
Automated Verification with Abstract State
Machines Using Multiway Decision Graphs

E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

1. I n t r o d u c t i o n

1.1 Mot iva t ions

Formal verification methods can be classified into two main categories: inter-
active verification using a theorem prover and automated finite state machine
(FSM) verification based on state enumeration [Gupt92].

The most general approach to verification is to state the correctness con-
dition for a system as a theorem in a mathematical logic and to generate
a proof of this theorem that is verified using a general-purpose theorem-
prover. Theorem provers use powerful formalisms such as higher-order logic
[GoMe93] that allow the verification problem to be stated at many levels of
abstraction. This approach has attained significant success in verifying micro-
processor designs, for example [Hunt85, Joyc90, SrMi95, TaKu95]. However,
theorem-proving-based verification has a drawback, viz. the user is respons-
ible for coming up with the proof of correctness and for feeding it to the
theorem prover, which can be quite difficult and time consuming.

At the other extreme of the spectrum lies state space exploration of finite
state machines. State enumeration techniques permit automatic behavioral
comparison and model checking [TSLB90, BCLM94]. They are effective for
detecting design errors in finite-state systems. The major problem with these
methods is that the size of the state space may grow very rapidly with the
size of the model. This is known as the state explosion problem.

Many strategies have been proposed to alleviate the state explosion prob-
lem [BoFi89a, BrBS91, BCLM94, CHJP90, CPVM91, CoMa90, TSLB90].
They exploit Bryant's Reduced Ordered Binary Decision Diagrams (ROB-
DDs) [Brya86] to encode sets of states and to perform an implicit enumeration
of the state space, making it possible to verify FSMs with a large number
of states. For some specific circuits with datapath, these methods achieve
linear complexity with respect to the data width. However, these methods
are not adequate in general for verifying circuits with large and complex
datapaths, still leading to the state explosion problem. Even the ROBDD
encoding cannot resolve the problem because of the binary representation of
the circuit. More specifically, every individual bit of every data signal must
be represented by a separate Boolean variable, while the size of an ROBDD
grows, sometimes exponentially, with the number of variables. This means
that ROBDD-based verification methods often take too much time, or run

80 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahax, and Z. Zhou

out of memory, when applied to circuits having a complex data path. Further-
more, these methods do not permit an abstract representation of the circuit,
in contrast to the approaches based on theorem proving.

To overcome some of the above drawbacks, we present here a new veri-
fication approach based on abstract descriptions of state machines (ASM)
which are encoded by a new class of decision graphs, called Muttiway De-
cision Graphs (MDGs) [CZSL94], of which ROBDDs are a special case. The
essential contribution of MDGs is that they make it possible to integrate two
verification techniques that have been very successful: implicit state enumer-
ation on one hand, and the use of abstract sorts and uninterpreted function
symbols on the other. MDGs are decision graphs that can represent relations
as well as sets of states. They allow sharing of isomorphic subgraphs which
decreases the size of the graphs. MDGs incorporate variables of abstract types
to denote data values and uninterpreted function symbols to denote data op-
erations. This means that sequential circuits can be verified with a runtime
that is independent of the width of the datapath. In MDG-based verification,
abstract descriptions of state machines (ASM) are used to model the sys-
tems. Note that the ASMs are not a new kind of a state machine, but rather
a new way of describing state machines at a higher level of abstraction. While
the state machines that we want to verify are ordinary finite state machines
(FSM), the abstract descriptions admit non-finite state machines as models
in addition to their intended finite interpretations. The motivation for such
abstract descriptions is eminently practical: it is possible to verify a circuit
at the register transfer (RT) level without getting bogged down in the details
of a gate-level implementation. Thus, we can raise the level of abstraction
of automated verification methods to approach those of interactive methods,
without sacrificing automation.

1.2 L imi ta t ions of the approach

Our approach, on the other hand, has its own significant limitations. First,
the fact that function symbols denoting data operations are uninterpreted
means that correctness must not depend on their intended denotation. That
is, the implementation and the specification must be stated in terms of the
same uninterpreted function symbols, and the correctness statement to be
verified must hold for any allowable interpretation of those function symbols.
For example, a circuit that computes the GCD of two numbers by repeated
subtraction cannot be compared against a specification where the GCD is
computed by repeated division, since the implementation and the specifica-
tion use different function symbols in this case, and correctness depends on
the arithmetic meaning of those symbols.

This limitation can be alleviated by the use of term rewriting or other
automated deduction techniques. A conditional term rewriting algorithm for
MDGs is provided with the MDG package, but will be described elsewhere.
Rewrite rules can be viewed as axioms that limit the range of allowable

Verification with Abstract State Machines Using MDGs 81

interpretations of the function symbols that denote data operations. (Some
authors say that the function symbols become partially interpreted.) The
use of rewrite rules extends the class of verification problems that can be
solved but reduces the degree of automation, since the user has to provide a
problem-specific set of rules. The possibility of combining rewriting and other
automated deduction techniques with state exploration opens up exciting
possibilities for further research.

A second limitation is the fact that the computation of the set of reach-
able states does not always terminate. This is discussed in Section 4.2.3. A
third limitation is the fact that we have not implemented algorithms for the
verification of liveness properties. We expect to be able to do this in the
future.

1.3 R e l a t e d W o r k

Interactive verification by theorem proving does not require a Boolean repres-
entation of the circuit: it is usually carried out at a higher level of abstraction.
Indeed, part of the inspiration for our work comes from prior work on inter-
active verification, and in particular from the fact that Joyce verified the
Tamarack-3 microprocessor at such a high level of abstraction that he did
not even mention the width of the datapath [Joyc90]. This is in striking con-
trast with ROBDD-based methods, where an increase in the width of the
datapath often makes verification impossible.

In the automated verification community, the difficulties faced by Boolean
methods when verifying circuits with a substantial datapath are well known,
and have been tackled by many researchers.

Clarke, Grumberg, and Long [C1GL92, Long93] have shown examples
where verifications problems involving circuits with wide datapaths can be
reduced by a data abstraction technique to simpler problems involving para-
meterized circuit descriptions where the datapath is only a few bits wide.
These simpler problems can then be solved by ROBDD-based model checking.
However, the fact that correctness of the simpler circuit implies correctness
of the original circuit is not always obvious, and is not verified mechanically.
Also, the data abstraction function has to be provided by the user; this may
require considerable ingenuity, and has to be done anew for each verification
problem. Similarly, Kurshan [Kurs89] has proposed the use of homomorphic
reductions to simplify verification problems stated as tests of w-language con-
tainment. Again, each problem requires its own homomorphism, which has
to be provided by the user.

Wolper [Wolp86] has shown that data independent systems can be verified
by reducing the domain of data values to a very small set. But data inde-
pendent systems are essentially systems that transfer data without observing
it or performing any computation on it, and thus the method is not widely
applicable.

82 E. Ceray~ F. Corella, M. Langevin, X. Song, S. Tahax, and Z. Zhou

In some cases it is possible to restate a verification problem concerning a
circuit that consists of a datapath and a controller in terms of the controller
only [VLAD92, Fuji92]. In this case the CPU time needed for verification is
of course independent of the width of the datapath, which is not the case for
the data abstraction method of [C1GL92]. However this is practically feasible
only when the interface between the datapath and the control circuitry is
easy to specify, and the equivalence of the original problem to the restated
one is not verified mechanically.

In contrast to these problem reduction techniques, new representation
tools have been developed which expand the range of circuits that can be
verified directly, without recourse to ingenious problem transformations. Re-
cently, a number of ROBDD extensions such as BMDs [BrCh95], HDDs
[C1FZ95] and K*BMDs [DrBR95] have been developed to represent func-
tions that map Boolean variables to integer values. They are mainly useful
for verifying arithmetic circuits.

Our approach has its roots in the work of Langevin and Cerny [LaCe91,
LaCe91a, LaCe94] and Corella [Core93, Core94], who have independently de-
veloped similar techniques based on the use of variables of abstract type to
denote data values and uninterpreted function symbols to denote data opera-
tions. These approaches are well-suited for verifying simple microprocessors,
as well as circuits produced by high-level synthesis, since in both cases data
operations are viewed as black boxes. However, explicit control state enu-
meration was used, and this is not adequate for circuits containing complex
controllers.

The immediate precursors of MDGs are Langevin and Cerny's EOB-
DDs [LaCe94]. EOBDDs were used to represent the transition and output
relation of a sequential circuit. However, they were not used to represent sets
o] states. With MDGs we go one step further: we are able to represent sets of
abstract states, just like ROBDDs can be used to represent sets of states in
the Boolean domain. We are thus able to lift the technique of implicit state
enumeration from the Boolean domain (where ROBDDs are used) to the do-
main of abstract types (where MDGs are used); we call the lifted technique
abstract implicit enumeration.

MDGs are similar in name and structure to the Multivalued Decision
Diagrams (MDDs) of [SKMB90], but the similarity is superficial. MDDs and
MDGs have in common that any number of edges can issue from a given
node. In MDDs, however, those edges are labeled by constants that denote
pairwise distinct values comprising the entire range of values for the node. In
MDGs the labels of the edges can be first-order terms, need not be mutually
exclusive, and need not denote all the values in a given range. This makes it
possible to use variables of abstract type and uninterpreted function symbols
in MDGs, which is not possible in MDDs.

More recently, a number of automatic verification methods emerged which
are also based on the use of abstract sorts and uninterpreted function sym-

Verification with Abstract State Machines Using MDGs 83

bols. Burch and Dill [BuDi94, JoDi95] used a validity checking algorithm
for instruction-set processor verification. A logic expression representing the
correctness statement is generated using symbolic simulation. The algorithm
is then used to check its validity. The authors verified a subset of the RISC
pipeline processor DLX [BuDi94] and a protocol processor (PP) [JoDi95],
using problem-specific heuristics.

Gaiter [Galt94] also presented a similar symbolic approach for the veri-
fication of processors. Two IF-expressions (If-Then-Else) which represent the
functions of the specification and the implementation are derived using sym-
bolic execution. They are then compared for syntactic equivalence. As IF-
expressions may grow exponentially, a technique called IF-algebra was de-
veloped to simplify the expressions. The benchmark Tamarack-3 micropro-
cessor was verified using the method.

Barringer [Barr95] proposed a verification methodology which can be
characterized as symbolic simulation plus theorem proving. The symbolic
simulation is performed on the implementation and the specification for a
finite number (system-dependent) of steps, generating a pair of logical ex-
pressions which represent the circuit behaviors. These two expressions are
further analyzed automatically and decomposed into sets of smaller expres-
sions called equivalent verification conditions which are then checked by the
theorem prover PVS.

Cyrluk and Narendran [CRSS94] defined a first-order temporal logic -
Ground Temporal Logic (GTL) which also uses uninterpreted function sym-
bols. Using a decidable fragment of GTL, they are able to automate part of
the verification at a higher level of abstraction in the PVS theorem-proving
system.

All the above methods are in fact validity checking procedures of logic
formulas. Therefore, they are not applicable to state exploration-based veri-
fication such as model checking or behavioral equivalence checking. In con-
trast, MDGs are capable of both validity checking and verification based on
state-space exploration.

1.4 Outl ine

We describe the theoretical foundations of our approach in Section 2. In par-
ticular, we define the formal logic used and the structure of MDGs, and briefly
describe the basic MDG manipulation algorithms. Furthermore, we formulate
the abstract description of a state machine and show how abstract state enu-
meration proceeds using MDGs. In Section 3, we describe hardware modeling
using our approach, i.e., how to describe circuit components using MDGs. Iz~
Section 4, we present the application of our method to hardware verification.
In particular, several techniques for combinational and sequential circuits are
discussed. In Section 5, we report experimental results on a number of the
IFIP benchmarks. In Section 6, we present a case study of formal verifica-
tion of the Fairisle 4×4 ATM (Asynchronous Transfer Mode) switch fabric

84 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

using MDGs, including experimental results. In Section 7, we summarize the
contributions of the paper and point out the direction of further work.

2 . F o u n d a t i o n s o f t h e M e t h o d o l o g y

While Boolean logic is sufficient to represent circuits at the bit level, to repres-
ent and reason about circuits using abstract types and uninterpreted function
symbols we need a first-order logic. We use a many-sorted first-order logic
with a distinction between abstract and concrete sorts that mirrors the hard-
ware distinction between data path and control. Multiway Decision Graphs
are canonical representations of a certain class of quantifier-free formulas of
the logic, which we call Directed Formulas (DFs). DFs can represent the
transition and output relations of a state machine, as well as the set of pos-
sible initial states and the sets of states that arise during reachability analysis.
We refer to state machines whose transition relation, output relation, and the
set of initial states are given by DFs, or equivalently by MDGs, as Abstract
State Machines (ASMs).

2.1 Logic

2.1.1 S y n t a x . As in ordinary many-sorted first-order logic, the vocabulary
consists of sorts, constants, variables, and function symbols (or operators).
Constants and variables have sorts. An n-ary function symbol (n > 0) has
a type o~ I x . . . X OL n -+ O ~ n + l , where al ... an+l are sorts. We deviate from
standard many-sorted first-order logic by introducing a distinction between
concrete (or enumerated) sorts, and abstract sorts; the difference is tha t con-
crete sorts have enumerations, while abstract sorts do not. The enumeration
of a concrete sort (~ is a set of distinct constants of sort a. We refer to
constants occurring in enumerations as individual constants, and to other
constants as generic constants. An individual constant can appear in the
enumeration of more than one sort a , and is said to be of sort a for each of
them. Variables and generic constants, on the other hand, have unique sorts.

The distinction between abstract and concrete sorts leads to a distinction
between three kinds of function symbols. Let f be a function symbol of type
O~ 1 X . . . X O~ n --~ O / n + 1 . I f OLn+ 1 i s an abstract sort then f is an abstract function
symbol. If all the a l . . . a~+l are concrete, f is a concrete function symbol. If
an+l is concrete while at least one of a l • .. an is abstract, then we refer to f
as a cross-operator. While abstract function symbols are used to denote data
operations, cross-operators are used to denote feedback from the da ta path
to the control circuitry. Both abstract function symbols and cross-operators
are uninterpreted, i.e. their intended interpretation is not specified. However,
information about them can be provided by axioms such as conditional equa-
tions which can be used as conditional rewrite rules. Such axioms limit the
range of allowable interpretations.

Verification with Abstract State Machines Using MDGs 85

The terms and their types (sorts) are defined inductively as follows: a
constant or variable of sort a is a term of type c~; and if f is a function
symbol of type c~1 x . . . × an -~ an+l , n > 1, and A1 .. • An are terms of types
c~1 . . . c~n, then f(A1,. . . , An) is a term of type c~a+l. A term consisting of a
single occurrence of an individual constant has multiple types (the sorts of
the constant) but every other term has a unique type. The top symbol of a
term is defined as follows: the top symbol of f(A1,. . . , An) is f , and the top
symbol of a term consisting of a single occurrence of a variable or a constant
is tha t variable or constant.

We say that a term, variable or constant is concrete (resp. abstract) to in-
dicate tha t it is of concrete (resp. abstract) sort. A term is concretely reduced
if and only if it contains no concrete terms other than individual constants.
Thus a concretely reduced term can contain abstract function symbols, ab-
stract variables, abstract generic constants and individual constants, but it
can contain no cross-operators, concrete function symbols, concrete generic
constants, or concrete variables; and a concretely reduced term that is itself
concrete must be an individual constant. A term of the form "f(A1, . . . , Anj ~"
where f is a cross-operator and A1... An are concretely-reduced terms is
called a cross-term. For example, if f is an abstract function symbol, c is an
individual constant, x is a variable of concrete sort, and y is a variable of
abstract sort, then f(c, y) is a concretely-reduced term (assuming that it is
well-typed) while] (x , y) is not. And if g is a cross-operator, then g(c, y) is a
cross-term (again, assuming that it is well typed) but g(x, y) is not.

A (well-typed) equation is an expression "A1 = As" where the left-hand
side (LHS) A1 and the right-hand side (RHS) As are terms of same type a.
The atomic formulas are the equations, plus T (truth) and F (falsity). The
for~raulas are defined inductively as follows: an atomic formula is a formula;
if P and Q are formulas, then -~P, P A Q and P V Q are formulas; if P is a
formula and x is a variable, then (3x)P is a formula (with x bound in P) .
We use the abbreviation P ¢~ Q for (P =~ Q) A (Q =~ P).

2.1.2 S e m a n t i c s . An interpretation is a mapping ¢ that assigns a denota-
tion to each sort, constant and function symbol, and satisfies the following
conditions:

1. The denotation ¢(c~) of an abstract sort a is a non-empty set.
2. If a is a concrete sort with enumeration { a l , . . . , an} then ¢ (a) -- {¢(a l) ,

. . . , ¢(an)} and ¢(a~) ~ ¢ (a j) for 1 < i < j < n.
3. If c is a generic constant of sort a , then ¢(c) E ¢ (a) . If] is a function

symbol of type a l × . . . x an ~ an+l , then ¢ (f) is a function from the
cartesian product ¢(O~1) × . . . × ¢ (a n) into the set ¢ (an+ l) .

V being a set of variables, a variable assignment with domain V compatible
with an interpretation ¢ is a function ¢ tha t maps every variable v E V of
sort a to an element ¢(v) of ¢(c~). We write ~ ¢ for the set of C-compatible
assignments to the variables in V.

86 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

The denotation of a term under an interpretation ¢ and a C-compatible
variable assignment ¢ whose domain contains all the variables tha t occur
in the term is defined by induction as follows: a constant c denotes ¢(c); a
variable x denotes ¢(x); and if A1 . . . AN denote v~ . . . vn, then f (A1 , . . . , An)
denotes (¢(f)) (ul , . . . , u~). The t ru th of a formula P under an interpretation
¢ and a C-compatible variable assignment ¢ whose domain contains the vari-
ables tha t occur free in P , writ ten ¢, ¢ ~ P , is also defined by induction:
¢, ¢ ~ A1 = A2 iff A1 and A2 have same denotation; ¢ , ¢ ~ -~P iff it is not
the case tha t ¢ , ¢ ~ P; ¢ , ¢ ~ P A Q i f f ¢ , ¢ ~ P a n d ¢ , ¢ ~ Q; ¢ , ¢ ~ P v Q
iff ¢ , ¢ ~ P or ¢ , ¢ ~ Q; and ¢ , ¢ ~ (3x)P iff ¢ , ¢ ' ~ P for some ¢' tha t
assigns an arbi t rary value to x and otherwise coincides with ¢.

We write ¢ ~ P when ¢, ¢ ~ P for every C-compatible assignment ¢
to the variables tha t occur free in P, and ~ P when ¢ ~ P for all ¢. Two
formulas P and Q are logically equivalent iff ~ P ¢ v Q. A formula P logically
implies a formula Q i f f ~ P ~ Q.

2.1.3 D i r e c t e d F o r m u l a s . Given two disjoint sets of variables U and V,
a directed formula of type U -~ V is a formula in disjunctive normal form
(DNF) such tha t

1. Each disjunct is a conjunction of equations of the form
A = a, where A is a term of concrete sort a of the form " f (B 1 , . . . , Bn)"

(f is thus a cross-operator) tha t contains no variables other than
elements of U, and a is an individual constant in the enumeration of
0~, o r

u = a, where u C U is a variable of concrete sort a and a is an individual
constant in the enumeration of a, or

v = a, where v E V is a variable of concrete sort a and a is an individual
constant in the enumeration of a, or

v = A, where v E V is a variable of abstract sort a and A is a term of
type a containing no variables other than elements of U;

2. In each disjunct, the LHSs of the equations are pairwise distinct; and
3. Every abstract variable v E V appears as the LHS of an equation v = A

in each of the disjuncts. (Note that there need not be an equation v = a
for every concrete variable v E V.)

Intuitively, in a DF of type U -+ V, the U variables play the role of
independent variables, the V variables play the role of dependent variables,
and the disjuncts enumerate possible cases. In each disjunct, the equations
of the form u = a and A = a specify a case in terms of the U variables,
while the other equations specify the values of (some of the) V variables in
that case. The cases need not be mutually exclusive, nor exhaustive. The
condition that every abstract variable v E V must appear in every disjunct
is less stringent than it seems. In practice, one can introduce an additional
dependent variable u and add an equation v = u to a disjunct where v is
missing.

Verification with Abstract State Machines Using MDGs 87

A DF is said to be concretely reduced iff every A in an equation A = a
is a cross-term, and every A in an equation v = A is a concretely reduced
term. It is easy to see that every DF is logically equivalent to a concretely
reduced DF, given complete specifications of the concrete function symbols
and concrete generic constants; the reduction can be accomplished by case
splitting.

A concretely reduced DF contains no concrete function symbols and no
concrete generic constants; and, in a concretely reduced DF of type U -+ V,
if A is the cross-term in the LHS of an equation A = a, or the concretely
reduced term in the RHS of an equation v = A, then every variable tha t
occurs in A is an abstract variable u E U. We refer to such an occurrence
of a variable as a secondary occurrence in the DF. A primary occurrence of
a variable, on the other hand, is an occurrence as the LHS of an equation.
From now on, by DF we shall mean concretely reduced DF.

For example, suppose that U = {Ul,U2} and V = {vl,v2}, where Ul and
vt are variables of a concrete sort bool with enumeration {0, 1} while u2 and
v2 are variables of an abstract sort wordn. Suppose that f is an abstract
function symbol of type wordn -~ wordn and g is a cross-operator of type
wordn -+ bool. Then the formula

(2 .1) = 0) A = u2)) V
((f (u 2) ---- 1) A (vl = '1~1) A (v 2 : g(u2)))

is a DF of type U ~ V . In the case f(u2) = 0 it assigns the symbolic value u2
to v2. In the case f(u2) = 1 it assigns the symbolic values ul to vl and g(u2)
to v2. Note that , in the case f(u2) = 0, the value of vl is left unspecified and
thus is arbitrary.

The above DF (2.1) is not concretely reduced. This is because the right-
hand side term ul in the second conjunct of the second disjunct is not con-
cretely reduced. A concretly reduced DF logically equivalent to (2.1) can be
obtained by further distinguishing the cases ul = 0 and U l : 1 in the case
where f(u2) -- 1:

((f(u2) = 0) A (v2
(2.2) ((f(u2) = 1) A (ul

((f(u2) = I) A (ul

= u s)) v
= 0) A (v l = 0) A =
= 1) A (v l = 1) A (v2 = g(u2)))

Note that , in the absence of abstract sorts, a DF contains only equations
of the form u = a or v = a, and the sets of variables U and V play symmetrical
roles. If there is only one sort, and that sort is concrete with enumeration
{0, 1}, then a DF is a simply a Boolean formula in DNF.

2.2 Multiway Decision Graphs

2.2.1 S t r u c t u r e . An ROBDD is usually viewed as the representation of a
function, with the leaf nodes labeled by values (0 or 1). But it can also be

88 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

viewed as representing an assertion, with the leaf nodes labeled by proposi-
tions (truth or falsity). This latter view is the one that can be generalized to
accommodate abstract types.

Let G be a finite directed acyclic graph with one root, whose internal
nodes are labeled by terms and whose leaves are labeled by formulas of the
logic. Then G can be viewed as representing a formula defined inductively as
follows: (i) if G consists of a single leaf node labeled by a formula P, then G
represents P; (ii) if G has a root node labeled A with edges labeled B1 . . . Bn
leading to subgraphs G~ .. . G~, and if each G~ represents a formula P~, then
G represents the formula VI<~<n((A -- B~) A P~).

The concept of MDG is ~l~tive to two orderings, the standard term or-
dering and the custom symbol ordering. The standard term ordering is a total
ordering of all the terms of the logic. The custom symbol ordering is a total
ordering on a set of symbols C that includes the cross-operators, the con-
crete variables, and some, but not necessarily all, of the abstract variables.
The custom symbol ordering need not be compatible with the standard term
ordering. Variables that are elements of C are said to participate in the cus-
tom symbol ordering.

Let U and V be disjoint sets of variables, such that all the abstract vari-
ables in V participate in the custom symbol ordering. An MDG of type U ~ V
is a directed acyclic graph (DAG) G with one root and ordered edges, such
that:

1. Every leaf node is labeled by the formula T, except if G has a single node,
which may be labeled T or F.

2. For every internal node N, either
a) N is labeled by a cross-term A of type a with variables in U~ and

the edges that issue from N are labeled by individual constants in
the enumeration of a, or

b) N is labeled by a variable u E U of concrete sort a and the edges that
issue from N are labeled by individual constants in the enumeration
of ~, or

c) N is labeled by a variable v E V of concrete sort a and the edges that
issue from N are labeled by individual constants in the enumeration
of a, or

d) N is labeled by a variable v E V of abstract sort a and the edges
that issue from N are labeled by concretely reduced terms of sort a
with variables in U.

3. Along every path, every abstract variable v C V appears as a node label,
there are no duplicate node labels, the top symbols of the node labels
appear in the custom symbol order, and nodes labeled by cross-terms
with same cross-operator appear in the standard term order.

4. The edges issuing from a given node are arranged in the standard term
order.

Verification with Abstract State Machines Using MDGs 89

5. There are no distinct isomorphic subgraphs, and no redundant nodes, a
node being redundant iff it is labeled by a concrete variable or cross-term
of sort a whose edges are labeled by all the individual constants in the
enumeration of a, and all lead to the same subgraph.

6. If a node N is labeled by an abstract variable x, and an abstract variable
y participating in the custom symbol order occurs in a term A that
labels one of the edges that issue form N, then y comes before x in
the custom symbol order. Similarly, if N is labeled by a cross-term A
with cross-operator f , and y is an abstract variable that occurs in A and
participates in the custom symbol order, then y comes before f in the
custom symbol order.

The primary occurrences and secondary occurrences of variables are defined
in the same manner for MDGs as for DFs. Note that, given an MDG G, if U
is the set of variables having secondary occurrences in G, and V the set of
variables having primary occurrences, then G is of type U-~ V.

When we say that an MDG is of type U-~V, it will always be understood
that U and V are disjoint sets of variables, and that all the abstract variables
in V participate in the custom symbol order.

An MDG is a graph representation of a formula as defined above. The
formula represented by an MDG of type U -+ V is usually not in DNF.
However, it can be put in DNF by distributing A over V. It is easy to see
that the resulting formula is a concretely reduced DF of type U-+ V, whose
disjuncts correspond to the paths of the MDG. In this sense, we say that an
MDG is a representation of a concretely reduced DF. As an example, the
MDG shown in Figure 2.1 represents the DF (2.2).

Conversely, given a concretely reduced DF P of type U -+ V, a standard
term order, and a custom symbol order comprising all the variables in V and
all the cross-operators in P, it is easy to construct an MDG representing a
DF that coincides with P up the ordering of the disjuncts in each conjunct
and the ordering of the conjuncts themselves.

The following theorem states that MDGs are a canonical representation:

T h e o r e m 2.1. For a given custom symbol order and a given standard term
order, if G and G ~ are MDGs representing formulas P and pt respectively,
and ~ P ¢:~ P~, then G and G ~ are isomorphic graphs.

Although MDGs represent DFs, which are first-order formulas, this result
is not surprising, because DFs are a restricted class of first-order formulas.
The proof of the theorem can be found in [CZSL94]. The proof uses a notion
of Herbrand model suitable for our logic. If G and G t are not isomorphic, a
Herbrand model can be constructed that satisfies one of the formulas P or
P~, but not the other.

2.2.2 Basic a lgor i thms . We have implemented the following basic MDG
algorithms, which are the building blocks of the procedures for combinational

90 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

1

Fig. 2.1. MDG representing (2.2)

verification and reachability analysis. To simplify the description of the al-
gorithms we shall identify an MDG with the formula that it represents.

Disjunction. Given two MDGs P1 and P2, there does not always exist an
MDG R such that ~ R ¢~ (P1 VP2). For example, let x and y be distinct
abstract variables, and a and b distinct abstract generic constants. Let
P1 be x = a (i.e. an MDG with a root node labeled x and a single edge
labeled a leading to T) and let P: be y = b. Then it can be shown that
there exists no MDG R such that ~ R ¢~ (P1 V P2). But in the case
where P1 and P2 have the same set of abstract primary variables, it is
possible to compute an MDG R logically equivalent to P1 V P2.
Our disjunction algorithm is n-ary. It takes as inputs a set of MDGs P~,
1 < i < n, of types U i ~ V , and produces an MDG R = Disj({Pi}l<i<n)
of type (Ul<i<n Ui) -4 V such that

~ R ¢ = ~ (V Pi).
l < i < n

The algorithm computes the disjunction of its n inputs in one pass.
Relational product. As in the case of disjunction, given two MDGs P1 and

P2, there does not always exist an MDG R such that ~ R ¢¢ (P1 A P2).
For example, let x be an abstract variable, and let a and b be distinct
abstract generic constants. Let P1 be x = a (i.e. an MDG with a root
node labeled x and a single edge labeled a leading to T) and let P2 be
x = b. Then it can be shown that there exists no MDG R such that
~ R C:> (PI A P2).

Verification with Abstract State Machines Using MDGs 91

But if P1 and P2 have no abstract primary variables in common, then it
is possible to compute an MDG R logically equivalent to P1 A P2. The
abstract primary variables of R are those of P1 and P2. A secondary
variable of R is a secondary variable of at least one of P1, P2 without
being a primary variable of the other. (If a variable has secondary occur-
rences in one graph and primary occurrences in the other, the secondary
occurrences are eliminated by substitution.)
Instead of implementing a conjunction algorithm, we have implemen-
ted a relational product algorithm that combines conjunction, existential
quantification, and renaming. As in the case of disjunction, we have im-
plemented an n-ary version of the algorithm. It takes as inputs a set of
MDGs Pi, 1 < i < n, of types Ui - ~ , a set of variables E to be existen-
tially quantified, and a renaming substitution ~], and produces an MDG
R = RelP({Pi}l<_i<n, E, ~?) such that

The algorithm computes the conjunction of the Pi, existentially quantifies
the variables in E, and applies the renaming substitution ~, all in one
pass. For 1 _< i < j _< n, V/and I~ must not have any abstract variables
in common, otherwise the conjunction cannot be computed, because, in
general, there is no MDG logically equivalent to the conjunction.
Let us determine the type of the MDG R computed by the algorithm.
(It will be useful in Section 2.3.3.) The result of only computing the
conjunction would be an MDG of type

((U u,) \ (U v+)) ~ (U v~).

The set E of variables to be existentially quantified must be a subset of
(Ul<i<n Yi). The result of only computing conjunction and existential
qua~ti-fication would be an MDG of type

((U U v ,)) . ((U v,)\E).

The domain of y must be a subset of ((Ul<i<~ 1//) \ E), and ~ must
preserve the custom symbol order when applied-to the set

((U u,)\(U v+))u((U V+I\E).
l < i < n l < i < n l < i < n

The type of the result R is

((U u+) \ (U v,)) -, (((U v,) \ El-,7).
l < i (n l ~i<_n l < i < n

92 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

Pruning by subsumption. It takes as inputs two MDGs P and Q of types
U --+ V1 and U--+ V2 respectively, where U contains only abstract variables
that do not participate in the custom symbol ordering, and produces an
MDG R = PbyS(P, Q) of type U-+ V1 derivable from P by pruning (i.e.
by removing some of the paths and reducing the resulting graph to satisfy
the well-formedness conditions) such that

(2.3) ~ R V (3U)Q ¢* P v (3U)Q.

The paths that are removed from P are subsumed by Q [CZSL94], hence
the name of the algorithm.
Since R is derivable from P by pruning, after the formulas represented
by R and P have been converted to DNF, the disjuncts in the DNF of
R are a subset of those in the DNF of P. Hence ~ R ~ P. And, from
(2.3)), it follows tautologically that, ~ P A -~(3U)Q ~ R. Thus we have

(P A -,(3U)Q ~ R) A (R ~ P).

We can then view R as approximating the logical difference of P and
(3U)Q. In general, there is no MDG logically equivalent to P A-,(3U)Q.
If R is F, then it follows tautologically from (2.3) that ~ P ~ (3U)Q.

2.2.3 Imp lemen ta t i on . As in ROBDD packages, we use a reduction table
(also called unique table) to maintain MDG canonicity during the compu-
tations, and a results table (also called computed table) to ensure that each
distinct computation is performed only once.

Disjunction is straightforward to implement, given that all the arguments
have the same set of abstract variables.

The relational product algorithm is more complex. If an abstract variable
x has primary occurrences in one of the MDGs to which ReSP is applied,
and secondary occurrences in another, then the secondary occurrences are
replaced with labels of edges that issue from nodes labeled by the primary
occurrences. These substitutions are facilitated by condition 6 in the defini-
tion of MDG given in Section 2.2.1. Since terms appearing as edge and node
labels can be very large in some cases, we implement them as DAGs, using a
reduction table to maximize sharing and assign unique identifiers to all the
terms and subterms. We use a results table for substitution. Also, with each
MDG node, we keep a list of the abstract variables that participate in the
custom symbol ordering and occur in the subgraph rooted at the node. Re-
ordering of cross-terms is necessary after substitution, but is localized, since
cross-terms with same cross-operator are consecutive along every path.

The PbyS algorithm is also quite complex. As the algorithm is recursively
invoked in a top-down traversal, the edges labels and cross-terms of P are
matched against those of Q in order to instantiate the secondary variables of
Q. The algorithm must take into account the omission of redundant nodes
from P. A path 7r of P is pruned if there exists an MDG M obtained from
(the single-path MDG) ~r by addition of zero or more redundant nodes, such

Verification with Abstract State Machines Using MDGs 93

that, for every path rr t of M, there exists an instantiation 7r" of a path of Q
such that every node-edge pair of 7r" is a node-edge pair of 7r ~.

Detailed descriptions of these three algorithms can be found in [CZSL94].

2.2.4 Othe r a lgor i thms. Given an MDG P, there does not always exist an
MDG R such that ~ R ¢~ (-~P). For example, there exists no such R if P is
x = a, where x is an abstract variable and a is an abstract generic constant.
However, it is straightforward to compute R in the case where all the nodes
in P are labeled by concrete variables or cross-terms. We refer to this special
case as concrete negation. We shall implement a concrete negation algorithm
when4he need arises.

We have implemented an algorithm that simplifies an MDG by applying
a set of conditional rewrite rules involving the abstract function symbols
and cross-operators in the vocabulary of the logic. This algorithm will be
described elsewhere.

2.3 A b s t r a c t S t a t e M a c h i n e s

The presence of uninterpreted symbols in the logic means that we must dis-
tinguish between a state machine M and its abstract description D in the
logic. A given abstract description D will determine a machine M for every
interpretation ¢. For the purpose of hardware verification we are interested
only in finite state machines (FSMs). However, an abstract description will
represent infinite as well as finite state machines, since abstract sorts ad-
mit infinite interpretations. We call Abstract State Machine a state machine
given by an abstract description in terms of MDGs, or equivalently DFs, as
explained below.

2.3.1 Represen t ing sets using MDGs . Let P be an MDG of type U--+V.
Then, for a given interpretation ¢, P can be used to represent the set of
vectors

SetCy(P) = {¢ e ~¢y J ¢ , ¢ ~ (~U)P}.

In the next section, MDGs will thus be used in this fashion to represent sets
of states and sets of output vectors. We shall also see how MDGs can be used
to represent relations.

2.3.2 Describing s t a t e m a c h i n e s with MDGs . An abstract description
of a state machine M is a tuple D = (X, Y, Z, FI, FT, Fo), where

X, Y, Z are disjoint sets of variables, viz. the input, state, and output vari-
ables respectively. Let r/be a one-to-one function that maps each variable
y to a distinct variable r/(y) obtained, for example, by adorning y with a
prime. The variables in Y~ = ~/(Y) are used as the next-state variables.
X, Y and Z must be disjoint from Yq
Given an interpretation ¢, an input vector of the state machine M rep-
resented by D is a C-compatible assignment to the set of input variables

94 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

X; thus the set of input vectors, or input alphabet, is (I)¢x . Similarly, ¢¢z
is the output alphabet. A state is a C-compatible assignment to the set
of state variables Y; hence the state space is ~¢y. A state ¢ can also be
described by an assignment Ct = ¢o~-1 E ~¢, to the next state variables.

Fx is an MDG representing the set of initial states, of type U-+ Y, where U is
a set of abstract variables disjoint from X U Y U Y~ U Z. Typically, FI is a
one-path MDG where each internal node N is labeled by a variable y E Y,
and the edge that issues from N is labeled by the symbolic initial value
of y, which can be an individual constant, an abstract generic constant,
or an abstract variable u E U. It is possible to specify that two data
registers have the same value, but that this common value is arbitrary, by
using the same u as symbolic initial value of the abstract state variables
representing the two registers.
Given an interpretation ¢, a state ¢ E ibCy is an initial state iff ¢, ¢
(3U)F~. Thus the set of initial states of the state machine M represented
b y D is

s1 = {¢ e I¢, ¢ # (3U)Ft} = Set (Fx).
FT is an MDG of type (XUY)-~ Y' representing the transition relation.

Given an interpretation ¢, an input vector ¢ E q?Vx and a state ¢~ E ~0,
a state ¢,t E ~¢y is a possible next state iff ¢, ¢ U ¢' U ¢" o ~?-I ~ FT.
Thus the transition relation of the state machine M represented by D is

RT = {(¢, ¢', ¢") E ffPCx v ~¢ × d,¢ (¢,, - - - r - . l ¢ , ¢ u ¢ ' u o y - l) # FT}.

FO is an MDG of type (XUY)-+ Z representing the output relation.
Given an interpretation ¢, the output relation of the state machine M
represented by D is

Ro = {(¢, ¢', ¢") E @Cx X@CyX@Cz I ¢ , ¢ U ¢' U¢" [= To}.
To recapitulate, for every interpretation ~ of the sorts, constants and func-
tion symbols of the logic, the abstract description D = (X, Y, Z, FI , FT , Fo)
represents the state machine M = (~2x,dPy,¢ ¢ dPCz, SI, RT, Ro) with input al-
phabet @:~, state space @¢y, output alphabet @¢ z, set of initial states $I,
transition relation RT, and output relation Ro.

2.3.3 S ta t e explora t ion . Given an abstract state machine description D =
(X, Y, Z, FI, FT, Fo) we can compute the set of reachable states of a state
machine M ¢ ¢ ¢ = (~x, ~Y, ~z , $I, RT, Ro) represented by D, for any ¢, using
the MDG algorithms mentioned above, while at the same time checking that
a given condition on the outputs of the machine, the invariant, holds in all
the reachable states. The invariant is represented by an MDG C of type
W -+ Z, where W is a set of abstract variables disjoint from X, Y, Y', Z
and U. (Recall that Fx is of type V -4 Y.) For a given ¢, an output vector is
deemed to satisfy the invariant iff ¢, ¢ ~ (3W)C; thus SetCz(C) is the set of
output vectors that satisfy the invariant.

Verification with Abstract State Machines Using MDGs 95

The procedure, called ReAn for Reachability Analysis, is the result of lift-
ing the algorithm given in [CoBM89b] to the realm of abstract types and
MDGs. It can be described by the following pseudo-code:

I. ReAn(D, C)
2. R := Fx; Q := Fx; K := 0;
3. loop
4. K := K + 1;
5. I := Fresh(X, K);
6. 0 := ReIP({I,Q, Fo},X U Y,0);
7. P := PbyS(O, C);
8. if P ~ F then return failure;
9. Y := ReRP({L Q, FT}, Z U Y, n);
10. Q := PbyS(g,R);
11. if Q = F then return success;
12. R := PbyS(R, Q);
13. R := Disj(R, Q);
14. end loop;
15. end ReAn;

In this pseudo-code, I, N, P, Q and R are program variables that take
as values MDGs representing sets of states, and O takes as values MDGs
representing sets of output vectors. We will identify the program variables and
their values in the following explanations when there is no risk of confusion.

Before each loop iteration, R represents the set of reachable states found
so far, while Q represents the frontier set, i.e., a subset of SetCy(R) containing
at least all those states that entered Setey(R) for the first time in the previous
iteration.

In line 5, Fresh(X, K) constructs a one-path MDG representing a conjunc-
tion of equations x = u, one for each abstract input variable x E X, where
u is a fresh variable from the set of auxiliary abstract variables U. The value
of the loop counter K is used to generate the fresh variables. This one-path
MDG is assigned to I, which represents the set of input vectors.

In line 6, the relational product operation is used to compute the MDG
representing the set of output vectors produced by the states in the frontier
set. The resulting MDG is assigned to O. Then, in line 7, the pruning-by-
subsumption operation is used to remove from O paths representing output
vectors that satisfy the invariant C. The resulting MDG is assigned to P. In
line 8, if P is not F, then the procedure stops and reports failure. We have
implemented a counterexample facility that can then be invoked to produce
a most general symbolic trace leading to a state for which the outputs do not
satisfy the invariant. Examples of such a trace can be found in [ZSTC96].
If P is F, then SetCz(O) C SetCz(C), i.e. every output vector produced by a
state in the frontier set satisfies the invariant, and the verification procedure
continues.

96 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

In line 9, the relational product operation is used again, this time to
compute the MDG representing the set of states that can be reached in one
state from the frontier set. Note that the MDG Q representing the frontier
set is of type U --+ Y, the MDG I representing the set of input vectors is
of type U -+ X, and the MDG FT representing the transition relation is of
type (XUY) --+ Y~. The result of taking the conjunction of these three MDGs
would be of type U ~ (X U Y U Y~), the result of subsequently removing the
variables in X U Y by existential quantification would be of type U--+ Y~, and
the result of subsequently applying the renaming substitution 7/would be of
type U-+ Y. The RelP operation performs these three operations in one pass,
and assigns the resulting MDG of type U ~ Y to N.

Lines 10 and i1 check whether SetCy(N) C_ SetCy(R) by the same method

used in lines 7 and 8 to check whether SetCz(O) C_ SetCz(C). If this is indeed
the case, then every state reachable from the frontier set was already in
SetCy(R). The fixpoint has been reached and R represents all the reachable
states. Therefore, the procedure terminates and reports success. Otherwise
the MDG assigned to Q in line 10 represents the new frontier set.

Line 12 simplifies R by removing from it any paths that are subsumed by
Q, using PhyS. There may be such paths because Q was not computed earlier
as an exact difference. Then line 13 computes the new value of R by taking the
disjunction of R and Q, which represents the set of states SetCy(R)U Set ¢ (Q),
and assigning it to R.

In the general case, this procedure may not terminate and may produce
false negatives. These limitations are discusses below, in Section 4.2.3 and
Section 4.2.4 respectively.

3. M o d e l i n g H a r d w a r e w i t h M D G s

A circuit is described at the RT level as a collection of components inter-
connected by nets that carry signals. Each signal is represented by a vari-
able. Variables denoting control signals have concrete sorts, while variables
denoting data values have abstract sorts. We show how various kinds of com-
ponents can be represented by MDGs through the following examples. The
parser in our MDG tools automatically transforms a component predefined
in our Prolog-style MDG-HDL [ZhBo95] into its MDG representation.

- Gates: For gates, the input and output signals are always of Boolean sort.
Figure 3.1(a) and Figure 3.1(b) show an OR gate and its MDG representa-
tion for a particular ordering of the variables. Boolean MDGs are essentially
the same as ROBDDs.

- Multiplexer: For a two-way multiplexer as shown in Figure 3.2(a), we may
have different MDGs depending on the signals being multiplexed. There is
a very compact MDG (Figure 3.2(b)) if xl, x2 and y are all of an abstract

xl

x2

Verification with Abstract State Machines Using MDGs

(a) (b)

Fig. 3.1. The MDG for an OR gate.

97

sort. If x l , x2 and y are of a concrete sort with enumeration {ci)l<i<m,
then ci are enumerated in the MDG as shown in Figure 3.2(c).

x2 ~1 mux -~ Y

xo

(a) (b)
Fig. 3.2. The MDG for a multiplexer.

(c)

- Registers: Figure 3.3(a) and Figure 3.3(b) show a register r and its MDG
when x and y are of an abstract sort. The variable y~ denotes the next state
of the register. If x and y axe of a concrete sort with enumeration {c~ }l<i<m,
we also have to enumerate ci in the MDG as shown in Figure 3.3(c).

- Control operation: Figure 3.4(a) shows a comparator tha t produces a con-
trol signal y from two data inputs xt and x2. Both Xl and x2 are variables of
abstract sort while y is a Boolean variable. An uninterpreted cross-operator
eq is used to denote the functionality of the comparator. If the meaning of
eq matters, rewrite rules, such as eq(x, x) --} 1 should be used. An MDG
of the comparator is shown in Figure 3.4(b).

- Data operation: Data operations are viewed as black boxes and are rep-
resented by uninterpreted function symbols. Figure 3.5(a) shows the ALU
of the Tamarack-3 microprocessor [Joyc90]. The variables x l , x2 and y

98 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

(

x w reg Y f,

Xo

%m
.. / J c~

xl
x~

(a) (b)
Fig. 3.3. The MDG for a register.

.ZI eq > Y - ,

(a) (b)
Fig. 3.4. The MDG for a comparator.

(c)

representing the data inputs and the output are of an abstract sort, while
the variable x0 representing the control input is of a concrete sort with
the enumeration {0, 1, 2, 3}. Depending on the value of x0, the ALU can
add, subtract, increment, or produce zero. The operations are represented
by symbols add, sub and inc. The symbol zero is a generic constant. The
corresponding MDG shown in Figure 3.5(b) is quite compact.

Generally speaking, the behavior of a functional block involving data op-
erations can be described by a directed formula (DF). The DF can then be
transformed into an MDG by (i) creating an MDG for each atomic formula;
(ii) for a disjunct of DF, conjuncting all the MDGs of its atomic formulas;
and (iii) disjuncting all the MDGs representing the disjuncts.

Besides structural descriptions, MDG-HDL can also be used for the de-
scription of behavioral specifications. A behavioral description is given by
high-level constructs as ITE (If-Then-Else) formulas, CASE formulas or tab-
ular representations. The tabular construct is similar to a truth table but
allows first-order terms in rows.

Verification with Abstract State Machines Using MDGs 99

x~

x2

xo

(a)

~ y

zero ~ inc(xl)

(b)
Fig. 3.5. The MDG for an ALU.

4. M D G - b a s e d V e r i f i c a t i o n T e c h n i q u e s

We implemented in Prolog an MDG package including algorithms for dis-
junction, relational product (image computation), pruning by subsumption,
and rewriting. We developed a reachability analysis algorithm (abstract im-
plicit enumeration), and provided applications for hardware verification such
as combinational circuits verification, safety property checking and equival-
ence checking of two abstract state machines. The latter two are based on
the reachability analysis.

In the following sections, we detail the above applications to hardware
verification.

4.1 Combinat ional Circuits

For combinational verification, we take advantage of the fact that MDGs
are a canonical representation; we can thus lift the corresponding OBDD
technique. Given two combinational circuits to be compared, we compute for
each of them an MDG representing its input-output relation by combining
the MDGs of the components of the circuit using the relational product
operation. The canonicity of MDGs tells us that comparing the functionality
of two combinational circuits reduces to computing the MDGs representing
their input/output relations. If the two circuits have the same functionality,
the two MDGs must represent logically equivalent formulas, and hence they
must be isomorphic. By the use of a reduction table in the MDG package,
this amounts to checking whether the two MDGs have the same Identification
number (ID), a constant-time operation.

Functional comparison of two combinational circuits can also be accom-
plished using partitioned input/output relations. Instead of computing a
single MDG for each circuit it is possible to compute a separate MDG for
each output of the circuit. These separate MDGs may be much smaller than
a monolithic MDG involving all the outputs. We then check whether the cor-
responding individual MDGs in the two partitioned relations have the same
IDs.

t00 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

The same technique can be used to compare two sequential circuits when
a one-to-one correspondence between their registers exists and is known: it
then suffices to compare the combinational parts of the sequential circuits.

4.2 Sequential Circuits

4.2.1 Sa fe ty property and equivalence checking. The safety property
checking is based on the reachability analysis procedure. Given a state ma-
chine M and an invariant C, we check if C holds in all the reachable states
of M.

One application of the safety property checking is the behavioral equi-
valence (or input-output equivalence) checking of two sequential circuits. To
verify that two machines produce the same sequence of outputs for every se-
quence of inputs, we feed the same inputs to the two circuits, i.e., we form the
product state machine. Then, we perform teachability analysis on the parallel
composition using an invariant that asserts the equality of the corresponding
outputs in all the reachable states. For machines at different time scales, it
is possible to synchronize them first if they have cyclic behavior. Thereafter
we can perform reachability analysis on the product machine as usual. This
technique can be used for the verification of non-pipelined microprocessor
implementations against their instruction-set architecture specifications.

An invariant condition is specified by a combinational circuit whose out-
put signals are named by the variables that occur in the condition. By con-
vention, an assignment of values to those variables satisfies the condition if
and only if the outputs of the combinational circuit take those values for
some assignment of values to the inputs. An MDG representing the invariant
is obtained from the MDG representing the functionality of the combina-
tional circuit by existentially quantifying the concrete inputs. The variables
representing abstract inputs are left in the graph as implicitly quantified sec-
ondary variables. For example, the combinational circuit of Figure 4.1(a), a
simple fork, may yield different MDGs depending on the sort of the signals.
If x and y are of boot sort, then u is existentially quantified and we get the
MDG as shown in Figure 4.1(b) which simply represents x = y. If x and y
are of an abstract sort, then we get an MDG as shown in Figure 4.1(c) which
represents the formula x = u A y = u. Taking the secondary variable u to be
existentially quantified, the invariant becomes (Su) (x = u A y = u) which is
logically equivalent to x = y.

Pruning-by-subsumption is used to check that the invariant is satisfied for
the states in each frontier set. If we want to check the equality of two outputs
x and y in an output MDG O, we just prune O against I n v which is the
same MDG as Figure 4.1(b). This technique makes it possible to state the
equality of two abstract signals without having recourse to a cross-operator
eq and the rewrite rule eq(x, x) --+ 1.

4.2.2 S imple mic rop roces so r s . The ins truct ion set architecture of a mi-
croprocessor is the specification of the effect that each instruction is intended

Verification with Abstract State Machines Using MDGs 101

U

(a) (b)
Fig. 4.1. Representation of the invariant x = y.

C
U

(
U

(c)

to have on the programmer's model which consists of the visible registers and
memory. To verify a microprocessor against its instruction set architecture is
to verify that the execution of every instruction has the intended effect.

The control FSM of a microprocessor has a distinguished ready state that
is the starting point of instruction execution. When the control state is kept
in a microprogram counter, the ready state is typically mpc = O. We say that
the microprocessor itself is in a ready state when the control FSM is in its
ready state. Precisely stated, the problem is to verify two properties of the
circuit C consisting of processor and memory, i.e., that (i) if Sl and s2 are
consecutive reachable ready states, the visible portion of state sl is related
to the visible portion of state s2 as prescribed by the architecture for the
executed instruction, and (ii) from every reachable ready state, a ready state
is eventually reached again. Currently, we can verify the safety property (i),
while property (ii) can be verified if the maximum number of clock cycles
before a ready state to be reached from any reachable state is known (i.e.,
the liveness property is thus converted to a safety property).

To verify (i) we compare C with an ideal state machine C I whose state is
the visible state of C and where each transition corresponds to the execution
of an instruction as specified by the architecture. We refer to C and C I as
the implementation and specification, respectively. C / is synchronized with
C by a ready signal extracted from C: when ready=l the specified transition
takes place, otherwise C ~ remains in the same state. We perform reachability
analysis on the synchronized composition of the implementation and the spe-
cification, checking an invariant that asserts the equality of the visible state
in C and C r when ready= 1. This amounts to verifying (i).

Figure 4.2(a) shows a circuit representing an invariant that asserts the
equality ofx and y, but only when mpc = O. It is assumed that mpc and uompc
have a concrete sort with enumeration {0,. . . , m). The MDG of Figure 4.2(b)
is obtained from the circuit by existentially quantifying the concrete input
u_mpc. The formula which it represents after existentially quantifying the
secondary variables u, ul, u2 is logically equivalent to

m p c = O ~ x = y .

102 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

u ~ ~ x ~. x 0 m~
ul-- t

[~ mux I . y (~) (~
u~ ~L, I

u_mpc [>, mpc

(a) (b)
Fig. 4.2. Representation of the invaxiant "x = y if mpc = 0"

4.2.3 Non-termination Problem and Initial State Generalization.
There are cases where the set of reachable states is not representable by
a finite MDG of type W -+ Y , and in such cases the reachability analysis
procedures will not terminate. For example, consider a microprocessor having
a program counter whose initial value is 0, denoted by a generic constant
zero of abstract sort. An instruction that does not change the flow of control
increments the program counter; assume that an abstract function symbol
inc is used to represent this. An MDG Pk of type W -~ Y representing the
set of states reachable in up to k steps must have at least k disjuncts (state
descriptions), containing the equations ypc = zero, Ypc = iue(zero), ypc =
ine(inc(zero)), . . . , ypc = luck(zero). A DF representing all the reachable
states would require an infinite number of disjuncts, for k -+ co.

In some cases non-termination can be avoided by generalizing the set of
initial states so as to obtain a larger set of reachable states tha t is represent-
able by a finite MDG, while still satisfying the condition to be verified. An
important case in which this method is applicable is tha t of simple micropro-
cessors and similar circuits tha t exhibit a cyclic behavior. When comparing
two state machines derived from two implementations of a processor, or from
an implementation and a specification, the initial state of the product ma-
chine can be arbitrary, subject only to two constraints: (i) each machine's
control state is the one where the instruction cycle begins, and (ii) the cor-
responding visible registers in both machines have the same initial values.
Then the set of reachable states usually has a finite representation because,
informally speaking, after an instruction has been executed the product ma-
chine goes to a state that is a special case of this initial state. In the case
discussed above, non-termination would be avoided by letting the value of the
program counter be represented by a variable rather than a constant, which
would allow the subsumption check to succeed. This method is referred to as

Verification with Abstract State Machines Using MDGs 103

initial state generalization. We discuss the non-termination problem in more
detail in [CZSL94, ZSTC96] and propose several other solutions.

4.2.4 False Negat ives . During reachability analysis, it is possible that the
invariant holds for the intended interpretation Co but not for all ¢. The
abstract verification will then fail even though the interpreted state machine
satisfies the invariant, a false negative result. Yet, when data operations axe
viewed as black boxes, the invariant is expected to hold for every ¢; hence,
if the teachability analysis returns "failure", there must be an error in the
design. In this sense we say that the verification method is applicable to
designs where the data operations are viewed as black boxes.

RTL designs generated by high-level synthesis are usually of this form.
This is because high-level synthesis algorithms schedule and allocate data
operations without being concerned with the specific nature of the operations.

Another example of well-behaved circuits are processors. A general pur-
pose processor provides data operations for use by the programs running on
the processor. It is the programs, not the processor, that make use of the
operations. The data operations can be therefore be viewed as black boxes
when specifying and verifying the processor. Thus, the class of processor-like
circuits is welt suited to the above techniques, both from the point of view of
termination and from the point of view of false negatives.

We do not know at present whether the problem of verifying that a certain
condition holds is decidable when using abstract sorts, completely uninter-
preted function symbols and abstract descriptions of state machines.

5. V e r i f i c a t i o n o f B e n c h m a r k C i r c u i t s

In this section we discuss the results of applying abstract implicit state
enumeration to three synchronous circuits from the IFIP benchmark suite
[Krop94b, Krop94a]. They are the Arbiter, the Greatest Common Divisor
(GCD) and the Filter. All the experiments were performed on a SPARC sta-
tion 20, using our MDG package implemented in Quintus Prolog Version 3.2.
The execution times, memory and the number of nodes generated are shown
in Table 5.1.

The circuit of the GCD benchmark that we implemented is generic. We
used in the datapath abstract signals of type wordn to model generic words.
The complete circuit is composed of 29 basic components and has a total
of 8 state variables. Beside the implementation description, we provided a
behavioral specification at the RT level using tabular expressions and abstract
state machines. We verified the GCD circuit by checking its equivalence to the
behavioral specification. The verification holds for generic words of arbitrary
width.

The benchmark FILTER corresponds to the concrete example described
in [Krop94a]. It has 5 input values (n = 5) and 3 stages (k = 3). Each stage

104 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

Table 5.1. Statistics from benchmark verification

Benchmark CPU time Memory ~: MDG Nodes
(in sec) (in MB) generated

GCD (n-bit) 1.93 1.48 432
FILTER I 0.94 I 0.5 I 213
Arbiter (4-bit) 1.3
Arbiter (8-bit) 5.0
Arbiter (16-bit) 4595.0

1.4 832
2.7 2862

101.4 202752

is composed of seven components. The circuit has 22 basic components and
12 abstract state variables. Similarly as in the GCD example, we provided
a behavioral specification of the FILTER which we checked for equivalence
with the the circuit implementation.

The implementation used for the Arbiter appears in [McMi93a]. We con-
structed 4, 8 and 16 bit versions of this synchronous circuit at the Boolean
level (all signals are of a concrete sort). Each cell of the arbiter contains
two control registers and a set of logic gates for a total of 10 components
per cell. For example, the 16 bit arbiter has 163 basic components and 32
concrete state variables. For each version, we verified two safety properties
(properties 1 and 3 in [Krop94a]) which reflect the correct arbitration be-
havior (Table 5.1 includes the statistics of checking the conjunction of these
two properties). Checking liveness properties (property 2 in [Krop94a]) is not
currently supported by our MDG tools.

We also experimented with a number of other IFIP benchmark cir-
cuits [Krop94a]~ including the Traffic Light Controller, Adder, Min_Max,
Tamarack-3, Multiplier, Divided, and Associative Memory.

For asynchronous circuits, such as Single Pulser and Black-Jack Dealer
[Krop94b], we need to verify liveness properties that we cannot do for the
moment.

6. Fairisle ATM Switch Fabric: A Case Study in
Verification using MDGs

In this section we present a case study of formal verification of the Fairisle 4 × 4
ATM (Asynchronous Transfer Mode) switch fabric using MDGs. The device
is in use for real applications in the Cambridge Fairisle network [Curz94],
designed at the Computer Laboratory of the University of Cambridge,

Using a hierarchical approach, we first verified the original gate-level im-
plementation of the switch fabric against an RTL implementation, then we
verified the RTL implementation against a behavioral specification given as
an abstract state machine (ASM). We thus obtained complete verification

Verification with Abstract State Machines Using MDGs 105

from a high-level behavior down to the gate level. We also verified some spe-
cific invariants that reflect the behavior of the fabric in its real operating
environment.

6.1 The Fairisle A T M Switch Fabric

The 4x4 Fairisle switch consists of three types of components: the input port
controllers, the output port controllers and the switch fabric, as shown in
Figure 6.1. It switches ATM cells from the input ports to the output ports.
A cell consists of a fixed number of bytes.

Din0 Dout0
Aout0 Ain0
Dinl ATM Doutl
Aoutl Ainl

transmissior Din2 Switch Dout2 transmission

lines Aout2 Ain2 lines
Din3 Fabric Dout3
Aout3 Ain3

controllers controllers

Fig. 6.1. The Fairisle ATM switch

The behavior of the switch is cyclical. In each cycle or frame, the input
port controllers synchronize incoming data cells, append control information
in the front of the cells in the routing tag (Figure 6.2), and send them to
the fabric. The fabric waits for cells to arrive, strips off the tags, arbitrates
between cells destined to the same port, sends successful cells to the appro-
priate output port controllers, and passes acknowledgments from the output
port controllers to the input port controllers.

If different port controllers inject cells destined for the same output port
controller (as indicated by the route bits in the tag) into the fabric at the same
time, then only one will succeed. The others must retry later. The routing
tag also includes priority information (priority bit) that is used by the fabric
for arbitration which takes place in two stages. High priority cells are given
precedence before the remaining cells. The choice within both priorities is
made on a round-robin basis. The input controllers are informed of whether
their cells were successful using acknowledgment signals. The fabric sends
a negative acknowledgment to the unsuccessful input ports, but passes the
acknowledgment from the requested output port to the successful input port.
The port controllers and the switch fabric all use the same clock, hence bytes

106 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

are received synchronously on all links. They also use a higher-level cell frame
clock - the frame start signal fs. It ensures that the port controllers inject
data cells into the fabric synchronously so that the routing tags arrive at the
same time. If no input port raises the active bit throughout the frame then
the frame is inactive - no cells are processed. Otherwise it is active.

B i t

I I I I Unused Route Priority Active
1 I I I

7 6 5 4 3 2 1 0

Fig. 6.2. The routing tag (header) of a Fairisle ATM cell

A s shown in Figure 6.3, the inputs to the fabric consist of the cell data
lines, the acknowledgments that pass in the reverse direction, and the frame
start signal fs which is the only external control signal. The outputs con-
sist of the switched data, and the switched and modified acknowledgment
signals. The switch fabric is composed of an arbitration unit, an acknowledg-
ment unit and a dataswitch unit. The arbitration unit reads the routing tags,
makes arbitration decisions when two or more cells are destined for the same
output port, passes the result to the other modules using grant signals, and
controls the timing of the other units using output disable signals. The data-
switch performs the actual switching of data from an input port to an output
port according to the most recent arbitration decision. The acknowledgment
unit passes appropriate acknowledgment signals to the input ports. Negative
acknowledgments are sent until arbitration is completed.

Aout0 ,c ~-. Ain0
Aoutl .c I~ Ainl
Aout2 ~: Ain2
Aout3 ~c I~ Ain3

~m~ ~ ,- - - : % r z : : _ - - ~

I |
!1_

Ack i

I ~ Arbitration

:-° lJ outDis i
] ~ ~ xO~ti,

Din0 ~ ~ ~ ~ ~ [-----~. Doutl "~ Dour0
Dinl ~ i ~ ~ Dataswitch ~ "~ ~Dout2 Din2 '
Din3 i ~ Dout3

Fig. 6.3. The block diagram of the Fairisle ATM switch fabric

Verification with Abstract State Machines Using MDGs 107

All the design units are repeatedly subdivided until eventually the logic
gate level is reached, providing a hierarchy of components. The design has a
total of 441 logic gates with two or more inputs and flip-flops.

6.2 M D G Model s

6.2.1 G a t e and R T Implementa t ions . We described the implementation
of the fabric at the gate and the RT levels. In the former case, we directly
translated the original Qudos HDL description [Curz94] into our MDG-HDL
using the same set of components.

Based on the gate-level description, we produced an RTL implementa-
tion by describing the dataswitch using abstract multiplexors instead of logic
gates. Here, the data signals DindDou t~ (i = 0, 1, 2, 3) are modeled as n-bit
words and are assigned an abstract sort wordn. The control fields contained
in the cell header, i.e., active, priority and route fields, are extracted from the
abstract data signals using cross-operators (Figure 6.4). The ASM model is
thus obtained by compiling the abstract description of the RTL implement-
ation.

Aout0 ~'~
Aoutl ,c
Aout2 ,c
Aout3 ":

frame st

Ack
i~ AJn0

Ainl
Ain2

Din0
Dinl
Din2
Din3

."i. ... :". ..- ~ act(Din0) I "'-).

°*'~'''''-....°-'~'''°"

Fig. 6.4. The abstraction model of the switch fabric

6.2.2 Behavioral Specif icat ion. The specification of the switch fabric was
developed in two forms: a high-level behavioral state machine and a set of
invariants reflecting the essential behavior of the switch. The former is de-
scribed in this section, the latter is discussed in Section 6.3.2.

108 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

Starting from a set of timing-diagrams describing the expected behavior
of the switch fabric, we derived a complete specification in the form of an
abstract state machine. This specification was developed independently of
the actual hardware design and includes no restrictions on the frame and
cell lengths, and the word width. It reflects the complete behavior of the
fabric under the assumption that the environment maintains certain timing
constraints on the arrival of the frame start signal and the cell headers.

To verify the RTL implementation against the ASM of the behavioral spe-
cification, we make the corresponding input/output signals to be of the same
sort and use the same function symbols to extract the control information
(active, priority and route fields) from the header.

t0+2+i t0+l to
< l 1 t

t s > t0+l
t h > ts+2

~s t e > ts+2
ts ~ -s -s t_e > th_+2

t s+ l

~g ~g ~g

I I =,. =,

ts+a+j ~_ ~ -s,,,(~ -s~ -s <~ -s .() ~s .!

-I I I ,I I
t h th+l th+2 tb+3 th+4

Fig. 6.5. The ASM behavioral specification of the ATM

th+5+k

A schematic representation of the ASM of the 4 by 4 fabric is shown in
Figure 6.5. The symbols to, ts, th and te represent the initial time, the time of
arrival of the frame start signal, the time of arrival of the routing bytes and
the time of the end of a frame, respectively. There are 14 states: States 0, 1
and 2 along the time axis to describe the initial behavior of the switch fabric.
States 2, 3, 4 and 5 along the time axis t, describe the behavior of the switch
on the arrival of the f s signal. States 6 to 13 along the time axis th describe
the behavior of the switch fabric after the arrival of the headers. The waiting
loops in states 2, 5 and 10 are shown by the non-zero natural numbers i, j

Verification with Abstract State Machines Using MDGs 109

and k, respectively. Figure 6.5 also includes many metasymbols used to keep
the presentation simple. For instance, the symbols s and h denote the arrival
of frame start fs and of the routing tag (header), respectively.

Inside a circle, the symbols r, a and d indicate various operations that take
place in the states: round-robin arbitration, the output of acknowledgments
and the output of data, respectively. The absence of those symbols means
that there is no computation and the default value is output. The operations
are defined by separate state machines. We omit their descriptions here since
there is nothing special about them and they are quite long to present. What
needs to be mentioned, however, is the sort definition of variables. The data
signals Dini and Douti (i=[0..3]) are defined as an abstract sort wordn. The
acknowledgement signals Aini and Aouti (i=[0..3]) are of sort bool. More
details can be found in [LTZS96].

6.3 Verif icat ion

6.3.1 Equivalence Checking. For verifying the equivalence of the gate-
level implementation and the abstract (RTL) hardware model, the abstract
n-bit words were instantiated to 8 bits using uninterpreted functions which
decode abstract data to Boolean data [TZSC96]. Equivalence checking of the
RTL implementation and the behavioral specification was performed for an
arbitrary word width n and any frame size and cell length [LTZS96].

By combining the above two verification steps, we hierarchically obtained
a complete verification of the switch fabric from the high-level behavior down
to the gate-level implementation. The experimental results on a SPARC sta-
tion 10 are recapitulated in Table 6.1, including the CPU time, memory usage
and the number of MDG nodes generated.

Table 6.1. The ATM experimental results for equivalence checking

Verifications
Gate-Level to RT-Level

Time (Sec) Mere (MB) ~Nodes
183300 183 22

RT-Level to Beh.-Level 2920 150 320556

No errors were discovered in the implementation. For the sake of experi-
mentation, however, we injected several errors into the implementation: (1)
We exchanged the inputs to the 3K Flip-Flop that produces the output dis-
able signal. This prevented the circuit from resetting. (2) We used the priority
information of the input port 0 to control the input port 2. (3) We used an
AND gate instead of an OR gate within the acknowledgment unit producing
a faulty Aouto signal. These three errors were detected by verifying the RTL
implementation model against the behavioral specification. Table 6.2 shows

110 E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

the experimental results including times for reachability analysis on the spe-
cification and counterexample, memory usage and the number of MDG nodes
generated.

Table 6.2. Verification of some faulty implementations of the ATM

Experiments Reachability (Sec)
Error 1 11
Error 2 850
Error 3 600

Counterex. (Sec) Mem (MB) ~ t ~
9 1 2462

450 120 150904
400 105 147339

6.3.2 I n v a r i a n t C h e c k i n g . Although the ASM describes the complete be-
havior of the switch fabric, we partially validated (in an early stage of the
project) the fabric implementation by property checking. This is useful as it
gives quick confidence check at low cost. Sample properties are correct circuit
reset and correct da ta routing.

We consider the behavior of the fabric when operating in the intended
real Fairisle switch environment. The switch generates frame star t signal f s
(Figure 6.3) at every 64th clock cycle. Initially, it should wait at least 2 clock
cycles to let the fabric reset before it can generate the first f s signal, The
header of a cell is generated at the 9th clock cycles after I s is set.

This cyclic behavior can be simulated as an environment state machine
having 68 states as shown in Figure 6.6. The machine generates the frame

1
Fig. 6.6. The environment state machine of the ATM

start signal] s , the headers h and the data d in the states as indicated in
the figure. Normally, d is a fresh abstract variable representing data in the
cell; and h can be instantiated according to the property to be verified. We
also assume that the f i rs t fs signal is generated at the 3rd clock cycle after
power on. States 1 to 5 are related to the initialization of the fabric. States 6
to 68 represent the cyclic behavior of the fabric, where one cycle corresponds
to one frame. With this diagram, we can map the time points to states in a
similar way as we explained in the preceding section. In this case, ts -- 3 or
66; th = 12; and te = 66. Then, e.g., th + 5 to te + 2 are essentially the states
between 17 and 68 when the remaining data of the cell following the header
are switched to the output port. It can be checked that this state machine is

Verification with Abstract State Machines Using MDGs 111

an instance of the general timing state machine (Figure 6.5) with cell length
of 53 and frame size of 64.

Below, we list properties that we verified and give their ITE expressions.
The state variable c of the environment state machine is of a concrete sort
having the enumeration [1..68].

PI: From ts + 3 to th + 4, the default value is put on the data output port 0.
if (c E [6..16]) t h e n Douto = zero else don't-care.

P2: From t8 + 1 to th -b 2, the default value is put on the acknowledgment
output port 0.
if (c e [4..14, 67, 68]) t h e n Aouto = 0 else don't-care.

P3: From th -b 5 to te q- 2, if input port 0 chooses output port 0 with the
priority bit set in the header and no other input port has its priority bit
set, then the value on Douto will be Din' o which is the input of Dino
four clock cycles earlier.
if (c e [17..68]) A (priority[O..3] = [1,0, 0, 0]) A (route[O] = 0) t h e n Douto
= Dingo else don't-care. (priority[O..3] are the priority bits from all the
input ports and route[0] represents the routing bits for input port 0)

P4: From th -{- 3 to t~, if input port 0 chooses output port 0 with the priority
bit set in the routing tag, and no other input port has its priority bit set,
the value on Aouto will be the input of Aino.
if (c e [15..66]) A (priority[O..3] = [1, 0, 0, 0]) A (route[O] = 0) t hen Aouto
= Aino else don't-care.

These invariants can be easily represented using MDGs. To verify them,
we compose the fabric with the environment state machine as shown in Fig-
ure 6.7. As there is a 4-clock-cycle delay for the cells to reach the output
ports, a delay circuit is used to remember the input values that are to be
compared with the outputs. Hence, we can state the properties in terms of
the equality between Dingo and Douto (e.g. P3). Combining these machines
(dashed frame in Figure 6.7), we obtain the required platform for checking the
invariants. The above properties easily detected the three introduced design
errors. The experimental results are reported in Table 6.3.

Table 6.3. Verification of properties P1 - P4

Verifications
P1
P2
P3
P4
Error 1 by P1

..... Error 2 by P3
Error 3 by P4

Time (See) Mem (MB) #Nodes
202 15 30295
183 15 30356
143 14 27995
201 15 33001

49 8 '16119
77 11 24001
82 11 24274

112

Din0..3 ~4 Ciock cyc!e delay Din'0..3

Environment ~-I t D°ut0''3~ Aout0..3 State Ain0..3 Switch Fabric
Machine >l

E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou

fs

Property
Checking D,

h,,,~

. -]

Fig. 6.7. The composite state machine for invariant checking on the ATM switch
fabric

7. Conclusions and Future Work
We presented a verification methodology that makes it possible to verify
sequential circuits automatically at the RT level, using abstract sorts and
uninterpreted function symbols. It is based on a new kind of decision graphs,
Multiway Decision Graphs (MDG). This approach allows data signals to be
represented by a single variable of abstract sort rather than by 32 or 64
Boolean variables. We also described a set of algorithms for manipulating
MDGs, and shown how they can be used for combinational verification, in-
variant and behavioral equivalence checking of sequential circuits using ab-
stract implicit state enumeration.

Our work has shown that the use of abstract sorts for formal verification
can produce interesting results by raising the level of abstraction at which
the problem is stated. The contribution of MDGs beyond the use of abstract
sorts is that they allow to use at a higher level of abstraction some of the
ROBDD techniques that have been successful at the Boolean level.

We provided experimental results for a set of benchmarks obtained using
a prototype MDG package implemented in Prolog. We demonstrated that
formal verification of a 4×4 ATM switch fabric can be conducted automat-
ically using the MDG tools.

There are many opportunities for further work in formal verification using
the MDG representation of first-order formulas:

- We are developing model checking algorithms for an appropriate first-order
temporal logic.

- We are exploring the links between theorem proving systems and MDG-
based tools. There ave two possible approaches to their integration. (1)
We can embed the model checker as a specialized decision procedure in a
theorem prover. This makes the theorem proving software more efficient
and powerful. (2) MDG-based model checking can proceed and complete

Verification with Abstract State Machines Using MDGs 113

successfully when output checking and state set inclusion can be decided
by rewriting and syntactic matching. When this is not possible, we could
prove the specific subgoal using a theorem prover. For systems containing
complex structures, such as loops, we have to combine model checking, in-
ductive proofs, and rewriting to accomplish the verification task effectively.

Acknowledgement. We would like to thank Nancy Boulerice, Ying Xu and Dan
Voicu for carrying out the experimental work on benchmarks. The work was par-
tially supported by an NSERC Canada Strategic Grant No. STl=t0167079 and the
experiments were carried out on workstations provided by the Canadian Microelec-
tronics Corporation.

