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Abstract The defect assessment process in oil and gas pipelines consists of three
stages: defect detection, defect dimension (i.e., defect depth and length) prediction,
anddefect severity level determination. In this paper,wepropose an intelligent system
approach for defect prediction in oil and gas pipelines. The proposed technique
is based on the magnetic flux leakage (MFL) technology widely used in pipeline
monitoring systems. In the first stage, theMFL signals are analyzed using theWavelet
transform technique to detect anymetal-loss defect in the targeted pipeline. In case of
defect existence, an adaptive neuro-fuzzy inference system is utilized to predict the
defect depth.Depth-related features are first extracted from theMFL signals, and then
used to train the neural network to tune the parameters of the membership functions
of the fuzzy inference system. To further improve the accuracy of the defect depth,
predicted by the proposed model, highly-discriminant features are then selected by
using the weight-based support vector machine (SVM). Experimental work shows
that the proposed technique yields promising results, compared with those achieved
by some service providers.

1 Introduction

It has been reported in [28] that the primary cause of approximately 30% of defects
in metallic long-distant pipelines, carrying crude oil and natural gas, is corrosion.
To protect the surrounding environment from catastrophic consequences due to mal-
functioning pipelines, an effective and efficient intelligent pipelinemonitoringsystem
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is required. Non-destructive evaluation (NDE)-based monitoring tools, such as
magnetic sensors, are often employed to scan the pipelines [10, 29]. They are widely
used, on a regular basis, to measure any magnetic flux leakage (MFL) that might
be caused by defects such as corrosion, cracks, dents, etc. It has been observed that
defect characteristics (for example defect depth) can be predicted by examining the
shape and amplitude of the obtained MFL signals [2, 11, 27]. Thus, the majority
of techniques reported in the literature rely heavily on the MFL signals. Other tech-
niques that use other information sources such as ultrasonic waves and closed circuit
television (CCTV) are also reported.

A reliability assessment of pipelines is a sequential process and consists mainly
of three stages: defect detection and classification [5, 17, 18, 33, 35, 38], defect
dimension prediction [22–24, 35], and defect severity assessment [9, 14, 34]. At the
first stage, a defect may be reported by an inline inspection tool, mechanical damage
accident, or visual examination. Then, the defect is associated to one of the possible
defect types such as gouges on welds, dents, cracking, corrosion, etc. In the next
stage, the dimensions (i.e., depth and length) of the identified defect are predicted.
In the final stage, the defect severity level is determined. It is, based on the outcome
of this stage that an immediate response, such as pressure reductions or pipe repair,
may be deemed urgent. The defect depth is an essential parameter in determining the
severity level of the detected defect. In [5], Artificial Neural Networks (ANNs) are
first trained to distinguish defectedMFL signals from normalMFL signals. In case of
defect existence,ANNsare applied to classify the defectMFLsignals into three defect
types in the weld joint: external corrosion, internal corrosion, and lack of penetration.
The proposed technique achieves a detection rate of 94.2% and a classification
accuracy of 92.2%. The authors in [33] use image processing techniques to extract
representative features from images of cracked pipes. To account for variations of
values in these obtained features, a neuro-fuzzy inference system is trained such
that the parameters of membership functions are tuned accordingly. A Radial Basis
FunctionNeural Network (RBFNN) is trained to identify corrosion types in pipelines
in [38], where artificial corrosion types are deliberately introduced on the pipeline,
and theMFL data are then collected. The proposed Immune RBFNN (IRBFNN) was
able to correctly locate the corrosion and determine its size. In [17], statistical and
physical features are extracted fromMFLsignals and fed into amulti-layer perceptron
neural network to identify defected signals. The identified defected signal is presented
to a wavelet basis function neural network to generate a three-dimensional signal
profile displayed on a virtual reality environment. In [18] a Support Vector Machine
(SVM) is used to reconstruct shape features of three different defect types andused for
defect classification and sizing. In [35], the authors propose a wavelet neural network
approach for defect detection and classification in oil pipelines using MFL signals.
In [22–24], artificial neural networks and neuro-fuzzy systems are used to estimate
defect depths. In [22], static, cascaded, and dynamic feedforward neural networks
are used for defect depth estimation. In [23], a self-organizing neural network is used
as a visualization technique to identify appropriate features that are fed into different
network architectures. In [24], a weight-based support vector machine is used to
select the most relevant features that are fed into a neuro-fuzzy inference system.
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For reliability assessment of pipelines, a fuzzy-neural network system is proposed in
[34]. Sensitive parameters, representing the actual conditions of defected pipelines,
are extracted from MFL signals and used to train the hybrid intelligent system. The
intelligent system is then used to estimate the probability of failure of the defected
pipeline. The authors in [9] propose an artificial neural network approach for defect
classification using some defect-related factors including metal-loss, age, operating
pressure, pipeline diameter. In [14], to reduce the number of features used in the
defect assessment stage, several techniques are utilized including support vector
machine, regression, principal component analysis, and partial least squares.

The rest of the paper is organized as follows. In Sect. 2, we review the reliability
assessment process in oil and gas pipelines. The proposed hybrid intelligent system
for defect depth prediction is introduced in Sect. 3. In Sect. 4, the performance eval-
uation of the proposed approach is described. We conclude with final remarks in
Sect. 5.

2 Reliability Assessment of Oil and Gas Pipelines

The main components of the reliability assessment process of pipelines are shown
in Fig. 1. After detecting the presence of a pipeline defect, the pipeline reliability
assessment system estimates the size of the defect (i.e. its length and depth), and
based on that, it predicts the severity of the defect and takes a measureable action to
rectify the situation. In the following we briefly describe each component.

2.1 Data Processing

Nondestructive evaluation (NDE) tools are often used to scan pipelines for potential
defects. One of theseNDE tools aremagnetic sensors that are attached to autonomous
devices sent periodically into the pipeline under inspection. The purpose of magnetic
sensors is to measure MFL signals [20], every 3mm along the pipeline length. A
sample of a MFL signal is shown in Fig. 2. The amount of MFL data is huge, thus
feature extraction methods are needed to reduce data dimensionality. However, using

Fig. 1 Reliability assessment of pipelines
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Fig. 2 A sample of a MFL signal

all the extracted features may not actually lead to a better reliability assessment
performance. Thus, the most relevant features are selected and fed into the detection
and sizing units.

2.2 Defect Detection

Once the processed MFL signals are received, techniques such as wavelets can be
used to detect and locate defects on the pipe surface [11]. Wavelet techniques are
powerful mathematical tools [8, 19, 21]. They were used in many applications such
as data compression [4], data analysis and classification [36], and de-noising [26,
27, 32]. The wavelet technique can also be used to locate defects on the targeted
pipeline as follows. The MFL signal contains three components and each of these
components consists of a sum of curves, and these are a translated and dilated version
of a reference pattern. Suppose themotherwaveletψ(x) refer to the reference pattern,
and 〈ψ j,k(x)〉 is the wavelet basis. Thus, the MFL signal B(x) can be represented as:

B(x) =
∑

j,k

c j,kψ j,k(x) (1)

When the wavelet transform of the MFL signal (B(x)) is computed with respect
to the basis 〈ψ j,k(x)〉, the set of non-zero coefficients c j,k indicate the locations of
metal-loss defects on the surface of the pipeline. Moreover, the set of dilation factors
of the reference pattern is determined, which yields the widths of the defects.
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2.3 Defect Sizing

Defect sizing (in particular, determination of the defect depth) is an essential compo-
nent of the reliability assessment system as, based on its outcome, the severity of the
detected defect can be determined. However, the relationship between the measured
MFL signals and the corresponding defect depth is not well-understood. Therefore,
in the absence of feasible analytical models, hybrid intelligent tools such as Adaptive
Neuro-Fuzzy Inference systems (ANFIS) become indispensable and can be used to
learn this relationship [22–24, 35]. In this paper, after extracting and selecting mean-
ingful features, an ANFIS model is trained using a hybrid learning algorithm that
comprises least squares and the backpropagation gradient descent method [13].

2.4 Defect Assessment

Upon calculating the dimensions of the defect, its severity level can be determined
by using the industry standard [1]. Basic equations for assessing defects can be used
to construct defect acceptance curves as shown in Fig. 3 [7]. The first curve calcu-
lates the failure stress of defects in the pipeline at the maximum operating pressure
(MAOP), and the other curve shows the sizes of defects that would fail the hydro
pressure test [7].

2.5 Actions

The plot in Fig. 3 can be used to prioritize the repair of the defects. For example, two
defects are predicted to fail at the MAOP. For these defects, an immediate repair is
needed. Defects that have failure stresses lower than the hydro pressure curve are
acceptable. Any defect between the assessing curves needs to be reassessed using
advanced measuring tools.

3 A Hybrid Intelligent System for Defect Depth Estimation

The combination of neural networks and fuzzy inference systems has been success-
fully used in different application areas such aswater qualitymanagement [31], queue
management [25], energy [37], transportation [15]; and business and manufacturing
[6, 12, 16, 30]. In this section, the applicability of ANFIS models in estimating
metal-loss defect depth is demonstrated. The general architecture of the proposed
approach is shown in Fig. 4.
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Fig. 3 Curves of defect assessment (Reproduced from [7])

Fig. 4 The structure diagram of the proposed approach

The proposed approach consists of three stages, namely: feature extraction, feature
selection, and theANFISmodel. The three components are described in the following
subsections.
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Fig. 5 Features extracted for the radial component of the MFL signal

3.1 Feature Extraction

The main purpose of feature extraction is to reduce the MFL data dimensionality.
As shown in Fig. 4, the MFL signal is represented by the axial, radial and tangential
components. For each component, statistical and polynomial series are applied as
feature extraction methods. The features extracted from the radial component of the
MFL signal are shown in Fig. 5. Statistical features are self-explanatory. Polynomial
series of the form an Xn + · · · + a1X + a0 can approximateMFL signals. Polynomi-
als of degrees 3, 6, and 6 have been found to provide the best approximation for axial,
radial, and tangential components, respectively. Thus, the input features consist of
the polynomial coefficients, an, . . . , a0 along with the five statistical features. Thus,
in total we have 33 features, which will be referred to by F1, F2,…, F33.

3.2 Feature Selection

It is a known fact that different features might exhibit different discrimination capa-
bilities. Most often, incorporating all obtained features in the training process may
not lead to a high depth estimation accuracy. In fact, including some features may
have a negative impact. Therefore, it is a common practice to identify the important
features that are appropriate to the ANFSI model. Thus, the next step is to examine
the suitability of each feature for the defect depth prediction task. The best features
that yield the best depth estimation accuracy are then identified and used as an input
feature pattern for the ANFIS model. Moreover, a support vector machine-based
weight correlation method is used to assign weights for the obtained features. Fea-
tures with the highest weights are selected to train a new ANFIS model. Different
sets of features, having 16 to 29 features each, have been evaluated.
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Fig. 6 The architecture of ANFIS

3.3 The ANFIS Model

ANIFIS, as introduced by [13], is a hybrid neuro-fuzzy system, where the fuzzy
IF-THEN rules and membership function parameters can be learned from training
data, instead of being obtained from an expert [3, 6, 12, 16, 25, 30, 31, 37].Whether
the domain knowledge is available or not, the adaptive property of some of its nodes
allows the network to generate the fuzzy rules that approximate a desired set of
input-output pairs. In the following, we briefly introduce the ANFIS architecture as
proposed in [13]. The structure of the ANFISmodel is basically a feedforward multi-
layer network. The nodes in each layer are characterized by their specific function,
and their outputs serve as inputs to the succeeding nodes. Only the parameters of
the adaptive nodes (i.e., square nodes in Fig. 6) are adjustable during the training
session. Parameters of the other nodes (i.e., circle nodes in Fig. 6) are fixed.

Suppose there are two inputs x , y, and one output f . Let us also assume that
the fuzzy rule in the fuzzy inference system is depicted by one degree of Sugeno’s
function [13]. Thus, two fuzzy if-then rules will be contained in the rule base as
follows:

Rule 1: if x is A1 and y is B1 then f = p1x + q1y + r1.
Rule 2: if x is A2 and y is B2 then f = p2x + q2y + r2.
where pi , qi , ri are adaptable parameters.
The node functions in each layer are described in the sequel.
Layer 1: Each node in this layer is an adaptive node and is given as follows:

o1i = μAi (x), i = 1, 2 (2)

o1i = μBi−2(y), i = 3, 4 (3)
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where x and y are inputs to the layer nodes, and Ai , Bi−2 are linguistic variables.
The maximum and minimum of the bell-shaped membership function are 1 and 0,
respectively. The membership function has the following form:

μAi (x) = 1

1 + {( x−ci
ai

)2}bi (4)

where the set {ai , bi , ci } represents the premise parameters of the membership func-
tion. The bell-shaped function changes according to the change of values in these
parameters.

Layer 2: Each node in this layer is a fixed node. Its output is the product of the
two input signals as follows:

o2i = wi = μAi (x)μBi (y), i = 1, 2 (5)

where wi refers to the firing strength of a rule.
Layer 3: Each node in this layer is a fixed node. Its function is to normalize the

firing strength as follows:

o3i = w′′
i = wi

w1 + w2
, i = 1, 2 (6)

Layer 4: Each node in this layer is adaptive and adjusted as follows:

o4i = w′′
i fi = w′′

i (pi x + qi y + ri ), i = 1, 2 (7)

where w′′
i is the output of layer 3 and {pi + qi + ri } is the consequent parameter set.

Layer 5: Each node in this layer is fixed and computes its output as follows:

o5i =
∑2

i=1
w′′
i fi = (

∑2
i=1 wi fi )

w1 + w2
(8)

The output of layer 5 sums the outputs of nodes in layer 4 to be the output of
the whole network. If the parameters of the premise part are fixed, the output of the
whole network will be the linear combination of the consequent parameters, i.e.,

f = w1

w1 + w2
f1 + w2

w1 + w2
f2 (9)

The adopted training technique is hybrid, in which, the network node outputs go
forward till layer 4, and the resulting parameters are identified by the least square
method. The error signal, however, goes backward till layer 1, and the premise
parameters are updated according to the descent gradient method. It has been shown
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in the literature that the hybrid-learning technique can obtain the optimal premise
and consequent parameters in the learning process [13].

3.4 Learning Algorithm for ANFIS

To map the input/output data set, the adaptable parameters {ai + bi + ci } and {pi +
qi + ri } in theANFIS structure are adjusted in the learning process.When the premise
parameters ai , bi and ci of the membership function are fixed, the ANFIS yields the
following output as shown in (9). Substituting (6) into (9), we obtain the following:

f = w′′
1 f1 + w′′

2 f2 (10)

Substituting the fuzzy if-then rules in (10) yields:

f = w′′
1(p1x + q1y + r1) + w′′

2(p2x + q2y + r2) (11)

or:

f = (w′′
1x)p1 + (w′′

1 y)q1 + (w′′
1)r1) + (w′′

2x)p2 + (w′′
2 y)q2 + (w′′

2)r2 (12)

Equation (12) is a linear combination of the adjustable parameters. The optimal
values of {ai , bi , ci } and {pi , qi , ri } canbeobtainedbyusing the least squaredmethod.
If the premise parameters are fixed, the hybrid learning algorithm can effectively
search for the optimal ANFIS parameters.

4 Experimental Results

To evaluate the effectiveness of the proposed technique, in terms of defect depth
estimation accuracy, extensive experimental work has been carried out. The obtained
accuracies are evaluated based on different levels of error-tolerance including: ±1,
±5, ±10, ±15, ±20, ±25, ±30, ±35, and ±40%. The impact of using selected
features, while utilizing different number and type of membership functions for
the adaptive nodes in the ANFIS model is studied. The results are reported in the
following subsections.

4.1 Types of Membership Functions for the Adaptive Nodes

The shape of the selected membership function (MF) defines how each point in the
universe of discourse of the corresponding feature is mapped into a membership
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value between 0 and 1 (the membership value indicates the degree to which the
relevant input feature belongs to a certain metal-loss defect depth). The parameters
that control the shape of the membership function are tuned in the adaptive nodes,
during the training session. The number of parameters needed depends on the type
of the membership function used in the adaptive node. Three types of membership
functions namely Gaussian, Trapezoidal, and Triangle for the feature F1 are shown
in Fig. 7.

It can be seen from Fig. 7 that the smoothness of transition from one fuzzy set to
another varies, depending on the function type used in the adaptive node.

4.2 Training, Testing, and Validation Data

During the training session, four of the obtained features, namely F3, F6, F8, and
F13, were not acceptable by theMatlabANFISmodel. Their sigma values were close
to zero so they were discarded. Thus, only 29 features of the 33 above mentioned
features were considered. The 1357 data samples, used for developing and testing the
ANFIS model, were divided as follows: 70% for training, 15% for testing, and 15%
for validation (checking). The training data set consists of 949 rows and 30 columns.
The rows represent the training samples, and the first 29 columns represent the
extracted features of each sample and the last column represents the target (defect
depth). The format of the testing and validation data sets is similar to that of the
training data set, however, each consists of 204 rows (samples). We have used 100
epochs to train the ANFIS model.

A hybrid learning approach was adopted, in which the membership function para-
meters of the single-out Sugeno type fuzzy inference system were identified. The
hybrid learning approach converges much faster than the original backpropagation
method. In the forward pass, the node outputs go forward until layer 4 and the con-
sequent parameters are identified with the least square method. In the backward
pass, the error rates propagate backwards and the premise parameters are updated
by gradient decent.

4.3 Evaluation of the Feature Prediction Power

In this section, the performance of each feature, in terms of its defect depth prediction
accuracy, is examined. Due to limited space, only the features that yield the best
prediction accuracy are reported. As shown in Table1, seven features present the
best estimation accuracy among all features, namely F1, F4, F9, F10, F11, F14, and
F32. As expected, for the lower levels of error tolerance (particularly: ±10, ±15,
and ±20%), none of the features yielded an acceptable prediction accuracy.
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Fig. 7 Membership functions of the feature F1 a Gaussian, b trapezoidal, and c triangle

4.4 Using the Best Features

To improve the defect depth prediction accuracyof theANFISmodel, the features that
yield the best prediction accuracy are used to train the ANFISmodel. For 100 epochs,
the training performance error of the ANFIS model is equal to 0.1482. The defect
depth prediction accuracy of this model is clearly improved as shown in Table2. For
error-tolerance levels at ±10, ±15, and ±20%, the model gives prediction accuracy
at 62, 74, and 87%, respectively.
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Table 1 Defect depth prediction accuracy using the features F1, F4, F9, F10, F11, F14, and F32

Error-
tolerance
(%)

Input parameters

F1 F4 F9 F10 F11 F14 F32

±1 0.0196 0.0147 0.0294 0.0490 0.0196 0.0147 0.0392

±5 0.1176 0.1275 0.1618 0.1176 0.1373 0.1618 0.1275

±10 0.2892 0.2990 0.3627 0.2304 0.3235 0.2941 0.2941

±15 0.4510 0.4755 0.5637 0.4118 0.4902 0.5000 0.4608

±20 0.6275 0.6471 0.7549 0.5686 0.6667 0.6618 0.5882

±25 0.8137 0.8039 0.9265 0.6912 0.8137 0.8578 0.7010

±30 0.8775 0.8971 0.9461 0.7990 0.9020 0.9167 0.8480

±35 0.9265 0.9314 0.9510 0.9020 0.9412 0.9363 0.8922

±40 0.9461 0.9510 0.9559 0.9314 0.9559 0.9461 0.9265

Table 2 Defect depth
prediction accuracy of the
ANFIS model using the best
features

Error-tolerance (%) Input features (F1 F4 F9 F10
F11 F14 F32)

±1 0.0637

±5 0.3529

±10 0.6127

±15 0.7402

±20 0.8725

±25 0.9314

±30 0.9510

±35 0.9755

±40 0.9853

4.5 Support Vector Machine-Based Feature Selection

Another method for evaluating the prediction power of the obtained features is by
assigning a weight for each feature, based on the support vector machine weight-
correlation technique. Features with the highest weights are selected to train the
ANFISmodel. After examining different sets of selected features, the first 22 features
have yielded the best prediction accuracy as demonstrated in Table3.

As shown in Table3, for error-tolerance levels at±10,±15, and±20%, themodel
gives a prediction accuracy at 62, 80, and 87%, respectively. It is slightly improved
over the best features, reported in Table2. For the error-tolerance level at ±10%, the
prediction accuracy improved 1%, and for ±15%, improved 6%. However, for the
±20% error-tolerance level, it remained the same as that of the best features. Only,
using all the 29 features can give comparable results (shown in the last column of
Table3).
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Table 3 Defect depth prediction accuracy of the ANFIS model using 22 features and all features

Error-tolerance (%) 22 Input features All features

±1 0.0637 0.0588

±5 0.3529 0.3627

±10 0.6225 0.6324

±15 0.8039 0.7990

±20 0.8775 0.8529

±25 0.9118 0.8971

±30 0.9559 0.9314

±35 0.9706 0.9510

±40 0.9804 0.9608

4.6 Using Different Membership Function Types

In this section, we examine the impact of using three different membership function
types on the model performance. In the model adaptive nodes, to each of the seven
best features (i.e., F1, F4, F9, F10, F11, F14, and F32), we assigned Gaussian,
trapezoidal, and triangle membership functions. The shapes of these functions are
shown in Fig. 7. The number of membership functions is set at 2 or 3, for each
type. The outputs of the ANFIS model for the training, testing and validation data
(for Gaussian membership function) are shown in Fig. 8. The x-axis represents the
indices of the training data elements, whereas the y-axis represents the defect depths
of the corresponding data elements. The 949 training data samples, representing the
true defect depths, are plotted in blue (Fig. 8a).While themodel out puts, representing
the same defect depths estimated by the model, are plotted in red (Fig. 8a). Clearly,
the model outputs (estimated defect depths) are satisfactory as they lie on or close to
the true defect depths. Figure8b, c show the model outputs (plotted in red) against
the 204-element testing data (plotted in blue) and 204-element validation (checking)
data (plotted in blue), respectively. The defect depth prediction accuracy, obtained by
the ANFIS model for the three types of membership functions, is shown in Table4,
where the best accuracies are highlighted in red.

The model shows improvement for the error-tolerance levels ±1, ±5, and ±10%
as it yield 11, 48, and 71%, respectively, compared to 6, 35, and 62% produced by
the ANFIS model using the 22 features. For the rest of the error-tolerance levels, it
yields accuracies comparable to those produced by the ANFIS model using the 22
features. The best training error is calculated at 0.106, obtained by the ANFIS model
using three triangle membership functions.
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Fig. 8 The outputs of the ANFIS model (red) using the Gaussian membership function at the
adaptive node: training data (a), testing data (b), and validation data (c), shown in blue

5 Conclusions

In order to assess the reliability of a functioning oil and gas pipeline, the depth of
a detected defect should be first determined. Based on which, appropriate mainte-
nance actions are carried out. In thiswork, a hybrid intelligent approach formetal-loss
defect depth prediction in oil and gas pipelines is proposed. The proposed approach
utilizes MFL data acquired by magnetic sensors scanning the metallic pipelines. To
reduce the MFL data, feature extraction methods are applied. The extracted fea-
tures are fed into an adaptive neuro-fuzzy inference system (ANFIS), individually,
to examine their depth prediction capabilities. The most effective features are then
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Table 4 Defect depth prediction accuracy of the ANFIS model using three different numbers and
types of membership functions

No of
functions

Function
type

Learning
algorithm

Training
error

Depth prediction accuracy

±1% ±5% ±10%

2 Gaussian Hybrid 0.122 0.0588 0.3971 0.6324

2 Triangle Hybrid 0.127 0.0539 0.3480 0.6176

2 Trapezoidal Hybrid 0.131 0.0735 0.3775 0.6422

3 Gaussian Hybrid 0.108 0.1029 0.4412 0.6814

3 Triangle Hybrid 0.106 0.1176 0.4853 0.7108

3 Trapezoidal Hybrid 0.114 0.0588 0.3382 0.6324

No of
functions

Function
type

Learning
algorithm

Training
error

Depth prediction accuracy

±15% ±20% ±25%

2 Gaussian Hybrid 0.122 0.7892 0.8873 0.9167

2 Triangle Hybrid 0.127 0.7794 0.8578 0.8971

2 Trapezoidal Hybrid 0.131 0.7647 0.8627 0.9069

3 Gaussian Hybrid 0.108 0.7941 0.8480 0.8676

3 Triangle Hybrid 0.106 0.7843 0.8235 0.8627

3 Trapezoidal Hybrid 0.114 0.7794 0.8382 0.8676

No of
functions

Function
type

Learning
algorithm

Training
error

Depth prediction accuracy

±30% ±35% ±40%

2 Gaussian Hybrid 0.122 0.9461 0.9657 0.9657

2 Triangle Hybrid 0.127 0.9314 0.9461 0.9608

2 Trapezoidal Hybrid 0.131 0.9363 0.9510 0.9510

3 Gaussian Hybrid 0.108 0.9020 0.9216 0.9363

3 Triangle Hybrid 0.106 0.8775 0.8922 0.9020

3 Trapezoidal Hybrid 0.114 0.8873 0.9167 0.9216

identified and used to retrain theANFISmodel. Utilizing different types and numbers
of membership functions, the proposed ANFIS model is tested for different levels of
error-tolerance. At the levels of ±10, ±15, and ±20%, the best defect depth predic-
tion obtained by the new approach are 71, 79, and 88%, using triangle, triangle, and
Gaussian membership functions, respectively. In future work, sophisticated feature
extraction methods will be investigated to enhance the model performance. More-
over, the uncertainty properties, inherently pertaining to the magnetic sensors, will
also be addressed.
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