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Reliability analysis of engineering systems has traditionally been done using computationally expensive 
computer simulations that cannot attain 100% accuracy due to their inherent limitations. The authors 
conduct a formal reliability analysis using higher-order-logic theorem proving, which is known to be 
sound, accurate, and exhaustive. For this purpose, they present the higher-order-logic formalization of 
independent multiple continuous random variables, their verified probabilistic properties, and general-
ized relations for commonly encountered reliability structures in engineering systems. To illustrate the 
usefulness of the approach, the authors present the formal reliability analysis of a single stage transmis-
sion of an automobile.

The reliability of an engineering system is 

very important as an unreliable system usually 

translates to loss of both money and time and 

a considerable amount of inconvenience. Such 

reliability analysis is conducted using probabi-

listic techniques while considering the individual 

reliabilities of sub-components of the given en-

gineering systems. This analysis usually involves 

building a model of the given engineering system 

using random variables and various continuous 

physical parameters. Computer simulations have 

traditionally been used for the reliability analysis 

of engineering systems. Computer simulations 

are automatic and thus user friendly and can be 

used to analyze analytically complex systems 

including the ones that cannot be modeled in a 

closed mathematical form. However, they can-

not guarantee 100% accurate results, because 1) 
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infinite precision real numbers, corresponding to 

the physical parameters of the system, cannot be 

precisely modelled in computer memory, 2) due to 

the enormous size of the present-age engineering 

systems, e.g., a modern power plant is composed 

of over a million components, exhaustive testing 

of all possible input scenarios is not possible due 

to limited computational resources, and 3) random 

variables are usually approximated using pseudo 

random number generators that are not truly 

random. The accuracy of reliability analysis of 

engineering systems has become a dire need these 

days due to their extensive usage in safety-critical 

applications where an incorrect reliability estimate 

may lead to disastrous situations including the 

loss of innocent lives.

Formal methods based techniques such as 

probabilistic model checking (Baier, Haverkort, 

Hermanns, & Katoen, 2003) and probabilistic 

theorem proving (Hasan, 2008) can alleviate some 

of the inaccuracy limitations of computer simula-

tions. Model checking based techniques can handle 

finite sized systems or finite models of infinite 

systems. Some basic probabilistic and statistical 

reliability properties of an engineering system can 

be verified using this technique. However, such 

results cannot be considered truly formal as the 

decision procedures used in this process depend 

on numerical computations.

Theorem proving based techniques, on the 

other hand, do not suffer from these limitations, 

however, they lack the foundational formalization 

required for the reliability analysis of engineering 

systems. This includes formal reasoning support 

for multiple independent continuous random 

variables and relations that describe the reli-

ability of engineering systems in terms of their 

sub-components.

This paper is targeted towards developing 

these foundations to facilitate formal reliability 

analysis using theorem proving. The proposed 

reliability analysis framework is shown in Figure 

1. The reliability modeling and analysis process 

begins with the construction of a formal model 

of the system and its environment. The functional 

and reliability requirements of the system are then 

formally stated. The proposed reliability analysis 

framework then facilitates verification, computa-

Figure 1. Formal reliability analysis framework



tion, reasoning, and documentation of the reliabil-

ity proofs in the sound environment of the HOL 

theorem prover. Finally, the formal functional and 

reliability analysis results are unformalized and 

interpreted and stated in an appropriate language 

in the problem domain.

The two main contributions of this paper are 

that: 1) it presents the formalization of multiple 

independent continuous random variables, and the 

verification of the standard cumulative distribution 

function properties of multiple continuous random 

variables in the sound core of the HOL theorem 

prover; 2) it presents the formalization of vari-

ous commonly used reliability structures such as 

series, parallel, series-parallel and parallel-series 

in higher-order logic. These contributions play a 

vital role in conducting formal reliability analysis 

as the multiple continuous random variables can be 

used to model the randomness associated with each 

sub component of an engineering system while the 

reliability structure related formalization can be 

utilized to construct formal models of the given 

system using its sub-components as modules and 

reasoning about its associated properties.

To illustrate the usefulness of our work, we 

present the formal reliability analysis of a single 

stage transmission of an automobile. In our analy-

sis, we utilize formalized multiple independent 

random variables with different distributions 

and verified reliability relations. The analysis is 

done mechanically and interactively in the sound 

environment of the HOL theorem prover. Such 

analysis, until now, was only possible using inac-

curate simulation based techniques.

One of the earliest examples of detailed reli-

ability studies in engineering systems dates back 

to 1938 (Dean, 1938). In this study, factors for the 

improvement of service reliability for electrical 

power systems were considered. In the field of 

electronics, the concepts related to reliability were 

initially introduced after the second world war 

to improve the performance of communication 

and navigational systems (Myers, & Ball, 1964).

In order to predict reliability, one must model 

a system and its constituent components in a way 

that captures failure mechanisms. For example, 

in the case of electronic systems, a method called 

the part failure method has been shown to be very 

accurate (US Department of Defense, 1991). This 

method has been extensively used by military 

engineers to predict useful lifetimes of systems 

and to develop highly reliable systems and equip-

ments. This method is based on calculating failure 

rates of individual components of the system and 

then using appropriate formulas to determine the 

reliability of the whole system. Standards such as 

MIL-HDBK-2173 (US Department of Defense, 

1998), FIDES (FIDES, 2012), and IEEE-1332 

(Institute of Electrical & Engineers, 1998) are 

some of the examples which specify adequate 

performance requirements and environmental 

conditions for reliability modeling, analysis, and 

risk assessment.

Many formal methods based techniques have 

been extended to analyze reliability of systems 

during the last two decades. Many expressive 

formalisms such as stochastic petri nets (Labadi, 

Saggadi, & Amodeo, 2009) and process algebras 

(Ciocchetta & Hillston, 2009) along with various 

probabilistic (Kwiatkowska, Norman, Segala, & 

Sproston, 2002) and stochastic temporal logics 

(Baier et al., 2003), and compositional and guarded 

command notations (Hurd & Morgan, 2005) have 

been used in modeling, specification and analysis 

of complex engineering (Hasan & Tahar, 2008) 

and applied science problems (Barnat, Brim, & 

Safranek, 2010). They were either not designed 

to deal with reliability analysis problems or lack 

the capability to handle reliability problems due to 

lack of infrastructure. Probabilistic model check-

ing can be used to analyze reliability; however, 

it does not support the verification of statistical 

properties (moments and variance) of the com-

monly used lifetime distributions (Baier et al., 

2003; Rutten, Kwaiatkowska, Normal, & Parker, 

2004). The proposed approach on the other hand is 



capable of handling these and other probabilistic 

and statistical properties.

The accuracy of reliability analysis depends on 

both the field data gathering and the methods and 

tools used for analysis. In this paper, we do not 

address the problem of field data gathering. Our 

focus is on the higher-order-logic formalization 

of fundamental concepts of the reliability theory. 

Until recently it was only possible to reason about 

reliability problems that involved discrete random 

variables in a theorem proving environment 

(Hasan, 2008). Hurd (Hurd, 2002) formalized a 

probability theory along with discrete random 

variables in the HOL theorem prover (Gordon & 

Melham, 1993).

Building upon Hurd’s work (Hurd, 2002), 

Hasan (Hasan, 2008) formalized statistical prop-

erties of single and multiple discrete random 

variables. Hasan (Hasan, 2008) also formalized 

a class of continuous random variables for which 

the inverse CDF functions can be expressed in a 

closed form. Hasan et al. (Hasan, Tahar, & Abbasi, 

2010) presented higher-order-logic formalizations 

of some core reliability theory concepts and suc-

cessfully formalized and verified the conditions for 

consistent repairability for reconfigurable memory 

arrays in the presence of stuck-at and coupling 

faults. However, all these existing works do not 

support reasoning about multiple continuous ran-

dom variables and reliability structures, which is 

the main scope of the present paper.

The rest of the chapter is organized as follows. 

The formalization of multiple continuous random 

variables is described in Section 2. Section 3 pres-

ents the formalization of the relations for various 

reliability structures. Section 4 presents the reli-

ability analysis of an automotive transmission as 

an illustrative example and Section 5 concludes 

the paper.

Hurd (Hurd, 2002) formalized discrete random 

variables as independent probabilistic algorithms 

in HOL. Hasan (Hasan, 2008) defined a standard 

uniform continuous random variable as a probabi-

listic algorithm with a standard uniform probability 

mass function utilizing a very large number of 

random bits (Hasan, 2008). Using this approach, 

it is possible to model multiple discrete random 

variables and a maximum of a single continuous 

random variable as this method exhausts the 

complete sequence of random bits in the standard 

continuous random variable. We build on these 

foundations; we, first, split the random Boolean 

sequence into a number of disjoint random Boolean 

sequences, then using Hasan’s formalization of 

continuous random variables, formalize multiple 

continuous random variables. In our formaliza-

tion, each random variable receives a disjoint 

segment of the random Boolean sequence, which 

ensures that the resulting random variables will 

be independent.

In the rest of this section, we describe the 

formalization of multiple random variables as 

lists of random variables. We verify their CDF 

properties. Moreover, we formalize the notion 

of independence of multiple random variables.

In order to formally specify the CDF of a list of 

random variables in higher-order logic, we first 

define two list functions. They are rv_val and rv_lf. 

The higher-order logic recursive definitions of 

the two functions rv_val and rv_lf are as follows:



Definition 1: Random Variable Value Function

⊢ ∀s. rv_val [] s = [] ∧ 

∀ h X s. rv_val (h:: X) s = h s:: rv_val X s 

Definition 2: Random Variable Logical Formula 

Function

⊢ (rv_lf [] [] = T) ∧ 

(rv_lf (h1:: t1) (h2:: t2) = h1 ≤ h2 ∧ rv_lf t1 t2) 

The function rv_val takes a list of random 

variables, X, and the random Boolean sequence, 

s, and returns a list of real values. The function 

rv_lf takes two real lists as input and returns a 

Boolean expression consisting of conjunction 

of several terms formed from the corresponding 

elements of the two input lists.

Each inequality in this Boolean expression is 

of the form ((EL X i) s ≤ (EL x i)). The function 

EL takes a list and a natural number as input 

arguments (for example, EL X i) and returns the 

corresponding element of the list as output (in this 

case it would return the ith element of the list X).

Now using Definitions 1 and 2, we formally 

specify the joint CDF of a list of random variables 

in Definition 3.

Definition 3: Joint CDF of a List of Random 

Variables

⊢ ∀X x. mcrv_cdf X x = prob bern {s | rv_lf 

(rv_val X s) x} 

where X is a list of random variables of type 

(((num→bool)→real) list), and x is a list of real 

numbers of type (real list).

Using the formal specification of the CDF func-

tion for a list of random variables, we formally 

verify the classical properties of the CDF of a list 

of random variables, given in Table 1.

We verify these properties under the assump-

tion that the set {s | X s x}, where X represents a 

list of random variables under consideration, is 

measurable for all values of the list. The formal 

proof of these properties was mainly based on 

reasoning from probability and set theories in 

HOL and real analysis. The details can be found in 

(Abbasi, 2012). The formal proofs of these prop-

erties not only confirm our formal specifications 

of the CDF but also can be used to reason about 

probability distribution properties of multiple 

random variables.

The notion of independence for a list of random 

variables X = [X
0
; X

1
; X

2
;... ; X

N-1
] is defined as:
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where x = [x
0
; x

1
; x

2
; ... ; x

N-1
] is a list of real 

numbers. The subscript in the above equation 

represents the index of the random variable in 

the list. N represents the length of the list of 

random variables X. In order to formalize a list 

of independent continuous random variables, we 

first define the notion of a list of disjoint random 

Boolean sequences using higher-order logic 

functions s_arb and s_split in Definitions 4 and 

5, respectively.



Definition 4: Boolean Sequence Split Function

⊢ ( ∀ s M i. s_arb M i 0 = s i) ∧ 

∀ s n M i. s_arb s M i (SUC n) = s (M*SUC n + 

i) 

The function s_arb takes three arguments. The 

first argument is a Boolean sequence s. The second 

and third arguments are natural numbers M and 

i. The function s_arb can split the input Boolean 

sequence s into M disjoint Boolean sequences. The 

third argument i is used to pick every ith element 

from the input infinite Boolean sequence and the 

function s_arb returns that Boolean sequence as 

output. This way we can provide each random vari-

able in the list of random variables with a different 

infinite random Boolean sequence. This fact also 

guarantees independence of random variables in 

the list (Williams, 1991).

Definition 5: List of Disjoint Boolean Sequences

⊢ ∀M s. s_split 0 M s = [(λx. s_arb s x M) 0] ∧ 

∀ N M s. s_split (SUC N) M s = (λx. s_arb s x 

M) (SUC N):: s_split N M s 

The function s_split takes a Boolean sequence 

as input and returns a list consisting of M+1 dis-

joint Boolean sequences. For example, s_split 2 

2 s would return a list of three disjoint Boolean 

sequences given by [s_arb s 2 2; s_arb s 1 2; s_arb 

s 0 2].

In order to define the notion of independence 

of a list of random variables, we first define a list 

function that we call rv_val indep. This function 

merges two lists element by element and generates 

a list. The first list argument of this function is 

a list of random variables of type ((num->bool)-

>real) list) and the second list argument is a list 

Table 1. Formally verified joint CDF properties in HOL 
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consisting of random boolean sequences of type 

((num->bool) list). The function merges the two 

lists element by element and returns a list of real 

independent random variables.

Definition 6: List Function rv_val_indep

⊢ (rv_val_indep [] [] = []) ∧ 

(rv_val_indep (h1::t1) (h2::t2) = h1 h2::rv_val_in-

dep t1 t2) 

Finally, the HOL formalization of the notion 

of independence is given in Definition 7.

Definition 7: Independent Random Variable List

⊢ ∀ X x. indep_rv_list X x = 

(prob bern {s | rv_lf (rv_val_indep X (s_split (PRE 

(LENGTH X)) (LENGTH X) s)) x} = 

prod1 (0, LENGTH X) 

(λi. prob bern {s | EL i (rv_val_indep X (s_split 

(PRE (LENGTH X)) (LENGTH X) s) ≤ EL i x})) 

∧ 

{s | rv_lf (rv_val_indep X (s_split (PRE (LENGTH 

X)) (LENGTH X) s)) x} IN events bern ∧ 

∀ i. {s | EL i (rv_val_indep X (s_split (PRE 

(LENGTH X)) (LENGTH X) s)) <= EL i x} IN 

events bern 

where X and x are of types (((num -> bool) 

-> real) list) and (real list), respectively. prod1 is 

a product of a sequence function and represents 

the big pi operator (∏). The function s split splits 

the random Boolean sequence s and returns a list 

of disjoint random boolean sequences. PRE is a 

function of type (num->num) and is defined as: 

∀m. PRE m = (if m = 0 then 0 else @n. m = SUC 

n), where @ is the hilbert’s choice operator. The 

list function EL takes two arguments, a natural 

number i and a list and returns the ith element 

of the list.

The second and the third logical terms in 

Definition 7 state that the respective events are 

measurable in the probability space. The higher-

order logic formalization presented in this sec-

tion facilitates the verification of expressions for 

various reliability structures and the reliability 

analysis of automotive transmission described in 

Sections 3 and 4, respectively.

The reliability structure of an engineering systems 

is determined by its functional and non-functional 

requirements. We have verified relations for se-

ries, parallel, series-parallel, and parallel-series 

reliability structures in HOL.

In the following, we briefly describe these 

results. Formalization and detailed proof descrip-

tions of these results can be found in (Abbasi, 

2012).

In a series connected system (Figure 2) with N 

components, the system functions as long as all 

its components are functioning. As soon as any 

of the system component fails, the system fails 

as well. The reliability of such a system is math-

ematically described as:

R t R t
S

i

N

i( ) = ( )
=
∏  (1)

In Definition 8, we define a series system 

structure that consists of N components. These 

components are modeled using a list of random 

variables of type ((num->bool)->real) list).



Definition 8: N Series System Structure Function

⊢ ∀ X x s t N. N_series_system X x s t N =

list_conj_gt (rv_val_indep X (s_split (PRE N) N 

s)) (FILL_LIST_R x t) 

The function rv_val_indep takes two lists as 

arguments and constructs a single list. The first 

argument of this function is the list of random 

variables X. The second argument is another list 

generated by the function s split. This generated 

list consists of disjoint segments of the random 

boolean sequence s.

The function list_conj_gt constructs a conjunc-

tion of logical terms, each of which is a greater 

than inequality and consists of corresponding 

terms from its two list arguments. Both list argu-

ments of list_conj_gt are real lists. The second 

argument of list_conj_gt is constructed by the 

list function LIST_FILL_R, which fills the list x 

with a real value t.

We define the survival function (the probability 

of failure at a certain time) of a series connected 

system with N components in Definition 9.

Definition 9: N Series System Survival Function

⊢ ∀ X x N. N_series_survival_function X x N = 

(λt. prob bern {s| list_conj_gt (rv_val_indep X 

(s_split (PRE N) N s)) (FILL_LIST_ R x t)}) 

In Theorem 1, we verify the N series system 

reliability property (Equation 1).

Theorem 1: N Series System Reliability

⊢ ∀ X x t N. indep_rv_list X (FILL_LIST_R x 

t) ==> 

(N_series_survival_function X x N t = 

(λt. prod1 (0,N) (λi. prob bern {s| t < EL i (rv_

val_indep X (s_split (PRE N) N s))})) t) 

The proof of this theorem follows from the 

definitions of the series survival function and the 

independence of a list of random variables and 

involves reasoning from real, measure, probability, 

and set theories in the HOL theorem prover.

If N components of a system are connected in 

parallel (as shown in Figure 3), the system will 

function properly as long as at least one of the 

components is functioning. Such a system stops 

functioning when all the system components fail. 

The reliability of such a system is mathematically 

described as:

R t R t
P

i

N

i( ) = − − ( )( )
=
∏  (2)

In Definition 10 the parallel system structure 

function is formalized.

Figure 2. Reliability structure of series connected systems



Definition 10: N Parallel System Structure 

Function

⊢ ∀ X x s t N. N_parallel_system X x s t N =

list_disj_gt (rv_val_indep X (s_split (PRE N) N 

s)) (FILL_LIST_R x t) 

In this definition, rv_val_indep constructs a list 

of independent random variables as described in 

the case of series connected systems. The func-

tion list_disj_gt constructs a disjunction of logical 

terms, each of which is a greater than inequality 

and consists of corresponding terms from its two 

list arguments.

In Definition 11, we define a parallel connected 

system with N elements.

Definition 11: N Parallel System Survival Func-

tion

⊢ ∀ X x N. N_parallel_survival_function X x N 

= 

(λt. prob bern { s| list_disj_gt (rv_val_indep X 

(s_split (PRE N) N s)) (FILL_LIST_R x t)}) 

The first argument is a list of random variables 

of type ((num->bool)->real) list). The function 

list_disj_gt takes two lists as arguments and cre-

ates a logical expression that consists of disjunc-

tion of greater than inequalities involving the 

corresponding terms of the two input lists. The 

first list (rv_val_indep X (s split (PRE (LENGTH 

X)) (LENGTH X) s)) argument of list_disj_gt is 

a list of real random variables constructed in a 

similar manner as explained in Definition 8. The 

function FILL_LIST_R returns the list x after 

filling it with the variable t. The third argument 

N represents the number of components in the 

parallel reliability structure.

The reliability expression for a N parallel 

connected system (Equation 2) is verified in 

Theorem 2.

Theorem 2: N Parallel System Reliability

⊢ ∀ t X x. indep_rv_list X (FILL_LIST_R x t) 

==> 

(N_parallel_survival_function X x N t = 

1- prod1 (0,N) (λi. 1 – prob bern {s|t < EL i 

(rv_val_indep X (s_split (PRE N) N s))})) 

If a system consists of N components in parallel, 

where each of such parallel connected component 

has M components connected in series then such a 

system is called a series-parallel system. One such 

example is shown in Figure 4 and the reliability 

of such a system is given by:

Figure 3. Reliability structure of parallel connected systems
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where R
ij
 is the reliability of the j-th component 

in the i-th branch of the system. Such a system 

configuration is typically used to enhance the 

reliability at the system level.

An N x M series parallel structure has N compo-

nents connected in parallel such that each of these 

components has M sub components connected in 

series. Definition 12 shows how such a system 

structure function can be formally specified.

Definition 12: NxM Series Parallel System 

Structure Function

⊢ ∀ N M X s. NxM_series_parallel_system N M 

X s = 

LIST_SPLIT (FILL_LIST_NM M N) (rv_val_in-

dep (FLAT X) (s_split (PRE (N*M)) (N*M) s)) 

Definition 13 formally describes the series 

parallel survival function of a N x M system.

Definition 13: NxM Series Parallel System Sur-

vival Function

⊢ ∀ X N M. NxM_series_parallel_survival_func-

tion X N M = 

(λt. prob bern {s| series_parallel_system (LIST_

SPLIT (FILL_LIST_NM M N) (rv_val_indep 

(FLAT X) (s_split (PRE (LENGTH (FLAT X))) 

(LENGTH (FLAT X)) s))) t s }) 

The reliability expression for a N x M parallel 

series system is verified in Theorem 3.

Theorem 3: Series Parallel System Reliability

⊢ ∀ t x. ( ∀ X x t. indep_rv_list (FLAT X) 

(FILL_LIST_R x t)) ==> 

NxM_series_parallel_survival_function L N M t = 

1 – prod1 (0,N) (λi. 1 – prod1 (0,M) (λj. prob bern 

{s|t < ELEL i j (LIST_SPLIT (FILL_LIST_NM 

M N) (rv_val_indep (FLAT X) (s_split (PRE 

(N*M)) (N*M) s)))})) 

If a system consists of M components connected 

in series such that each of the series component 

consists of N sub components connected in paral-

lel. Such a system is called a parallel-series system 

and is shown in Figure 5. The reliability of such 

a system is given by:

Figure 4. Reliability structure of parallel-series connected systems
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where Rij is the reliability of the ij th component 

of the system.

Parallel-series connections can be considered 

as introducing component level redundancy. It can 

be shown mathematically that such a redundancy 

improves the reliability of the system more than 

the system level redundancy [9].

An N x M parallel series structure has been 

formally described in Definition 14.

Definition 14: NxM Parallel Series System 

Structure Function

⊢ ∀ N M X s. NxM_parallel_series_system N M 

X s = LIST_SPLIT (FILL_LIST_NM M N) 

(rv_val_indep (FLAT X) (s_split (PRE (N*M)) 

(N*M) s)) 

Definition 15 formally describes the parallel 

series survival function of a N x M system.

Definition 15: NxM Parallel Series System Sur-

vival Function

⊢ ∀ X N M. NxM_parallel_series_survival_func-

tion X N M = (λt. prob bern {s | parallel_se-

ries_system (LIST_SPLIT (FILL_LIST_NM M 

N) (rv_val_indep (FLAT X) (s_split (PRE 

(LENGTH (FLAT X))) (LENGTH (FLAT X)) 

s))) t s}) 

The reliability expression for a N x M parallel 

series system is verified in Theorem 4.

Theorem 4: NxM Parallel Series System Reli-

ability

⊢ ∀ t x a. ( ∀ X x t. indep_rv_list (FLAT X) 

(FILL_LIST_R x t)) ==> 

NxM_parallel_series_survival_function X N M 

t = 

prod1 (0,M) (λj. 1-prod1 (0,N) (λi. 1 –prob bern 

{s | t < ELEL i j (LIST_SPLIT (FILL_LIST_NM 

M N) (rv_val_indep (FLAT X) (s_split (PRE 

(N*M)) (N*M) s)))})) 

The proofs of theorems 1 through 4 are pri-

marily based on reasoning from the probability, 

set, measure, Boolean, and real theories in HOL. 

Such analysis has traditionally been done using 

simulation based techniques and suffers from 

accuracy problems and their inability to model 

true independent random behavior. The higher-

order logic formalization presented in this section 

enables analysis of reliability behavior of many 

simple and complex engineering systems as will 

be demonstrated in the next section.

Figure 5. Reliability structure of series-parallel connected systems



The automobile transmission transfers mechani-

cal power from the input shaft to the output shaft 

using a pair of gears. The power is transmitted 

from a larger gear on the input shaft to a smaller 

gear on the output shaft. The reliability of the 

automobile transmission is very important and 

is usually determined using three main steps. 

The first step identifies the reliability relevant 

components and determines their reliability. The 

second step determines the reliability structure 

of the system. Finally, based on the reliability 

structure of the system, we calculate the overall 

reliability of the system.

ABC (Naunheimer, Bertsche, Ryborz, Novak, 

& Kuchle, 2010) and FMEA (Langford, 2006) 

analysis are qualitative analysis methods com-

monly used to separate reliability relevant com-

ponents from reliability neutral components. In 

this application, the ABC analysis suggests that 

out of the 27 parts in the automotive transmission 

only twelve are reliability relevant components of 

the system (Bertsche & Ingenieure, 2008). These 

components include the shafts, the bearings, the 

gears, the fitting keys and the seals. Moreover, 

the mechanical transmission has a pure serial 

reliability structure as shown in Figure 6. There-

fore, the system reliability R_{TRAN} is given 

by the product of the reliability of the individual 

components.

R

R R R R R R R R R R R
TRAN

IS OS G B G B RB RB FK G P RB RB SS

=
. . . . . . . . . .

1 2 1 2 12 3 4 1
..R
SS 2  

(5)

In this analysis, we assume that Weibull random 

variable (Bertsche & Ingenieure, 2008) is used to 

model the reliability behavior of various compo-

nents of the automotive transmission.

The Weibull distribution is commonly used in 

such analysis. We first construct a list of N inde-

pendent Weibull random variables to model the 

automotive transmission as given in Definition 16.

Definition 16: Automotive Transmission Reli-

ability Model

⊢ ∀ a b N s. auto_rv_list a b N s = rv_val_indep 

(WB_RV_LIST a b) (s_split (PRE N) N s)

In Definition 16, a and b are lists that contain 

shape and scale parameters of the Weibull random 

variables in the WB_RV_LIST. x is a real list, N 

represents the number of components in the series 

reliability structure and t is a positive real value. 

Each element of this list represents the lifetime 

of a component of the transmission.

Figure 6. Reliability structure of the automobile transmission



Definitions 17 shows our formalization of list 

of random variables with weibull distribution.

Definition 17: List of Weibull Random Variables

⊢ (WB_RV_LIST [] [] = []) ∧ 

(WB_RV_LIST (ah::at) (bh::bt) = [(λa b s. 

weibull_rv a b s) ah bh] ++ WB_RV_LIST at 

bt) 

The function WB_RV_LIST takes two real 

lists as arguments and returns a list of indepen-

dent Weibull random variables. The two real 

lists contain the corresponding scale and shape 

parameters of the Weilbull distributions of the 

random variables in the returned list.

Definition 18 formally describes the reliability 

model of the automotive transmission. The series 

reliability structure is modeled using the series 

reliability structure definition (N series survival 

function).

Definition 18: Automotive Transmission Reli-

ability Model

⊢ ∀ a b x N t. auto_trans_rel_model_N a b x N 

t = N_series_survival_function (WB_RV_LIST 

a b) x N t 

The survival function S
T
(t) is defined as:

S t F t
T T( ) = − ( )  (6)

where F
T
(t) is the cumulative distribution function 

of the random variable T .

The survival function represents the probability 

that a component is functioning at one particular 

time t and is formalized in HOL as follows:

Definition 19: Survival Function

⊢ ∀ rv. survival_function rv = (λt. 1 – CDF rv t)

where CDF is the cumulative distribution function 

of random variable rv. Both survival function and 

CDF in HOL are of type (((num → bool) → real) 

→ real → real).

Theorem 5: Automotive Transmission System 

Reliability

⊢ ∀ a b t. ( ∀ a b t. indep_rv_list (WB_RV_LIST 

a b) (FILL_LIST_R x t)) ∧ 

( ∀ i. 0 < (EL i a)) ∧ ( ∀ i. 0 < (EL i b)) ∧ (0 ≤ 

t) ∧ (LENGTH (WB_RV_LIST a b) = 12) 

==>

(auto_trans_rel_model_N a b x 12 t = prod1 (0,12) 

(λi. survival_function (EL i (WB_RV_LIST a b)) 

t)) 

Theorem 5 formally states that for an automo-

tive transmission, consisting of 12 critical reli-

ability relevant components, the overall system 

reliability is given by the product of reliability of 

its individual components (Equation 5), provided 

the components of the transmission fail indepen-

dent of each other.

The proof of Theorem 5 required rewriting with 

Definition 17 and reasoning from Theorem 1 for 

the series connected system. Theorem 5 provides 

a formal proof of correctness of the reliability 

specification of an automotive transmission.

The HOL code describing our formalization 

of multiple continuous random variables and their 

probabilistic properties consists of approximately 

2000 lines of code and took over 240 hours to 

complete. The formalization of reliability struc-

tures consists of approximately 2500 lines of code 

and took over 160 manhours to complete. The 

formalization and the verification of the automo-

tive transmission reliability took only 300 lines 



of HOL code and only 30 hours to complete. As 

can be seen that, the automotive transmission 

reliability analysis results took an order of mag-

nitude less effort to prove than the infrastructure 

development work. This shows the strength of our 

work and that it will be very useful for engineers 

building on this work to attempt larger and more 

involved hardware and embedded system software 

reliability analysis problems.

The reliability expressions we presented are 

guaranteed to be accurate, unlike the simulation 

based analysis, and are generic due to the uni-

versally quantified variables. Such analysis was 

not possible in the HOL theorem prover earlier.

In this paper, we presented an approach for formal 

reliability analysis of engineering systems us-

ing higher-order-logic theorem proving. In this 

context, we also presented the formalization of 

multiple continuous random variables and verified 

their classical Cumulative Distribution Function 

properties. Then building on these foundations, 

we described the formalization and analysis of 

commonly used reliability structures. The pro-

posed formalization is general and can facilitate 

performance and reliability analysis of problems 

in many domains of engineering and applied 

sciences. It does not have any theoretical limita-

tions as far as the number of system components 

and the modeling of complexity of structure is 

concerned. The results presented are guaranteed 

to be accurate, unlike simulation based analysis, 

and are generic due to the universally quantified 

variables in the proven reliability properties. For 

illustration purposes, we presented the analysis of 

an automobile transmission system. The formal 

reasoning about this system was straightforward 

and required very little user intervention, which 

demonstrates the usefulness of our work.

We are currently working on several interesting 

and large reliability analysis applications. In one 

such application we are analyzing the reliability 

of a multiprocessor system consisting of various 

types of processing units, such as field program-

mable gate arrays, general purpose processors 

and memories. In many real-world applications 

correlated random variables are required. In order 

to be able to tackle the formal analysis of these 

applications, we plan to develop formal reasoning 

support for multiple correlated random variables 

(Snedecor & Cochran, 1989). Other related future 

directions of research include the formalization of 

availability and maintainability theories (Ebeling, 

1997) in HOL.
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