification based on 
state-space exploration. 

1.4 Outl ine 

We describe the theoretical foundations of our approach in Section 2. In par- 
ticular, we define the formal logic used and the structure of MDGs, and briefly 
describe the basic MDG manipulation algorithms. Furthermore, we formulate 
the abstract description of a state machine and show how abstract state enu- 
meration proceeds using MDGs. In Section 3, we describe hardware modeling 
using our approach, i.e., how to describe circuit components using MDGs. Iz~ 
Section 4, we present the application of our method to hardware verification. 
In particular, several techniques for combinational and sequential circuits are 
discussed. In Section 5, we report experimental results on a number of the 
IFIP benchmarks. In Section 6, we present a case study of formal verifica- 
tion of the Fairisle 4×4 ATM (Asynchronous Transfer Mode) switch fabric 
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using MDGs, including experimental results. In Section 7, we summarize the 
contributions of the paper and point out the direction of further work. 

2 .  F o u n d a t i o n s  o f  t h e  M e t h o d o l o g y  

While Boolean logic is sufficient to represent circuits at the bit level, to repres- 
ent and reason about  circuits using abstract  types and uninterpreted function 
symbols we need a first-order logic. We use a many-sorted first-order logic 
with a distinction between abstract and concrete sorts that  mirrors the hard- 
ware distinction between data  path and control. Multiway Decision Graphs 
are canonical representations of a certain class of quantifier-free formulas of 
the logic, which we call Directed Formulas (DFs). DFs can represent the 
transition and output  relations of a state machine, as well as the set of pos- 
sible initial states and the sets of states that  arise during reachability analysis. 
We refer to state machines whose transition relation, output  relation, and the 
set of initial states are given by DFs, or equivalently by MDGs, as Abstract 
State Machines (ASMs). 

2.1 Logic 

2.1.1 S y n t a x .  As in ordinary many-sorted first-order logic, the vocabulary 
consists of sorts, constants, variables, and function symbols (or operators). 
Constants and variables have sorts. An n-ary function symbol (n > 0) has 
a type o~ I x . . .  X OL n -+ O ~ n + l ,  where al ...  an+l are sorts. We deviate from 
standard many-sorted first-order logic by introducing a distinction between 
concrete (or enumerated) sorts, and abstract sorts; the difference is tha t  con- 
crete sorts have enumerations, while abstract  sorts do not. The enumeration 
of a concrete sort (~ is a set of distinct constants of sort a.  We refer to 
constants occurring in enumerations as individual constants, and to other 
constants as generic constants. An individual constant can appear in the 
enumeration of more than one sort a ,  and is said to be of sort a for each of 
them. Variables and generic constants, on the other hand, have unique sorts. 

The  distinction between abstract  and concrete sorts leads to a distinction 
between three kinds of function symbols. Let f be a function symbol of type 
O~ 1 X . . .  X O~ n --~ O / n +  1 . I f  OLn+ 1 i s  an abstract sort then f is an abstract function 
symbol. If all the a l  . . .  a~+l are concrete, f is a concrete function symbol. If 
an+l  is concrete while at least one of a l  • .. an is abstract,  then we refer to f 
as a cross-operator. While abstract function symbols are used to denote data  
operations, cross-operators are used to denote feedback from the da ta  path 
to the control circuitry. Both abstract function symbols and cross-operators 
are uninterpreted, i.e. their intended interpretation is not specified. However, 
information about  them can be provided by axioms such as conditional equa- 
tions which can be used as conditional rewrite rules. Such axioms limit the 
range of allowable interpretations. 
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The terms and their types (sorts) are defined inductively as follows: a 
constant or variable of sort a is a term of type c~; and if f is a function 
symbol of type c~1 x . . .  × an -~ an+l ,  n > 1, and A1 .. • An are terms of types 
c~1 . . .  c~n, then f(A1,. . .  , An) is a term of type c~a+l. A term consisting of a 
single occurrence of an individual constant has multiple types (the sorts of 
the constant) but  every other term has a unique type. The top symbol of a 
term is defined as follows: the top symbol of f(A1,. . .  , An) is f ,  and the top 
symbol of a term consisting of a single occurrence of a variable or a constant 
is tha t  variable or constant. 

We say that  a term, variable or constant is concrete (resp. abstract) to in- 
dicate tha t  it is of concrete (resp. abstract) sort. A term is concretely reduced 
if and only if it contains no concrete terms other than individual constants. 
Thus a concretely reduced term can contain abstract  function symbols, ab- 
stract variables, abstract  generic constants and individual constants, but  it 
can contain no cross-operators, concrete function symbols, concrete generic 
constants, or concrete variables; and a concretely reduced term that  is itself 
concrete must be an individual constant. A term of the form "f(A1, . . .  , Anj ~" 
where f is a cross-operator and A1... An are concretely-reduced terms is 
called a cross-term. For example, if f is an abstract  function symbol, c is an 
individual constant, x is a variable of concrete sort, and y is a variable of 
abstract sort, then f(c, y) is a concretely-reduced term (assuming that  it is 
well-typed) while ] (x ,  y) is not. And if g is a cross-operator, then g(c, y) is a 
cross-term (again, assuming that  it is well typed) but  g(x, y) is not. 

A (well-typed) equation is an expression "A1 = As" where the left-hand 
side (LHS) A1 and the right-hand side (RHS) As are terms of same type a. 
The atomic formulas are the equations, plus T (truth) and F (falsity). The  
for~raulas are defined inductively as follows: an atomic formula is a formula; 
if P and Q are formulas, then -~P, P A Q and P V Q are formulas; if P is a 
formula and x is a variable, then (3x)P is a formula (with x bound in P) .  
We use the abbreviation P ¢~ Q for (P =~ Q) A (Q =~ P). 

2.1.2 S e m a n t i c s .  An interpretation is a mapping ¢ that  assigns a denota- 
tion to each sort, constant and function symbol, and satisfies the following 
conditions: 

1. The denotation ¢(c~) of an abstract sort a is a non-empty set. 
2. If a is a concrete sort with enumeration { a l , . . . ,  an} then ¢ ( a )  -- {¢(a l ) ,  

. . .  , ¢(an)}  and ¢(a~) ~ ¢ (a j )  for 1 < i < j < n. 
3. If c is a generic constant of sort a ,  then ¢(c) E ¢ (a ) .  If ] is a function 

symbol of type a l  × . . .  x an  ~ an+l ,  then ¢ ( f )  is a function from the 
cartesian product  ¢(O~1) × . . .  × ¢ ( a n )  into the set ¢ (an+ l ) .  

V being a set of variables, a variable assignment with domain V compatible 
with an interpretation ¢ is a function ¢ tha t  maps every variable v E V of 
sort a to an element ¢(v) of ¢(c~). We write ~ ¢  for the set of C-compatible 
assignments to the variables in V. 
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The denotation of a term under an interpretation ¢ and a C-compatible 
variable assignment ¢ whose domain contains all the variables tha t  occur 
in the term is defined by induction as follows: a constant c denotes ¢(c);  a 
variable x denotes ¢(x); and if A1 . . .  AN denote v~ . . .  vn, then f (A1 , . . .  , An) 
denotes (¢( f ) ) (ul , . . .  , u~). The t ru th  of a formula P under an interpretation 
¢ and a C-compatible variable assignment ¢ whose domain contains the vari- 
ables tha t  occur free in P ,  writ ten ¢,  ¢ ~ P ,  is also defined by induction: 
¢,  ¢ ~ A1 = A2 iff A1 and A2 have same denotation; ¢ ,  ¢ ~ -~P iff it is not 
the case tha t  ¢ , ¢  ~ P; ¢ , ¢  ~ P A Q i f f ¢ , ¢  ~ P a n d ¢ , ¢  ~ Q; ¢ , ¢  ~ P v Q  
iff ¢ , ¢  ~ P or ¢ , ¢  ~ Q; and ¢ , ¢  ~ (3x)P iff ¢ , ¢ '  ~ P for some ¢' tha t  
assigns an arbi t rary value to x and otherwise coincides with ¢. 

We write ¢ ~ P when ¢,  ¢ ~ P for every C-compatible assignment ¢ 
to the variables tha t  occur free in P, and ~ P when ¢ ~ P for all ¢.  Two 
formulas P and Q are logically equivalent iff ~ P ¢ v  Q. A formula P logically 
implies a formula Q i f f ~  P ~ Q. 

2.1.3 D i r e c t e d  F o r m u l a s .  Given two disjoint sets of variables U and V, 
a directed formula of type U -~ V is a formula in disjunctive normal form 
(DNF) such tha t  

1. Each disjunct is a conjunction of equations of the form 
A = a, where A is a term of concrete sort a of the form " f ( B 1 , . . .  , Bn)" 

( f  is thus a cross-operator) tha t  contains no variables other than 
elements of U, and a is an individual constant in the enumeration of 
0~, o r  

u = a, where u C U is a variable of concrete sort a and a is an individual 
constant in the enumeration of a,  or 

v = a, where v E V is a variable of concrete sort a and a is an individual 
constant in the enumeration of a,  or 

v = A, where v E V is a variable of abstract sort a and A is a term of 
type a containing no variables other than elements of U; 

2. In each disjunct, the LHSs of the equations are pairwise distinct; and 
3. Every abstract  variable v E V appears as the LHS of an equation v = A 

in each of the disjuncts. (Note that  there need not be an equation v = a 
for every concrete variable v E V.) 

Intuitively, in a DF of type U -+ V, the U variables play the role of 
independent variables, the V variables play the role of dependent variables, 
and the disjuncts enumerate possible cases. In each disjunct, the equations 
of the form u = a and A = a specify a case in terms of the U variables, 
while the other equations specify the values of (some of the) V variables in 
that  case. The cases need not be mutually exclusive, nor exhaustive. The 
condition that  every abstract  variable v E V must appear  in every disjunct 
is less stringent than it seems. In practice, one can introduce an additional 
dependent variable u and add an equation v = u to a disjunct where v is 
missing. 
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A DF is said to be concretely reduced iff every A in an equation A = a 
is a cross-term, and every A in an equation v = A is a concretely reduced 
term. It  is easy to see that  every DF is logically equivalent to a concretely 
reduced DF, given complete specifications of the concrete function symbols 
and concrete generic constants; the reduction can be accomplished by case 
splitting. 

A concretely reduced DF contains no concrete function symbols and no 
concrete generic constants; and, in a concretely reduced DF of type U -+ V, 
if A is the cross-term in the LHS of an equation A = a, or the concretely 
reduced term in the RHS of an equation v = A, then every variable tha t  
occurs in A is an abstract  variable u E U. We refer to such an occurrence 
of a variable as a secondary occurrence in the DF. A primary occurrence of 
a variable, on the other hand, is an occurrence as the LHS of an equation. 
From now on, by DF we shall mean concretely reduced DF. 

For example, suppose that  U = {Ul,U2} and V = {vl,v2}, where Ul and 
vt are variables of a concrete sort bool with enumeration {0, 1} while u2 and 
v2 are variables of an abstract  sort wordn. Suppose that  f is an abstract  
function symbol of type wordn -~ wordn and g is a cross-operator of type 
wordn -+ bool. Then the formula 

(2 .1)  = 0) A = u2))  V 
( ( f ( u 2 )  ---- 1) A (vl = '1~1) A (v 2 : g(u2))) 

is a DF of type U ~ V .  In the case f(u2)  = 0 it assigns the symbolic value u2 
to v2. In the case f(u2) = 1 it assigns the symbolic values ul to vl and g(u2) 
to v2. Note that ,  in the case f(u2)  = 0, the value of vl is left unspecified and 
thus is arbitrary. 

The above DF (2.1) is not concretely reduced. This is because the right- 
hand side term ul in the second conjunct of the second disjunct is not con- 
cretely reduced. A concretly reduced DF logically equivalent to (2.1) can be 
obtained by further distinguishing the cases ul  = 0 and U l  : 1 in the case 
where f(u2) -- 1: 

((f(u2)  = 0) A (v2 
(2.2) ((f(u2)  = 1) A (ul 

((f(u2) = I) A (ul 

= u s ) )  v 
= 0) A (v l  = 0) A = 
= 1) A (v l  = 1) A (v2 = g(u2))) 

Note that ,  in the absence of abstract  sorts, a DF contains only equations 
of the form u = a or v = a, and the sets of variables U and V play symmetrical 
roles. If there is only one sort, and that  sort is concrete with enumeration 
{0, 1}, then a DF is a simply a Boolean formula in DNF. 

2.2 Multiway Decision Graphs 

2.2.1 S t r u c t u r e .  An ROBDD is usually viewed as the representation of a 
function, with the leaf nodes labeled by values (0 or 1). But  it can also be 
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viewed as representing an assertion, with the leaf nodes labeled by proposi- 
tions (truth or falsity). This latter view is the one that can be generalized to 
accommodate abstract types. 

Let G be a finite directed acyclic graph with one root, whose internal 
nodes are labeled by terms and whose leaves are labeled by formulas of the 
logic. Then G can be viewed as representing a formula defined inductively as 
follows: (i) if G consists of a single leaf node labeled by a formula P, then G 
represents P; (ii) if G has a root node labeled A with edges labeled B1 . . .  Bn 
leading to subgraphs G~ .. .  G~, and if each G~ represents a formula P~, then 
G represents the formula VI<~<n((A -- B~) A P~). 

The concept of MDG is ~l~tive to two orderings, the standard term or- 
dering and the custom symbol ordering. The standard term ordering is a total 
ordering of all the terms of the logic. The custom symbol ordering is a total 
ordering on a set of symbols C that includes the cross-operators, the con- 
crete variables, and some, but not necessarily all, of the abstract variables. 
The custom symbol ordering need not be compatible with the standard term 
ordering. Variables that are elements of C are said to participate in the cus- 
tom symbol ordering. 

Let U and V be disjoint sets of variables, such that all the abstract vari- 
ables in V participate in the custom symbol ordering. An MDG of type U ~ V 
is a directed acyclic graph (DAG) G with one root and ordered edges, such 
that: 

1. Every leaf node is labeled by the formula T, except if G has a single node, 
which may be labeled T or F. 

2. For every internal node N, either 
a) N is labeled by a cross-term A of type a with variables in U~ and 

the edges that issue from N are labeled by individual constants in 
the enumeration of a, or 

b) N is labeled by a variable u E U of concrete sort a and the edges that 
issue from N are labeled by individual constants in the enumeration 
of ~, or 

c) N is labeled by a variable v E V of concrete sort a and the edges that 
issue from N are labeled by individual constants in the enumeration 
of a, or 

d) N is labeled by a variable v E V of abstract sort a and the edges 
that issue from N are labeled by concretely reduced terms of sort a 
with variables in U. 

3. Along every path, every abstract variable v C V appears as a node label, 
there are no duplicate node labels, the top symbols of the node labels 
appear in the custom symbol order, and nodes labeled by cross-terms 
with same cross-operator appear in the standard term order. 

4. The edges issuing from a given node are arranged in the standard term 
order. 
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5. There are no distinct isomorphic subgraphs, and no redundant nodes, a 
node being redundant iff it is labeled by a concrete variable or cross-term 
of sort a whose edges are labeled by all the individual constants in the 
enumeration of a, and all lead to the same subgraph. 

6. If a node N is labeled by an abstract variable x, and an abstract variable 
y participating in the custom symbol order occurs in a term A that 
labels one of the edges that issue form N, then y comes before x in 
the custom symbol order. Similarly, if N is labeled by a cross-term A 
with cross-operator f ,  and y is an abstract variable that occurs in A and 
participates in the custom symbol order, then y comes before f in the 
custom symbol order. 

The primary occurrences and secondary occurrences of variables are defined 
in the same manner for MDGs as for DFs. Note that, given an MDG G, if U 
is the set of variables having secondary occurrences in G, and V the set of 
variables having primary occurrences, then G is of type U-~ V. 

When we say that an MDG is of type U-~V,  it will always be understood 
that U and V are disjoint sets of variables, and that all the abstract variables 
in V participate in the custom symbol order. 

An MDG is a graph representation of a formula as defined above. The 
formula represented by an MDG of type U -+ V is usually not in DNF. 
However, it can be put in DNF by distributing A over V. It is easy to see 
that the resulting formula is a concretely reduced DF of type U-+ V, whose 
disjuncts correspond to the paths of the MDG. In this sense, we say that an 
MDG is a representation of a concretely reduced DF. As an example, the 
MDG shown in Figure 2.1 represents the DF (2.2). 

Conversely, given a concretely reduced DF P of type U -+ V, a standard 
term order, and a custom symbol order comprising all the variables in V and 
all the cross-operators in P,  it is easy to construct an MDG representing a 
DF that coincides with P up the ordering of the disjuncts in each conjunct 
and the ordering of the conjuncts themselves. 

The following theorem states that MDGs are a canonical representation: 

T h e o r e m  2.1. For a given custom symbol order and a given standard term 
order, if G and G ~ are MDGs representing formulas P and pt respectively, 
and ~ P ¢:~ P~, then G and G ~ are isomorphic graphs. 

Although MDGs represent DFs, which are first-order formulas, this result 
is not surprising, because DFs are a restricted class of first-order formulas. 
The proof of the theorem can be found in [CZSL94]. The proof uses a notion 
of Herbrand model suitable for our logic. If G and G t are not isomorphic, a 
Herbrand model can be constructed that satisfies one of the formulas P or 
P~, but not the other. 

2.2.2 Basic a lgor i thms .  We have implemented the following basic MDG 
algorithms, which are the building blocks of the procedures for combinational 
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1 

Fig. 2.1. MDG representing (2.2) 

verification and reachability analysis. To simplify the description of the al- 
gorithms we shall identify an MDG with the formula that  it represents. 

Disjunction. Given two MDGs P1 and P2, there does not always exist an 
MDG R such that  ~ R ¢~ (P1 VP2). For example, let x and y be distinct 
abstract variables, and a and b distinct abstract generic constants. Let 
P1 be x = a (i.e. an MDG with a root node labeled x and a single edge 
labeled a leading to T) and let P:  be y = b. Then it can be shown that  
there exists no MDG R such that  ~ R ¢~ (P1 V P2). But in the case 
where P1 and P2 have the same set of abstract primary variables, it is 
possible to compute an MDG R logically equivalent to P1 V P2. 
Our disjunction algorithm is n-ary. It takes as inputs a set of MDGs P~, 
1 < i < n, of types U i ~ V ,  and produces an MDG R = Disj({Pi}l<i<n) 
of type (Ul<i<n Ui) -4 V such that  

~ R ¢ = ~ (  V Pi). 
l < i < n  

The algorithm computes the disjunction of its n inputs in one pass. 
Relational product. As in the case of disjunction, given two MDGs P1 and 

P2, there does not always exist an MDG R such that  ~ R ¢¢ (P1 A P2). 
For example, let x be an abstract variable, and let a and b be distinct 
abstract generic constants. Let P1 be x = a (i.e. an MDG with a root 
node labeled x and a single edge labeled a leading to T) and let P2 be 
x = b. Then it can be shown that  there exists no MDG R such that  
~ R C:> ( PI A P2). 
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But if P1 and P2 have no abstract primary variables in common, then it 
is possible to compute an MDG R logically equivalent to P1 A P2. The 
abstract primary variables of R are those of P1 and P2. A secondary 
variable of R is a secondary variable of at least one of P1, P2 without 
being a primary variable of the other. (If a variable has secondary occur- 
rences in one graph and primary occurrences in the other, the secondary 
occurrences are eliminated by substitution.) 
Instead of implementing a conjunction algorithm, we have implemen- 
ted a relational product algorithm that combines conjunction, existential 
quantification, and renaming. As in the case of disjunction, we have im- 
plemented an n-ary version of the algorithm. It takes as inputs a set of 
MDGs Pi, 1 < i < n, of types Ui - ~ ,  a set of variables E to be existen- 
tially quantified, and a renaming substitution ~], and produces an MDG 
R = RelP({Pi}l<_i<n, E,  ~?) such that 

The algorithm computes the conjunction of the Pi, existentially quantifies 
the variables in E, and applies the renaming substitution ~, all in one 
pass. For 1 _< i < j _< n, V/and I~ must not have any abstract variables 
in common, otherwise the conjunction cannot be computed, because, in 
general, there is no MDG logically equivalent to the conjunction. 
Let us determine the type of the MDG R computed by the algorithm. 
(It will be useful in Section 2.3.3.) The result of only computing the 
conjunction would be an MDG of type 

(( U u,) \ ( U v+)) ~ ( U v~). 

The set E of variables to be existentially quantified must be a subset of 
(Ul<i<n Yi). The result of only computing conjunction and existential 
qua~ti-fication would be an MDG of type 

(( U U v , ) ) . ( (  U v,)\E). 

The domain of y must be a subset of ((Ul<i<~ 1//) \ E), and ~ must 
preserve the custom symbol order when applied-to the set 

(( U u,)\( U v+))u(( U V+I\E). 
l < i < n  l < i < n  l < i < n  

The type of the result R is 

(( U u+) \ ( U v,)) -, ((( U v,) \ El-,7). 
l < i ( n  l ~i<_n l < i < n  
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Pruning by subsumption. It takes as inputs two MDGs P and Q of types 
U --+ V1 and U--+ V2 respectively, where U contains only abstract variables 
that do not participate in the custom symbol ordering, and produces an 
MDG R = PbyS(P, Q) of type U-+ V1 derivable from P by pruning (i.e. 
by removing some of the paths and reducing the resulting graph to satisfy 
the well-formedness conditions) such that 

(2.3) ~ R V (3U)Q ¢* P v (3U)Q. 

The paths that are removed from P are subsumed by Q [CZSL94], hence 
the name of the algorithm. 
Since R is derivable from P by pruning, after the formulas represented 
by R and P have been converted to DNF, the disjuncts in the DNF of 
R are a subset of those in the DNF of P. Hence ~ R ~ P. And, from 
(2.3)), it follows tautologically that, ~ P A -~(3U)Q ~ R. Thus we have 

(P A -,(3U)Q ~ R) A (R ~ P). 

We can then view R as approximating the logical difference of P and 
(3U)Q. In general, there is no MDG logically equivalent to P A-,(3U)Q. 
If R is F, then it follows tautologically from (2.3) that ~ P ~ (3U)Q. 

2.2.3 Imp lemen ta t i on .  As in ROBDD packages, we use a reduction table 
(also called unique table) to maintain MDG canonicity during the compu- 
tations, and a results table (also called computed table) to ensure that each 
distinct computation is performed only once. 

Disjunction is straightforward to implement, given that all the arguments 
have the same set of abstract variables. 

The relational product algorithm is more complex. If an abstract variable 
x has primary occurrences in one of the MDGs to which ReSP is applied, 
and secondary occurrences in another, then the secondary occurrences are 
replaced with labels of edges that issue from nodes labeled by the primary 
occurrences. These substitutions are facilitated by condition 6 in the defini- 
tion of MDG given in Section 2.2.1. Since terms appearing as edge and node 
labels can be very large in some cases, we implement them as DAGs, using a 
reduction table to maximize sharing and assign unique identifiers to all the 
terms and subterms. We use a results table for substitution. Also, with each 
MDG node, we keep a list of the abstract variables that participate in the 
custom symbol ordering and occur in the subgraph rooted at the node. Re- 
ordering of cross-terms is necessary after substitution, but is localized, since 
cross-terms with same cross-operator are consecutive along every path. 

The PbyS algorithm is also quite complex. As the algorithm is recursively 
invoked in a top-down traversal, the edges labels and cross-terms of P are 
matched against those of Q in order to instantiate the secondary variables of 
Q. The algorithm must take into account the omission of redundant nodes 
from P. A path 7r of P is pruned if there exists an MDG M obtained from 
(the single-path MDG) ~r by addition of zero or more redundant nodes, such 
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that, for every path rr t of M, there exists an instantiation 7r" of a path of Q 
such that every node-edge pair of 7r" is a node-edge pair of 7r ~. 

Detailed descriptions of these three algorithms can be found in [CZSL94]. 

2.2.4 Othe r  a lgor i thms.  Given an MDG P, there does not always exist an 
MDG R such that ~ R ¢~ (-~P). For example, there exists no such R if P is 
x = a, where x is an abstract variable and a is an abstract generic constant. 
However, it is straightforward to compute R in the case where all the nodes 
in P are labeled by concrete variables or cross-terms. We refer to this special 
case as concrete negation. We shall implement a concrete negation algorithm 
when4he need arises. 

We have implemented an algorithm that simplifies an MDG by applying 
a set of conditional rewrite rules involving the abstract function symbols 
and cross-operators in the vocabulary of the logic. This algorithm will be 
described elsewhere. 

2.3 A b s t r a c t  S t a t e  M a c h i n e s  

The presence of uninterpreted symbols in the logic means that we must dis- 
tinguish between a state machine M and its abstract description D in the 
logic. A given abstract description D will determine a machine M for every 
interpretation ¢. For the purpose of hardware verification we are interested 
only in finite state machines (FSMs). However, an abstract description will 
represent infinite as well as finite state machines, since abstract sorts ad- 
mit infinite interpretations. We call Abstract State Machine a state machine 
given by an abstract description in terms of MDGs, or equivalently DFs, as 
explained below. 

2.3.1 Represen t ing  sets using MDGs .  Let P be an MDG of type U--+V. 
Then, for a given interpretation ¢, P can be used to represent the set of 
vectors 

SetCy(P) = {¢ e ~¢y J ¢ , ¢  ~ (~U)P}. 

In the next section, MDGs will thus be used in this fashion to represent sets 
of states and sets of output vectors. We shall also see how MDGs can be used 
to represent relations. 

2.3.2 Describing s t a t e  m a c h i n e s  with  MDGs .  An abstract description 
of a state machine M is a tuple D = (X, Y, Z, FI, FT, Fo), where 

X, Y, Z are disjoint sets of variables, viz. the input, state, and output vari- 
ables respectively. Let r/be a one-to-one function that maps each variable 
y to a distinct variable r/(y ) obtained, for example, by adorning y with a 
prime. The variables in Y~ = ~/(Y) are used as the next-state variables. 
X, Y and Z must be disjoint from Yq 
Given an interpretation ¢, an input vector of the state machine M rep- 
resented by D is a C-compatible assignment to the set of input variables 
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X; thus the set of input vectors, or input alphabet, is (I)¢x . Similarly, ¢¢z 
is the output alphabet. A state is a C-compatible assignment to the set 
of state variables Y; hence the state space is ~¢y. A state ¢ can also be 
described by an assignment Ct = ¢o~-1 E ~¢, to the next state variables. 

Fx is an MDG representing the set of initial states, of type U-+ Y, where U is 
a set of abstract variables disjoint from X U Y U Y~ U Z. Typically, FI is a 
one-path MDG where each internal node N is labeled by a variable y E Y, 
and the edge that issues from N is labeled by the symbolic initial value 
of y, which can be an individual constant, an abstract generic constant, 
or an abstract variable u E U. It is possible to specify that two data 
registers have the same value, but that this common value is arbitrary, by 
using the same u as symbolic initial value of the abstract state variables 
representing the two registers. 
Given an interpretation ¢, a state ¢ E ibCy is an initial state iff ¢, ¢ 
(3U)F~. Thus the set of initial states of the state machine M represented 
b y D  is 

s1 = {¢ e I¢, ¢ # (3U)Ft} = Set (Fx). 
FT is an MDG of type (XUY)-~ Y' representing the transition relation. 

Given an interpretation ¢, an input vector ¢ E q?Vx and a state ¢~ E ~0,  
a state ¢,t E ~¢y is a possible next state iff ¢, ¢ U ¢' U ¢" o ~?-I ~ FT. 
Thus the transition relation of the state machine M represented by D is 

RT = {(¢, ¢', ¢") E ffPCx v ~¢ × d,¢ (¢,, - - - r  - .  l ¢ , ¢ u ¢ ' u  o y - l )  # FT}. 

FO is an MDG of type (XUY)-+ Z representing the output relation. 
Given an interpretation ¢, the output relation of the state machine M 
represented by D is 

Ro = {(¢, ¢', ¢") E @Cx X@CyX@Cz I ¢ , ¢ U  ¢' U¢"  [= To}. 
To recapitulate, for every interpretation ~ of the sorts, constants and func- 
tion symbols of the logic, the abstract description D = ( X, Y, Z, FI , FT , Fo ) 
represents the state machine M = (~2x,dPy,¢ ¢ dPCz, SI, RT, Ro) with input al- 
phabet @:~, state space @¢y, output alphabet @¢ z, set of initial states $I, 
transition relation RT, and output relation Ro. 

2.3.3 S ta t e  explora t ion .  Given an abstract state machine description D = 
(X, Y, Z, FI, FT, Fo) we can compute the set of reachable states of a state 
machine M ¢ ¢ ¢ = (~x,  ~Y, ~z ,  $I, RT, Ro) represented by D, for any ¢, using 
the MDG algorithms mentioned above, while at the same time checking that 
a given condition on the outputs of the machine, the invariant, holds in all 
the reachable states. The invariant is represented by an MDG C of type 
W -+ Z, where W is a set of abstract variables disjoint from X, Y, Y', Z 
and U. (Recall that Fx is of type V -4 Y.) For a given ¢, an output vector is 
deemed to satisfy the invariant iff ¢, ¢ ~ (3W)C; thus SetCz(C) is the set of 
output vectors that satisfy the invariant. 
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The procedure, called ReAn for Reachability Analysis, is the result of lift- 
ing the algorithm given in [CoBM89b] to the realm of abstract types and 
MDGs. It can be described by the following pseudo-code: 

I. ReAn(D, C) 
2. R := Fx; Q := Fx; K := 0; 
3. loop 
4. K := K + 1; 
5. I := Fresh(X, K); 
6. 0 := ReIP({I,Q, Fo},X U Y,0); 
7. P := PbyS(O, C); 
8. if P ~ F then return failure; 
9. Y := ReRP({L Q, FT}, Z U Y, n); 
10. Q := PbyS(g,R); 
11. if Q = F then return success; 
12. R := PbyS(R, Q); 
13. R := Disj(R, Q); 
14. end loop; 
15. end ReAn; 

In this pseudo-code, I, N, P, Q and R are program variables that take 
as values MDGs representing sets of states, and O takes as values MDGs 
representing sets of output vectors. We will identify the program variables and 
their values in the following explanations when there is no risk of confusion. 

Before each loop iteration, R represents the set of reachable states found 
so far, while Q represents the frontier set, i.e., a subset of SetCy(R) containing 
at least all those states that entered Setey(R) for the first time in the previous 
iteration. 

In line 5, Fresh(X, K) constructs a one-path MDG representing a conjunc- 
tion of equations x = u, one for each abstract input variable x E X, where 
u is a fresh variable from the set of auxiliary abstract variables U. The value 
of the loop counter K is used to generate the fresh variables. This one-path 
MDG is assigned to I, which represents the set of input vectors. 

In line 6, the relational product operation is used to compute the MDG 
representing the set of output vectors produced by the states in the frontier 
set. The resulting MDG is assigned to O. Then, in line 7, the pruning-by- 
subsumption operation is used to remove from O paths representing output 
vectors that satisfy the invariant C. The resulting MDG is assigned to P.  In 
line 8, if P is not F, then the procedure stops and reports failure. We have 
implemented a counterexample facility that can then be invoked to produce 
a most general symbolic trace leading to a state for which the outputs do not 
satisfy the invariant. Examples of such a trace can be found in [ZSTC96]. 
If P is F, then SetCz(O) C SetCz(C), i.e. every output vector produced by a 
state in the frontier set satisfies the invariant, and the verification procedure 
continues. 
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In line 9, the relational product operation is used again, this time to 
compute the MDG representing the set of states that can be reached in one 
state from the frontier set. Note that the MDG Q representing the frontier 
set is of type U --+ Y, the MDG I representing the set of input vectors is 
of type U -+ X, and the MDG FT representing the transition relation is of 
type (XUY) --+ Y~. The result of taking the conjunction of these three MDGs 
would be of type U ~  (X U Y U Y~), the result of subsequently removing the 
variables in X U Y by existential quantification would be of type U--+ Y~, and 
the result of subsequently applying the renaming substitution 7/would be of 
type U-+ Y. The RelP operation performs these three operations in one pass, 
and assigns the resulting MDG of type U ~ Y to N. 

Lines 10 and i1 check whether SetCy(N) C_ SetCy(R) by the same method 

used in lines 7 and 8 to check whether SetCz(O) C_ SetCz(C). If this is indeed 
the case, then every state reachable from the frontier set was already in 
SetCy(R). The fixpoint has been reached and R represents all the reachable 
states. Therefore, the procedure terminates and reports success. Otherwise 
the MDG assigned to Q in line 10 represents the new frontier set. 

Line 12 simplifies R by removing from it any paths that are subsumed by 
Q, using PhyS. There may be such paths because Q was not computed earlier 
as an exact difference. Then line 13 computes the new value of R by taking the 
disjunction of R and Q, which represents the set of states SetCy(R)U Set ¢ (Q), 
and assigning it to R. 

In the general case, this procedure may not terminate and may produce 
false negatives. These limitations are discusses below, in Section 4.2.3 and 
Section 4.2.4 respectively. 

3.  M o d e l i n g  H a r d w a r e  w i t h  M D G s  

A circuit is described at the RT level as a collection of components inter- 
connected by nets that carry signals. Each signal is represented by a vari- 
able. Variables denoting control signals have concrete sorts, while variables 
denoting data values have abstract sorts. We show how various kinds of com- 
ponents can be represented by MDGs through the following examples. The 
parser in our MDG tools automatically transforms a component predefined 
in our Prolog-style MDG-HDL [ZhBo95] into its MDG representation. 

- Gates: For gates, the input and output signals are always of Boolean sort. 
Figure 3.1(a) and Figure 3.1(b) show an OR gate and its MDG representa- 
tion for a particular ordering of the variables. Boolean MDGs are essentially 
the same as ROBDDs. 

- Multiplexer: For a two-way multiplexer as shown in Figure 3.2(a), we may 
have different MDGs depending on the signals being multiplexed. There is 
a very compact MDG (Figure 3.2(b)) if xl, x2 and y are all of an abstract 
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(a )  ( b )  

Fig. 3.1. The MDG for an OR gate. 
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sort. If x l ,  x2 and y are of a concrete sort with enumeration {ci)l<i<m, 
then ci are enumerated in the MDG as shown in Figure 3.2(c). 

x2 ~1 mux -~ Y 

xo 

(a) (b) 
Fig. 3.2. The MDG for a multiplexer. 

(c) 

- Registers: Figure 3.3(a) and Figure 3.3(b) show a register r and its MDG 
when x and y are of an abstract  sort. The variable y~ denotes the next state 
of the register. If x and y axe of a concrete sort with enumeration {c~ }l<i<m, 
we also have to enumerate ci in the MDG as shown in Figure 3.3(c). 

- Control operation: Figure 3.4(a) shows a comparator  tha t  produces a con- 
trol signal y from two data  inputs xt and x2. Both Xl and x2 are variables of 
abstract  sort while y is a Boolean variable. An uninterpreted cross-operator 
eq is used to denote the functionality of the comparator.  If the meaning of 
eq matters,  rewrite rules, such as eq(x, x) --} 1 should be used. An MDG 
of the comparator  is shown in Figure 3.4(b). 

- Data  operation: Data  operations are viewed as black boxes and are rep- 
resented by uninterpreted function symbols. Figure 3.5(a) shows the ALU 
of the Tamarack-3 microprocessor [Joyc90]. The variables x l ,  x2 and y 
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(a) (b) 
Fig. 3.3. The MDG for a register. 

.ZI eq > Y - ,  

(a) (b) 
Fig. 3.4. The MDG for a comparator. 

(c) 

representing the data inputs and the output are of an abstract sort, while 
the variable x0 representing the control input is of a concrete sort with 
the enumeration {0, 1, 2, 3}. Depending on the value of x0, the ALU can 
add, subtract, increment, or produce zero. The operations are represented 
by symbols add, sub and inc. The symbol zero  is a generic constant. The 
corresponding MDG shown in Figure 3.5(b) is quite compact. 

Generally speaking, the behavior of a functional block involving data op- 
erations can be described by a directed formula (DF). The DF can then be 
transformed into an MDG by (i) creating an MDG for each atomic formula; 
(ii) for a disjunct of DF, conjuncting all the MDGs of its atomic formulas; 
and (iii) disjuncting all the MDGs representing the disjuncts. 

Besides structural descriptions, MDG-HDL can also be used for the de- 
scription of behavioral specifications. A behavioral description is given by 
high-level constructs as ITE (If-Then-Else) formulas, CASE formulas or tab- 
ular representations. The tabular construct is similar to a truth table but 
allows first-order terms in rows. 
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x2 
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(a) 

~ y  

zero ~ inc(xl) 

(b) 
Fig. 3.5. The MDG for an ALU. 

4. M D G - b a s e d  V e r i f i c a t i o n  T e c h n i q u e s  

We implemented in Prolog an MDG package including algorithms for dis- 
junction, relational product (image computation), pruning by subsumption, 
and rewriting. We developed a reachability analysis algorithm (abstract im- 
plicit enumeration), and provided applications for hardware verification such 
as combinational circuits verification, safety property checking and equival- 
ence checking of two abstract state machines. The latter two are based on 
the reachability analysis. 

In the following sections, we detail the above applications to hardware 
verification. 

4.1 Combinat ional  Circuits 

For combinational verification, we take advantage of the fact that MDGs 
are a canonical representation; we can thus lift the corresponding OBDD 
technique. Given two combinational circuits to be compared, we compute for 
each of them an MDG representing its input-output relation by combining 
the MDGs of the components of the circuit using the relational product 
operation. The canonicity of MDGs tells us that comparing the functionality 
of two combinational circuits reduces to computing the MDGs representing 
their input/output relations. If the two circuits have the same functionality, 
the two MDGs must represent logically equivalent formulas, and hence they 
must be isomorphic. By the use of a reduction table in the MDG package, 
this amounts to checking whether the two MDGs have the same Identification 
number (ID), a constant-time operation. 

Functional comparison of two combinational circuits can also be accom- 
plished using partitioned input/output relations. Instead of computing a 
single MDG for each circuit it is possible to compute a separate MDG for 
each output of the circuit. These separate MDGs may be much smaller than 
a monolithic MDG involving all the outputs. We then check whether the cor- 
responding individual MDGs in the two partitioned relations have the same 
IDs. 
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The same technique can be used to compare two sequential circuits when 
a one-to-one correspondence between their registers exists and is known: it 
then suffices to compare the combinational parts of the sequential circuits. 

4.2 Sequential Circuits 

4.2.1 Sa fe ty  property and equivalence checking. The safety property 
checking is based on the reachability analysis procedure. Given a state ma- 
chine M and an invariant C, we check if C holds in all the reachable states 
of M. 

One application of the safety property checking is the behavioral equi- 
valence (or input-output equivalence) checking of two sequential circuits. To 
verify that  two machines produce the same sequence of outputs for every se- 
quence of inputs, we feed the same inputs to the two circuits, i.e., we form the 
product state machine. Then, we perform teachability analysis on the parallel 
composition using an invariant that  asserts the equality of the corresponding 
outputs in all the reachable states. For machines at different time scales, it 
is possible to synchronize them first if they have cyclic behavior. Thereafter 
we can perform reachability analysis on the product machine as usual. This 
technique can be used for the verification of non-pipelined microprocessor 
implementations against their instruction-set architecture specifications. 

An invariant condition is specified by a combinational circuit whose out- 
put signals are named by the variables that  occur in the condition. By con- 
vention, an assignment of values to those variables satisfies the condition if 
and only if the outputs of the combinational circuit take those values for 
some assignment of values to the inputs. An MDG representing the invariant 
is obtained from the MDG representing the functionality of the combina- 
tional circuit by existentially quantifying the concrete inputs. The variables 
representing abstract inputs are left in the graph as implicitly quantified sec- 
ondary variables. For example, the combinational circuit of Figure 4.1(a), a 
simple fork, may yield different MDGs depending on the sort of the signals. 
If x and y are of boot sort, then u is existentially quantified and we get the 
MDG as shown in Figure 4.1(b) which simply represents x = y. If x and y 
are of an abstract sort, then we get an MDG as shown in Figure 4.1(c) which 
represents the formula x = u A y = u. Taking the secondary variable u to be 
existentially quantified, the invariant becomes (Su) (x  = u A y = u) which is 
logically equivalent to x = y. 

Pruning-by-subsumption is used to check that  the invariant is satisfied for 
the states in each frontier set. If we want to check the equality of two outputs 
x and y in an output MDG O, we just prune O against I n v  which is the 
same MDG as Figure 4.1(b). This technique makes it possible to state the 
equality of two abstract signals without having recourse to a cross-operator 
eq and the rewrite rule eq(x, x)  --+ 1. 

4.2.2 S imple  mic rop roces so r s .  The ins truct ion set  architecture of a mi- 
croprocessor is the specification of the effect that  each instruction is intended 
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U 

(a) (b) 
Fig. 4.1. Representation of the invariant x = y. 

C 
U 

( 
U 

(c) 

to have on the programmer's model which consists of the visible registers and 
memory. To verify a microprocessor against its instruction set architecture is 
to verify that the execution of every instruction has the intended effect. 

The control FSM of a microprocessor has a distinguished ready state that 
is the starting point of instruction execution. When the control state is kept 
in a microprogram counter, the ready state is typically mpc = O. We say that 
the microprocessor itself is in a ready state when the control FSM is in its 
ready state. Precisely stated, the problem is to verify two properties of the 
circuit C consisting of processor and memory, i.e., that (i) if Sl and s2 are 
consecutive reachable ready states, the visible portion of state sl is related 
to the visible portion of state s2 as prescribed by the architecture for the 
executed instruction, and (ii) from every reachable ready state, a ready state 
is eventually reached again. Currently, we can verify the safety property (i), 
while property (ii) can be verified if the maximum number of clock cycles 
before a ready state to be reached from any reachable state is known (i.e., 
the liveness property is thus converted to a safety property). 

To verify (i) we compare C with an ideal state machine C I whose state is 
the visible state of C and where each transition corresponds to the execution 
of an instruction as specified by the architecture. We refer to C and C I as 
the implementation and specification, respectively. C / is synchronized with 
C by a ready signal extracted from C: when ready=l the specified transition 
takes place, otherwise C ~ remains in the same state. We perform reachability 
analysis on the synchronized composition of the implementation and the spe- 
cification, checking an invariant that asserts the equality of the visible state 
in C and C r when ready= 1. This amounts to verifying (i). 

Figure 4.2(a) shows a circuit representing an invariant that asserts the 
equality ofx and y, but only when mpc = O. It is assumed that mpc and uompc 
have a concrete sort with enumeration {0,. . .  , m). The MDG of Figure 4.2(b) 
is obtained from the circuit by existentially quantifying the concrete input 
u_mpc. The formula which it represents after existentially quantifying the 
secondary variables u, ul, u2 is logically equivalent to 

m p c = O ~ x = y .  
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u ~ ~ x  ~. x 0 m~ 
ul--  t 

[ ~ mux I . y (~) ( ~  
u~ ~L, I 

u_mpc [ >, mpc  

(a) (b) 
Fig. 4.2. Representation of the invaxiant "x = y if mpc = 0" 

4.2.3 Non-termination Problem and Initial State Generalization. 
There are cases where the set of reachable states is not representable by 
a finite MDG of type W -+ Y ,  and in such cases the reachability analysis 
procedures will not terminate. For example, consider a microprocessor having 
a program counter whose initial value is 0, denoted by a generic constant 
zero of abstract  sort. An instruction that  does not change the flow of control 
increments the program counter; assume that  an abstract function symbol 
inc is used to represent this. An MDG Pk of type W -~ Y representing the 
set of states reachable in up to k steps must have at least k disjuncts (state 
descriptions), containing the equations ypc = zero, Ypc = iue(zero), ypc = 
ine(inc(zero)),  . . . ,  ypc = luck(zero). A DF representing all the reachable 
states would require an infinite number of disjuncts, for k -+ co. 

In some cases non-termination can be avoided by generalizing the set of 
initial states so as to obtain a larger set of reachable states tha t  is represent- 
able by a finite MDG, while still satisfying the condition to be verified. An 
important  case in which this method is applicable is tha t  of simple micropro- 
cessors and similar circuits tha t  exhibit a cyclic behavior. When comparing 
two state machines derived from two implementations of a processor, or from 
an implementation and a specification, the initial state of the product  ma- 
chine can be arbitrary, subject only to two constraints: (i) each machine's 
control state is the one where the instruction cycle begins, and (ii) the cor- 
responding visible registers in both machines have the same initial values. 
Then the set of reachable states usually has a finite representation because, 
informally speaking, after an instruction has been executed the product  ma- 
chine goes to a state that  is a special case of this initial state. In the case 
discussed above, non-termination would be avoided by letting the value of the 
program counter be represented by a variable rather  than a constant, which 
would allow the subsumption check to succeed. This method is referred to as 
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initial state generalization. We discuss the non-termination problem in more 
detail in [CZSL94, ZSTC96] and propose several other solutions. 

4.2.4 False Negat ives .  During reachability analysis, it is possible that the 
invariant holds for the intended interpretation Co but not for all ¢. The 
abstract verification will then fail even though the interpreted state machine 
satisfies the invariant, a false negative result. Yet, when data operations axe 
viewed as black boxes, the invariant is expected to hold for every ¢; hence, 
if the teachability analysis returns "failure", there must be an error in the 
design. In this sense we say that the verification method is applicable to 
designs where the data operations are viewed as black boxes. 

RTL designs generated by high-level synthesis are usually of this form. 
This is because high-level synthesis algorithms schedule and allocate data 
operations without being concerned with the specific nature of the operations. 

Another example of well-behaved circuits are processors. A general pur- 
pose processor provides data operations for use by the programs running on 
the processor. It is the programs, not the processor, that make use of the 
operations. The data operations can be therefore be viewed as black boxes 
when specifying and verifying the processor. Thus, the class of processor-like 
circuits is welt suited to the above techniques, both from the point of view of 
termination and from the point of view of false negatives. 

We do not know at present whether the problem of verifying that a certain 
condition holds is decidable when using abstract sorts, completely uninter- 
preted function symbols and abstract descriptions of state machines. 

5. V e r i f i c a t i o n  o f  B e n c h m a r k  C i r c u i t s  

In this section we discuss the results of applying abstract implicit state 
enumeration to three synchronous circuits from the IFIP benchmark suite 
[Krop94b, Krop94a]. They are the Arbiter, the Greatest Common Divisor 
(GCD) and the Filter. All the experiments were performed on a SPARC sta- 
tion 20, using our MDG package implemented in Quintus Prolog Version 3.2. 
The execution times, memory and the number of nodes generated are shown 
in Table 5.1. 

The circuit of the GCD benchmark that we implemented is generic. We 
used in the datapath abstract signals of type wordn to model generic words. 
The complete circuit is composed of 29 basic components and has a total 
of 8 state variables. Beside the implementation description, we provided a 
behavioral specification at the RT level using tabular expressions and abstract 
state machines. We verified the GCD circuit by checking its equivalence to the 
behavioral specification. The verification holds for generic words of arbitrary 
width. 

The benchmark FILTER corresponds to the concrete example described 
in [Krop94a]. It has 5 input values (n = 5) and 3 stages (k = 3). Each stage 
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Table 5.1. Statistics from benchmark verification 

Benchmark CPU time Memory ~: MDG Nodes 
(in sec) (in MB) generated ............... 

GCD (n-bit) 1.93 1.48 432 ............... 
FILTER I 0.94 I 0.5 I 213 
Arbiter (4-bit) 1.3 
Arbiter (8-bit) 5.0 
Arbiter (16-bit) 4595.0 

1.4 832 
2.7 2862 

101.4 202752 

is composed of seven components. The circuit has 22 basic components and 
12 abstract state variables. Similarly as in the GCD example, we provided 
a behavioral specification of the FILTER which we checked for equivalence 
with the the circuit implementation. 

The implementation used for the Arbiter appears in [McMi93a]. We con- 
structed 4, 8 and 16 bit versions of this synchronous circuit at the Boolean 
level (all signals are of a concrete sort). Each cell of the arbiter contains 
two control registers and a set of logic gates for a total of 10 components 
per cell. For example, the 16 bit arbiter has 163 basic components and 32 
concrete state variables. For each version, we verified two safety properties 
(properties 1 and 3 in [Krop94a]) which reflect the correct arbitration be- 
havior (Table 5.1 includes the statistics of checking the conjunction of these 
two properties). Checking liveness properties (property 2 in [Krop94a]) is not 
currently supported by our MDG tools. 

We also experimented with a number of other IFIP benchmark cir- 
cuits [Krop94a]~ including the Traffic Light Controller, Adder, Min_Max, 
Tamarack-3, Multiplier, Divided, and Associative Memory. 

For asynchronous circuits, such as Single Pulser and Black-Jack Dealer 
[Krop94b], we need to verify liveness properties that we cannot do for the 
moment. 

6. Fairisle ATM Switch Fabric: A Case Study in 
Verification using MDGs  

In this section we present a case study of formal verification of the Fairisle 4 × 4 
ATM (Asynchronous Transfer Mode) switch fabric using MDGs. The device 
is in use for real applications in the Cambridge Fairisle network [Curz94], 
designed at the Computer Laboratory of the University of Cambridge, 

Using a hierarchical approach, we first verified the original gate-level im- 
plementation of the switch fabric against an RTL implementation, then we 
verified the RTL implementation against a behavioral specification given as 
an abstract state machine (ASM). We thus obtained complete verification 
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from a high-level behavior down to the gate level. We also verified some spe- 
cific invariants that reflect the behavior of the fabric in its real operating 
environment. 

6.1 The  Fairisle A T M  Switch Fabric 

The 4x4 Fairisle switch consists of three types of components: the input port 
controllers, the output port controllers and the switch fabric, as shown in 
Figure 6.1. It switches ATM cells from the input ports to the output ports. 
A cell consists of a fixed number of bytes. 

Din0 Dout0 
Aout0 Ain0 
Dinl ATM Doutl 
Aoutl Ainl 

transmissior Din2 Switch Dout2 transmission 

lines Aout2 Ain2 lines 
Din3 Fabric Dout3 
Aout3 Ain3 

controllers controllers 

Fig. 6.1. The Fairisle ATM switch 

The behavior of the switch is cyclical. In each cycle or frame, the input 
port controllers synchronize incoming data cells, append control information 
in the front of the cells in the routing tag (Figure 6.2), and send them to 
the fabric. The fabric waits for cells to arrive, strips off the tags, arbitrates 
between cells destined to the same port, sends successful cells to the appro- 
priate output port controllers, and passes acknowledgments from the output 
port controllers to the input port controllers. 

If different port controllers inject cells destined for the same output port 
controller (as indicated by the route bits in the tag) into the fabric at the same 
time, then only one will succeed. The others must retry later. The routing 
tag also includes priority information (priority bit) that is used by the fabric 
for arbitration which takes place in two stages. High priority cells are given 
precedence before the remaining cells. The choice within both priorities is 
made on a round-robin basis. The input controllers are informed of whether 
their cells were successful using acknowledgment signals. The fabric sends 
a negative acknowledgment to the unsuccessful input ports, but passes the 
acknowledgment from the requested output port to the successful input port. 
The port controllers and the switch fabric all use the same clock, hence bytes 
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are received synchronously on all links. They also use a higher-level cell frame 
clock - the frame start signal fs. It ensures that the port controllers inject 
data cells into the fabric synchronously so that the routing tags arrive at the 
same time. If no input port raises the active bit throughout the frame then 
the frame is inactive - no cells are processed. Otherwise it is active. 

B i t  

I I I I  Unused Route Priority Active 
1 I I I 

7 6 5 4 3 2 1 0 

Fig. 6.2. The routing tag (header) of a Fairisle ATM cell 

A s  shown in Figure 6.3, the inputs to the fabric consist of the cell data 
lines, the acknowledgments that pass in the reverse direction, and the frame 
start signal fs which is the only external control signal. The outputs con- 
sist of the switched data, and the switched and modified acknowledgment 
signals. The switch fabric is composed of an arbitration unit, an acknowledg- 
ment unit and a dataswitch unit. The arbitration unit reads the routing tags, 
makes arbitration decisions when two or more cells are destined for the same 
output port, passes the result to the other modules using grant signals, and 
controls the timing of the other units using output disable signals. The data- 
switch performs the actual switching of data from an input port to an output 
port according to the most recent arbitration decision. The acknowledgment 
unit passes appropriate acknowledgment signals to the input ports. Negative 
acknowledgments are sent until arbitration is completed. 

Aout0 ,c ~-. Ain0 
Aoutl .c I~ Ainl 
Aout2 ~: Ain2 
Aout3 ~c .... I~ Ain3 

~m~ ~ ,- - - : %  . . . . .  r z : : _ - -  . . . . . . .  ~ . . . .  

I |  
!1_ 

Ack i 

I ~  Arbitration 

:-° lJ outDis i 
] ~ ~ xO~ti, 

Din0 ~ ~ ~ ~  ..... ~ [-----~. Doutl "~ Dour0 
Dinl ~ i ~ ~ Dataswitch ~ "~ ~Dout2 Din2 ' . . . . .  
Din3 i ~ Dout3 

Fig. 6.3. The block diagram of the Fairisle ATM switch fabric 
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All the design units are repeatedly subdivided until eventually the logic 
gate level is reached, providing a hierarchy of components. The design has a 
total of 441 logic gates with two or more inputs and flip-flops. 

6.2 M D G  Model s  

6.2.1 G a t e  and  R T  Implementa t ions .  We described the implementation 
of the fabric at the gate and the RT levels. In the former case, we directly 
translated the original Qudos HDL description [Curz94] into our MDG-HDL 
using the same set of components. 

Based on the gate-level description, we produced an RTL implementa- 
tion by describing the dataswitch using abstract multiplexors instead of logic 
gates. Here, the data signals DindDou t~ ( i  = 0, 1, 2, 3) are modeled as n-bit 
words and are assigned an abstract sort wordn. The control fields contained 
in the cell header, i.e., active, priority and route fields, are extracted from the 
abstract data signals using cross-operators (Figure 6.4). The ASM model is 
thus obtained by compiling the abstract description of the RTL implement- 
ation. 

Aout0 ~'~ 
Aoutl ,c 
Aout2 ,c 
Aout3 ": 

frame st 

Ack 
i~ AJn0 

Ainl 
Ain2 

Din0 
Dinl 
Din2 
Din3 

."i. ......................................... :". ..- ~ act(Din0) I "'-). 

°*'~'''''-.... ........................ ..°-'~'''°" 

Fig. 6.4. The abstraction model of the switch fabric 

6.2.2 Behavioral  Specif icat ion.  The specification of the switch fabric was 
developed in two forms: a high-level behavioral state machine and a set of 
invariants reflecting the essential behavior of the switch. The former is de- 
scribed in this section, the latter is discussed in Section 6.3.2. 
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Starting from a set of timing-diagrams describing the expected behavior 
of the switch fabric, we derived a complete specification in the form of an 
abstract state machine. This specification was developed independently of 
the actual hardware design and includes no restrictions on the frame and 
cell lengths, and the word width. It reflects the complete behavior of the 
fabric under the assumption that the environment maintains certain timing 
constraints on the arrival of the frame start signal and the cell headers. 

To verify the RTL implementation against the ASM of the behavioral spe- 
cification, we make the corresponding input/output signals to be of the same 
sort and use the same function symbols to extract the control information 
(active, priority and route fields) from the header. 

t0+2+i t0+l  to 
< l 1 t 

t s > t0+l  
t h > ts+2 

~s t e > ts+2 
ts ~ -s -s t_e > th_+2 

t s+ l  

~g ~g ~g 

I I =,. =, 

ts+a+j ~_ ~ -s,,,(~ -s~ -s <~ -s .() ~s .! 

-I I I ,I I 
t h th+l  th+2 tb+3 th+4 

Fig. 6.5. The ASM behavioral specification of the ATM 

th+5+k 

A schematic representation of the ASM of the 4 by 4 fabric is shown in 
Figure 6.5. The symbols to, ts, th and te represent the initial time, the time of 
arrival of the frame start signal, the time of arrival of the routing bytes and 
the time of the end of a frame, respectively. There are 14 states: States 0, 1 
and 2 along the time axis to describe the initial behavior of the switch fabric. 
States 2, 3, 4 and 5 along the time axis t, describe the behavior of the switch 
on the arrival of the f s  signal. States 6 to 13 along the time axis th describe 
the behavior of the switch fabric after the arrival of the headers. The waiting 
loops in states 2, 5 and 10 are shown by the non-zero natural numbers i, j 
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and k, respectively. Figure 6.5 also includes many metasymbols used to keep 
the presentation simple. For instance, the symbols s and h denote the arrival 
of frame start fs  and of the routing tag (header), respectively. 

Inside a circle, the symbols r, a and d indicate various operations that take 
place in the states: round-robin arbitration, the output of acknowledgments 
and the output of data, respectively. The absence of those symbols means 
that there is no computation and the default value is output. The operations 
are defined by separate state machines. We omit their descriptions here since 
there is nothing special about them and they are quite long to present. What 
needs to be mentioned, however, is the sort definition of variables. The data 
signals Dini and Douti (i=[0..3]) are defined as an abstract sort wordn. The 
acknowledgement signals Aini and Aouti (i=[0..3]) are of sort bool. More 
details can be found in [LTZS96]. 

6.3 Verif icat ion 

6.3.1 Equivalence  Checking.  For verifying the equivalence of the gate- 
level implementation and the abstract (RTL) hardware model, the abstract 
n-bit words were instantiated to 8 bits using uninterpreted functions which 
decode abstract data to Boolean data [TZSC96]. Equivalence checking of the 
RTL implementation and the behavioral specification was performed for an 
arbitrary word width n and any frame size and cell length [LTZS96]. 

By combining the above two verification steps, we hierarchically obtained 
a complete verification of the switch fabric from the high-level behavior down 
to the gate-level implementation. The experimental results on a SPARC sta- 
tion 10 are recapitulated in Table 6.1, including the CPU time, memory usage 
and the number of MDG nodes generated. 

Table 6.1. The ATM experimental results for equivalence checking 

Verifications 
Gate-Level to RT-Level 

Time (Sec) Mere (MB) ~Nodes 
183300 183 22 

RT-Level to Beh.-Level 2920 150 320556 

No errors were discovered in the implementation. For the sake of experi- 
mentation, however, we injected several errors into the implementation: (1) 
We exchanged the inputs to the 3K Flip-Flop that produces the output dis- 
able signal. This prevented the circuit from resetting. (2) We used the priority 
information of the input port 0 to control the input port 2. (3) We used an 
AND gate instead of an OR gate within the acknowledgment unit producing 
a faulty Aouto signal. These three errors were detected by verifying the RTL 
implementation model against the behavioral specification. Table 6.2 shows 



110 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou 

the experimental results including times for reachability analysis on the spe- 
cification and counterexample, memory usage and the number of MDG nodes 
generated. 

Table 6.2. Verification of some faulty implementations of the ATM 

Experiments Reachability (Sec) 
Error 1 11 
Error 2 850 
Error 3 600 

Counterex. (Sec) Mem (MB) ~ t ~  
9 1 2462 

450 120 150904 
400 105 147339 

6.3.2 I n v a r i a n t  C h e c k i n g .  Although the ASM describes the complete be- 
havior of the switch fabric, we partially validated (in an early stage of the 
project) the fabric implementation by property checking. This is useful as it 
gives quick confidence check at low cost. Sample properties are correct circuit 
reset and correct da ta  routing. 

We consider the behavior of the fabric when operating in the intended 
real Fairisle switch environment. The switch generates frame star t  signal f s  
(Figure 6.3) at every 64th clock cycle. Initially, it should wait at least 2 clock 
cycles to let the fabric reset before it can generate the first f s  signal, The  
header of a cell is generated at the 9th clock cycles after I s  is set. 

This cyclic behavior can be simulated as an environment state machine 
having 68 states as shown in Figure 6.6. The machine generates the frame 

1 
Fig. 6.6. The environment state machine of the ATM 

start  signal ] s ,  the headers h and the data  d in the states as indicated in 
the figure. Normally, d is a fresh abstract  variable representing data  in the 
cell; and h can be instantiated according to the property to be verified. We 
also assume that  the f i rs t fs  signal is generated at the 3rd clock cycle after 
power on. States 1 to 5 are related to the initialization of the fabric. States 6 
to 68 represent the cyclic behavior of the fabric, where one cycle corresponds 
to one frame. With this diagram, we can map the time points to states in a 
similar way as we explained in the preceding section. In this case, ts -- 3 or 
66; th = 12; and te = 66. Then, e.g., th + 5 to te + 2 are essentially the states 
between 17 and 68 when the remaining data  of the cell following the header 
are switched to the output  port. It can be checked that  this state machine is 
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an instance of the general timing state machine (Figure 6.5) with cell length 
of 53 and frame size of 64. 

Below, we list properties that we verified and give their ITE expressions. 
The state variable c of the environment state machine is of a concrete sort 
having the enumeration [1..68]. 

PI:  From ts + 3 to th + 4, the default value is put on the data output port 0. 
if  (c E [6..16]) t h e n  Douto = zero else don't-care. 

P2: From t8 + 1 to th -b 2, the default value is put on the acknowledgment 
output port 0. 
if  (c e [4..14, 67, 68]) t h e n  Aouto = 0 else don't-care. 

P3: From th -b 5 to te q- 2, if input port 0 chooses output port 0 with the 
priority bit set in the header and no other input port has its priority bit 
set, then the value on Douto will be Din' o which is the input of Dino 
four clock cycles earlier. 
if  (c e [17..68]) A (priority[O..3] = [1,0, 0, 0]) A (route[O] = 0) t h e n  Douto 
= Dingo else don't-care. (priority[O..3] are the priority bits from all the 
input ports and route[0] represents the routing bits for input port 0) 

P4: From th -{- 3 to t~, if input port 0 chooses output port 0 with the priority 
bit set in the routing tag, and no other input port has its priority bit set, 
the value on Aouto will be the input of Aino. 
if  (c e [15..66]) A (priority[O..3] = [1, 0, 0, 0]) A (route[O] = 0) t hen  Aouto 
= Aino else don't-care. 

These invariants can be easily represented using MDGs. To verify them, 
we compose the fabric with the environment state machine as shown in Fig- 
ure 6.7. As there is a 4-clock-cycle delay for the cells to reach the output 
ports, a delay circuit is used to remember the input values that are to be 
compared with the outputs. Hence, we can state the properties in terms of 
the equality between Dingo and Douto (e.g. P3). Combining these machines 
(dashed frame in Figure 6.7), we obtain the required platform for checking the 
invariants. The above properties easily detected the three introduced design 
errors. The experimental results are reported in Table 6.3. 

Table 6.3. Verification of properties P1 - P4 

Verifications 
P1 
P2 
P3 
P4 
Error 1 by P1 

..... Error 2 by P3 
Error 3 by P4 

Time (See) Mem (MB) #Nodes 
202 15 30295 
183 15 30356 
143 14 27995 
201 15 33001 

49 8 '16119 
77 11 24001 
82 11 24274 
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Fig. 6.7. The composite state machine for invariant checking on the ATM switch 
fabric 

7. Conclusions and Future Work 
We presented a verification methodology that makes it possible to verify 
sequential circuits automatically at the RT level, using abstract sorts and 
uninterpreted function symbols. It is based on a new kind of decision graphs, 
Multiway Decision Graphs (MDG). This approach allows data signals to be 
represented by a single variable of abstract sort rather than by 32 or 64 
Boolean variables. We also described a set of algorithms for manipulating 
MDGs, and shown how they can be used for combinational verification, in- 
variant and behavioral equivalence checking of sequential circuits using ab- 
stract implicit state enumeration. 

Our work has shown that the use of abstract sorts for formal verification 
can produce interesting results by raising the level of abstraction at which 
the problem is stated. The contribution of MDGs beyond the use of abstract 
sorts is that they allow to use at a higher level of abstraction some of the 
ROBDD techniques that have been successful at the Boolean level. 

We provided experimental results for a set of benchmarks obtained using 
a prototype MDG package implemented in Prolog. We demonstrated that 
formal verification of a 4×4 ATM switch fabric can be conducted automat- 
ically using the MDG tools. 

There are many opportunities for further work in formal verification using 
the MDG representation of first-order formulas: 

- We are developing model checking algorithms for an appropriate first-order 
temporal logic. 

- We are exploring the links between theorem proving systems and MDG- 
based tools. There ave two possible approaches to their integration. (1) 
We can embed the model checker as a specialized decision procedure in a 
theorem prover. This makes the theorem proving software more efficient 
and powerful. (2) MDG-based model checking can proceed and complete 
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successfully when output  checking and state set inclusion can be decided 
by rewriting and syntactic matching. When this is not possible, we could 
prove the specific subgoal using a theorem prover. For systems containing 
complex structures, such as loops, we have to combine model checking, in- 
ductive proofs, and rewriting to accomplish the verification task effectively. 
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