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Abstract: Processor cores in embedded applications build today the cornerstone of System-on-Chip designs. Among 
the most successful RISC (Reduced Instruction Set Computer) cores are the MIPS processors used in applications such 
as DVD, automotive, broadband access, networking, etc. In this paper, we design and verify a Transaction Level 
Modeling (TLM) architecture of the MIPS R3000 in SystemC. The TLM in SystemC is adopted so that abstract data 
types can be used for higher (abstract) level modeling and faster simulation. The processor is implemented such that the 
instruction and data caches contain all the necessary instructions and data to eliminate complex memory access 
management, respectively. To simulate the processor, we provide a script that automatically generates the machine 
instruction code from assembly language.  
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INTRODUCTION 
System-on-Chip (SoC) is a popular technology 

used in embedded applications these days. Electronic 
components that are laid out on a PCB (Printed Circuit 
Board) to make systems not too long ago can be now 
integrated in a single piece of silicon to be produced in 
a chip. As a system is developed on a single chip, it 
not only requires hardware components but also 
software components that have to be developed. 
Hence hardware description languages such as VHDL 
or Verilog show their limitations when used in SoC 
development. Alternative languages for integrating 
both hardware and software development were sought 
after and several languages have been introduced such 
as SystemC [Gro02] and SystemVerilog [Sys06]. But 
recent acceptance of SystemC as an IEEE standard 
[IEE05], it became the premier choice for SoC 
development language. 

 

SystemC was developed by Open SystemC 
Initiative (OSCI) on top of C++ which is a mature and 
one of the widely used software development 
languages. With the modeling of hardware behavior as 
library in C++, both software and hardware can now 
be modeled in a single language, making it easy to 

simulate and test a system in early stages of the design 
cycle. Due to rapidly changing product cycles and 
required time to introduce in the market, SystemC, as 
an IEEE standard, becomes even more attractive 
language when it comes to system-level design due to 
reuse of intellectual property (IP) blocks.  

 

The basic idea of Transaction Level Modeling 
(TLM) is to establish communication through function 
calls that represent transactions rather than signals as 
at the Register Transfer Level (RTL). In this paper, we 
adopt the OSCI interpretation of TLM including 
Programmers View (PV), which contains no timing; 
Programmers View with Timing (PVT), which adds 
timed protocols and can analyze latency or 
throughput; and Cycle Accurate, which is accurate to 
the clock edge but does not model internal registers 
[OSI06]. 

 

MIPS processors are very popular processor cores 
in SoC applications due to their effectiveness in terms 
of simplicity, processing power, and low power 
consumption. In this paper, we design and verify a 
TLM architecture in SystemC of the MIPS R3000 
processor. As a high level abstract model, TLM 
enables both hardware and software to be developed 

* This work was done while the first author was at 
Concordia University 
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concurrently at an early design stage hence making it 
an effective way for new product development. 

 

There can be found in the open literature two 
related work on SystemC modeling of MIPS 
processors. For instance, the company CoWare has 
developed a library of SystemC based models for 
Electronic System Level (ESL) design [CoW06]. The 
library contains several processors from the MIPS and 
ARM families. The second is a work of Madsen et al. 
[Jor03], who developed a MIPS R2000 processor in 
SystemC and implemented it in Xilinx Spartan II 
FPGA. Their SystemC model was at the Register 
Transfer Level (RTL). In contract to the above, in this 
paper, we are interested in a TLM design for the 
processor that can be used either as a testbench or a 
model to guide the implementation of a synthesizable 
core MIPS R3000. 

 

The rest of the paper is organized as follows. 
Section 1 introduces the MIPS R3000 architecture. 
Section 2 describes details of the MIPS R3000 
SystemC TLM design steps. Section 3 presents 
experimental results we conducted for evaluating the 
model. Finally, Section 4 concludes the paper. 

1. MIPS R3000 Processor 
MIPS R3000 processor is a 5 stage pipelined 

processor that implements 32-bit MIPS instruction set 
architecture (ISA). It was introduced in 1988 and 
contained 0.11 million transistors on 66.12mm2 die 
size with 1.2 µm process technology [HP02]. It also 
contained instruction cache and data cache with sizes 
of 64k byte each and was running between 20 to 
40MHz consuming 4W of power. Due to small power 
consumption and heat characteristics of embedded 
MIPS implementations, low cost, widely available 
development tools, and simple architecture, etc., this 
processor is a good candidate to be used in SoC. 

 

 
 

Figure 1. MIPS R3000 Instruction Format 

 

 

1.1. MIPS Instruction Format 
MIPS instructions have 3 different formats, 

namely R, I, and J type instructions. Figure 1 shows 
the format of each 32 bit instruction type [HP02]. R-
type instructions access two general purpose registers 
rs, rt and use them as operands of ALU (Arithmetic 

and Logic Unit) operations and save the result back to 
rd. These instructions require not only opcode but also 
function field to further specify the operations. Most 
of the R-type ALU instructions have “000000” as 
opcode field deferring the operation decision to the 
function field. 

 

I-type instructions take immediate constant value 
as one of the operands. The result of the ALU 
operation is saved back to rt as well. 

 

J-type instructions, which is Jump instruction, uses 
26 bit address field to get the target address.  

 

1.2. MIPS Pipeline Stages 
Each instruction is stored in instruction cache in 

the order of execution and fetched at every clock 
cycle. It goes through 5 pipeline stages to be 
completed. The 5 stages that each instruction goes 
through are: instruction fetch (IF), instructions decode 
(ID), execute (EX), data memory (MEM), and write-
back (WB). 

 

 
 

Figure 2. MIPS Pipeline Structure [Bre02] 
 

 

The Instruction Fetch stage fetches the instruction 
from instruction memory (instruction cache) in the 
address given by the program counter (PC) and 
updates its value for next instruction. Fetched 
instructions are then passed on to the ID stage. 

 

The Instruction Decode stage decodes the 
instruction and accesses the General Purpose Register 
(GPR) for the operands (two for ALU operations) in 
the EXE stage. Also immediate values are sign-
extended to be 32 bit vector and Jump target address 
and Branch condition as well as target addresses are 
determined in this stage. If the branch condition is 
met, then the program counter will be updated with 
the target address and the new PC will be used as next 
instruction address to be fetched. 
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The Execute stage “executes” the instruction. In 
fact, all ALU operations are done in this stage. The 
ALU is the Arithmetic and Logic Unit and performs 
operations such as addition, subtraction, logical AND, 
logical OR, etc. In the EXE stage, the address for 
memory access for load or store instructions is also 
calculated. 

 

The Memory Access stage performs any memory 
access required by the current instruction. So, for 
loads, it would access a memory location and load the 
value onto GPR. For stores, it would store an operand 
into memory address specified in the instruction. 

 

The Write-Back stage writes the result of 
instruction back to register file. Careful attention is 
needed to write the register file before it is read by 
another instruction. 

 

Figure 2 provides a general description of how the 
5 stage pipeline is structured. Figure 3 shows how the 
sequence of instructions is executed through the 
pipeline in each cycle. The main advantage of pipeline 
architecture is that theoretically at each clock cycle, 
each pipeline block is processing an instruction. 
Therefore the throughput of the processor becomes 1 
at each clock cycle ignoring the initial latency to fill 
up the pipeline for 5 clock cycles. 

 

 
 

Figure 3. MIPS Instruction Execution Sequence in 
Pipeline [HP02] 

 

2. TLM SystemC Design 

2.1. SystemC Transaction Level Modeling 
TLM in SystemC is motivated to provide early 

system model platform for software development. 
Without such platform for software in the early stage 
of system development, software and hardware have 
to be developed side by side and they can only be put 
together for testing/verification after the prototype 
system has been produced. By using higher abstract 
TLM, which functionality is presumably correctly 

modeled, system verification can be started early in 
the development stage. TLM also emphasizes on 
functionality rather than actual implementation, it 
enables faster simulation speed than pin-based model 
[Ghe05]. 

 

First, two classes of SystemC modules 
(sc_module), moduleA and moduleB are generated. 
Each module can pass transactions through an 
interface, and it has to be defined for communication 
between two modules. Once the interface class is 
defined with transaction function that can be used in 
it, a port of type interface is declared in one of the 
module and the interface member functions are 
implemented in the other module. The SystemC code 
in Figure 4 is an example of how to implement 
Transaction Level Model using interface. 

 

First, two classes of sc_module, moduleA and 
moduleB are created. Each module has its own process 
therefore can work concurrently. Once the modules 
are created, class of interface, moduleA_moduleB_if is 
created with member function(s) declared in it. 
Interface can be directly connecting two modules or 
can have intermediate channel between two modules. 
Interface is directly connected between the two 
modules in the above example. moduleA declares a 
sc_port of type moduleA_moduleB_if and the member 
function moduleA_moduleB_function will be called 
through moduleA_moduleB_port to pass parameters to 
moduleB. Parameters can be any number and any 
types defined by a specific member function. This 
abstracts any communication/protocol needed for data 
to move from one module to another in the real 
implementation and it saves the declaration of many 
ports and simulation time, since the actual 
communication may take a number of clock cycles to 
establish connection before sending/receiving data. 
The virtually declared member function 
moduleA_moduleB_function () is implemented in the 
body of moduleB. 

 

Depending on the implementation of member 
function, moduleA can pass parameters to moduleB or 
it can read parameters from moduleB. Figure 5 
describes the structure of above implementation. The 
modules and processes inside them can be 
synchronized with an external clock signal just like an 
RTL model. But in TLM, modules can be 
synchronized without the use of clock signal at all. 
When parameters are passed from moduleA to 
moduleB through moduleA_moduleB_function, as 
soon as the function is called, moduleB can be notified 
by SystemC built in notify ( ) function. This will 
reduce latency for modules waiting for clock to be 
asserted, resulting in reduced simulation time. 
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/************************************************ 

Interface declaration 

************************************************/ 

template <class T> class modlueA_moduleB_if : 

virtual public sc_interface 

{ public: 

virtual void 

moduleA_moduleB_function (T& parameterA, 

T& parameterB) = 0; 

}; 

/************************************************ 

Module A 

************************************************/ 

template <class T> class moduleA : public sc_module 

, 

public moduleA_moduleB_if<T> 

{ public: 

sc_port <modlueA_moduleB_if <type> > 

moduleA_moduleB_port; 

SC_HAS_PROCESS(moduleA); 

moduleA(sc_module_name name):sc_module(name) 

{ 

SC_METHOD(entry); 

} 

private: 

private variables declaration 

}; 

template <class T> void moduleA<T>::entry() { 

// body of main function of moduleA; 

// calling interface function to pass 

// parameters to moduleB 

moduleA_moduleB_port->moduleA_moduleB_function( 

parameterA, parameterB); 

} 

/************************************************ 

Module B 

************************************************/ 

template <class T> class moduleB : public sc_module 

{ public: 

SC_HAS_PROCESS(moduleB); 

moduleB(sc_module_name name):sc_module(name) 

{ 

SC_METHOD(entry); 

} 

private: 

private variables declaration 

}; 

template <class T> void moduleB<T>::entry() { 

// body of main function of moduleB; 

} 

template <class T> void moduleB <T> :: 

moduleA_moduleB_function (T& parameterA, 

T& parameterB) 

{ 

// body of member function if interface; 

} 

 
Figure 4. SystemC TLM Template 

 

 
 

Figure 5.  SystemC TLM Structure 
 

2.2. MIPS R3000 Processor TLM Design 
We designed the MIPS R3000 processor in 

SystemC Transaction Level Model. Even though the 
abstract model may deviate from the actual 
hierarchical structure, it is designed such that the 
structure remains very close to the pipeline structure 
shown Figure 2. Each block is defined as sc_module 
and as explained in Section 3, each module is 
connected through pre-defined interfaces if 
transactions are needed between particular modules. 
Figure 6 below depicts the modules used in the design. 

      The main functional modules are: 

   • ICACHE: instruction cache 
   • FETCH: instruction fetch module 
   • DECODE: instruction decode module 
   • EXE: execution/ALU module 
   • DCACHE: data cache module 4 
   • FPU (optional): floating point unit module 
 

 

 
 

Figure 6.  MIPS R3000 Model Structure 
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Figure 7. MIPS R3000 TLM Structure  
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Although each module has to work in 
synchronization, the notion of clock signal and the 
data movement from one module to another at the 
clock edge is abstracted to transactions. Hence the 
“WRITE BACK” stage from MIPS 5 stage pipeline is 
not a separate module whereas each of EXE, FPU and 
DCACHE writes results back to the GPR as soon as 
they are available. Each module passes data to 
necessary modules via interfaces. 

 

The new architecture block diagram that includes 
interfaces is shown in Figure 7. The SystemC 
implementation of R3000 processor is separated in 10 
files: 6 header files corresponding to each module 
from the block diagram, 1 header file for all the 
interface declarations, 1 main module that connects all 
the sub modules, 1 directive header file that contains 
some global constants and the last is the main for 
simulation. All the names of modules/files and their 
detailed function/implementation are explained below. 

 

2.2.1. Icache Module 
The icache sc_module reads an instruction file 

called “icache” and stores in the array of length 
defined in “derective.h” as MAX CODE LENGTH. 
As it reads instructions from the file, it prints out at 
initialization. The Icache module does not have a 
process, since once it is initialized it only provides 
instruction cache structure in the form of an array. The 
fetch module will read the corresponding location of 
array depending on the program counter. For the fetch 
module to have access to the array in the icache 
module, an icache_read ( ) member function is defined. 

 

2.2.2. Fetch Module 
The fetch module is connected to both the icache 

and decode modules, hence it needs an interface for 
each transaction. fetch_icache_if is used for 
transaction from the icache module and fetch decode 
if is used for transaction to the decode module. 
fetch_icache_if provides icache_read (current PC) for 
the transaction of reading instructions from the 
instruction cache array, whereas fetch_decode_if 
provides a fetch_to_decode (instruction, next PC) 
function for transaction to the decode module passing 
instructions and the next program counter. Each of the 
transactions has to go through a predefined port of 
corresponding interface type. icache_read ( ) uses port 
fetch_icache_port of type fetch_icache_if and 
fetch_to_decode ( ) uses port fetch_decod_port of type 
fetch decode if. Once all the structure is well defined, 
the main body is implemented such that the fetch 
module receives the program counter as 
address_if_instruction_cache and read an instruction 
from instruction cache. Read instruction is then passed 
to the decode module along with the next program 
counter, which is the current PC + 1 (assuming the 
instruction cache is 32 bit registers). After executing 
one cycle of its duty, the fetch module notifies its main 

process with event that the process is sensitive to so 
that next cycle can be started as well. 

2.2.3. Decode Module 
The decode module is the busiest module of all in 

the MIPS processor model. It decodes instructions 
from the fetch module, passes the decoded parameters 
to the EXE or FPU module, determines if the branch 
condition is met, updates the program counter to 
branch target address if the branch condition is met 
and sends a no-op instruction if the branch instruction 
is not met, etc. At initialization, the constructor reads a 
file called “register”, which the user writes as initial 
register file. When the processor is started, it receives 
an instruction and PC from the fetch module. The 
unsigned instruction value is treated as 32 bit binary 
number and each of the necessary bit fields, such as 
opcode, rs, rt, rd, immediate, etc, are extracted by 
shifting the binary string. The extracted bit fields are 
assigned to corresponding variables for them to be 
passed to the EXE module according to the decoded 
result. If an instruction is found to be branch or jump, 
then the condition is checked and the next program 
counter is updated with the branch/jump target address 
according to the outcome of the condition. The 
original program counter or the updated one, 
according to branch, is then transferred to the fetch 
module. This module uses three interfaces: 
decode_fetch_if, decode_exe_if, and decode_fpu_if. 
Also due to interaction with number of other modules, 
it defines many interface member functions: 
fetch_to_decode ( ), alu_result_to_GPR (), 
mult_div_result ( ), and dcache_to_GPR ( ). 

 

2.2.4. Exe Module 
The Exe module receives operands and function 

code from the decode module and the process starts 
from there. Upon process start, it executes one of the 
following ALU operations: add, sub, or, and, xor, nor, 
address calculation (addition), mult, or div. Unless the 
instruction is load/store which requires dcache access, 
the results of ALU operations are written to the 
register file in the decode module. If an instruction is 
load/store then the calculated address and 
corresponding data or destination register address are 
passed onto the dcache module for memory access. 
Exe module has three interface member functions all 
from the decode module. The decode module uses one 
of the three functions to pass correct parameters to the 
Exe module depending if the instruction is R-type, I-
type, or Load/Store. When one of the member 
functions is called in the decode module, the Exe 
module process is notified and started its cycle. 

 

2.2.5. Dcache Module 
The dcache module contains the dcache array 

which is data cache. It initializes an array dcache[ ] 
which size is determined by the user from directive.h. 
Then a memory file called “dcache” is read and 
updates the value. The process of this module is 
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sensitive only to  load/store instructions from the Exe 
module so that it is activated only when needed. It 
only reads from the dcache array or writes to it 
depending whether it is a load or store instruction. 

 

2.2.6. FPU Module 
The FPU module can be started only when an 

instruction is found to be a floating point instruction in 
the decode module. FPU has its own 32 bit floating 
point register file and it reads the “float register” file 
to initialize the register file. In a real MIPS processor, 
the floating point unit is a separate processor that can 
execute IEEE754 arithmetic. Once a floating point 
instruction is decoded in the decode module, it passes 
all instruction information to the FPU module then the 
FPU process is started. Received floating point 
instructions are executed according to the 
specification of the instruction using its own float 
register. If the instruction needs memory access, then 
the parameters are passed to the dcache module. 

 

2.2.7. MIPS CPU Module 
This is the top module that contains all the sub-

modules to make a complete processor. It declares all 
the units from corresponding modules and connects all 
the ports between the modules. This MIPS CPU 
module can be used as one of the processors in a 
multi-processor platform later on. 

 

2.2.8. MIPS CPU.cpp 
This is the main for the MIPS TLM to simulate the 

processor. It defines time intervals and the maximum 
time for simulation. 

 

2.2.9. Machine Code Instruction Generator 
To run the MIPS R3000 processor model, 

instructions in binary machine code need to be stored 
in the instruction cache. Normally, it is the compiler 
that generates the machine code from assembler 
program. To test various instructions in timely manner, 
a simple Perl script code from SystemC 2.0.1 risc_cpu 
example library has been modified to be fully 
compatible to MIPS instructions. 

 

sub dec2bin { 

my $str = unpack("B32", pack("N", shift)); 

return $str; 

} 

sub bin2dec { 

return unpack("N", 

pack("B32", 

substr("0" x 32 . shift, -32))); 

} 

 
Figure 8. Perl Routines: bin2dec, dec2bin 

We define two sub routines, “bin2dec” and 
“dec2bin” (see Figure 8), which would allow the 
program to read assembly code written in text file. 
“bin2dec” converts a 32 bit binary string to integer, 
while “dec2bin” converts an integer argument to a 32 
bit binary string. 

 

Using a while loop, the program reads one 
assembly code at a time converting it to corresponding 
machine code. From a single assembly code, it 
extracts necessary information such as opcode, two 
operands, destination, immediate, and address, etc. 
The opcode is taken as character string whereas all 
others are taken as integers (see Figure 9). 

 

chop($_); 

$_ =˜ s/\s+/ /g; 

($opcode, $arg_1, $arg_2, $arg_3) = split(/ /,$_); 

$arg_1 =˜ (s/(R||F||r||f)//g); 

$arg_2 =˜ (s/(R||F||r||f)//g); 

$arg_3 =˜ (s/(R||F||r||f)//g); 

 
Figure 9. Extraction of Assembly Arguments 
 
 
 

Once all the necessary register fields are extracted 
in integer, they are converted to 32 bit binary strings 
and again necessary binary digits are extracted (see 
Figure 10). For example, operands or destination 
register fields are 5 bit binary number. Hence from 32-
bit binary string corresponding to the register number, 
27 leading zeros are deleted to make them 5 bit binary 
string. 

 

$rd = dec2bin($arg_1); 

$rs = dec2bin($arg_2); 

$rt = dec2bin($arg_3); 

$imm = dec2bin($arg_3); 

$target = dec2bin($arg_1); 

$imm_branch = dec2bin($arg_2); 

$rt =˜ s/000000000000000000000000000//g; 

$rs =˜ s/000000000000000000000000000//g; 

$rd =˜ s/000000000000000000000000000//g; 

$rzero = "00000"; 

$fp_op = "010001"; 

$single = "10000"; 

$double = "10001"; 

 
Figure 10. Variable Assignment 

 

Using if statements, the opcodes are decoded to 
construct corresponding machine code strings. From 
the opcode, 32 bit binary string is constructed by 
concatenating necessary fields in order. Then using the 
bin2dec sub-routine, it is converted to a decimal 
integer. Then again the decimal integer is converted to 
8 digit hexadecimal output and printed (Figure 11). 
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if ($opcode =˜ /\badd\b/) 

{ 

$funct = "100000"; 

$bin_code = $R_type.$rs.$rt.$rd.$rzero.$funct; 

$dec_code = bin2dec($bin_code); 

printf ("0x"); 

printf ("%08x",$dec_code); 

} 

 
Figure 11. Machine Code Construction 
 

 

After the while loop goes through every assembly 
instruction and printing each instruction in a new line, 
an additional instruction 0xffffffff is printed indicating 
that there are no more instructions to be executed 
while running the simulation. 

 

“MIPS assembler.pl” can decode and convert 
standard MIPS assembly instructions that are 
compatible to MIPS R3000. It contains 39 integer 
instructions and 55 floating point instructions (single 
precision and double precision). However, there are 
two special attentions required to use MIPS 
assembler.pl effectively. First, when an instruction 
requires to calculate a memory address using base and 
immediate, standard MIPS instructions write 
“instruction $destination, (offset) $base”. The 
convention in the MIPS assembler is “instruction 
$destination, $base, offset” in memory accessing 
instructions. Second, floating point instructions are 
required to write “f” in front of every floating 
instruction to indicate that this instruction is a floating 
point instruction. And also the use of “.” is not 
permitted. For example, a standard MIPS floating 
point instruction writes “add.s”, meaning single 
precision floating point addition. 

 

lw $1, (100)$2 -> lw $1, $2, 100 

div.d $f2, $f4, $f6 -> fdivd $f2, $f4, $f6 

c.lt.s $f2, $f4 -> fclts $f2, $f4 

 
Figure 12. Special Assembly Instructions for 
Machine Code Generator 
 
 
addi R1, R0, 15 0x2001000f 
addi R2, R0, 16 0x20020010 
addi R3, R0, 1 0x20030001 
addi R4, R0, 3 0x20040003 
sub R5, R2, R1 0x00223020 
add R6, R1, R2 0x00412822 
add R7, R3, R4 0x00643820 
add R8, R8, R1 0x01014020 
subi R1, R1, 1 0x28210001 
beq R1, R0, 1 0x10200001 
j 4 0x08000004 
add R10, R9, R0 0x01205020 
addi R11, R0, 15 0x200b000f 
sw R11, R1, 0 0xac2b0000 
lw R12, R0, 10 0x8c0c000a 
addi R2, R0, 16 0x20020010 

 
Figure 13. Test Assembly Code and Corresponding 
Machine Code 

It is required to write this particular instruction as 
“fadds”, writing “f” in front and deleting the dot. 
Figures 12 and 13 give some examples of above 
mentioned cases. 

3. Experimental Results 

3.1. Description 
To test if the processor is executing the 

instructions correctly, an assembly test code is written 
and the corresponding machine code is generated 
using MIPS assembler.pl. This simple test code first 
updates several registers with immediate values then 
sets up a branch instruction for conditional branch. If 
this branch condition is met, then it will skip the next 
instruction, if not it will execute the next instruction. 
The instruction in Figure 14 is found to be Jump and it 
forces a branch to the instruction at address #4. This 
forms a loop and the loop terminates when branch 
condition is met. It is a very simple program but useful 
to see every register updates and the movement of data 
through data path. For every cycle, each module will 
print out what it is processing in terms of instruction 
number. So it can be easily seen how the instruction 
moves through each cycle in a pipelined fashion. 

 

Figure 14 is the portion of the output of running 
the test code. It goes through 114 instruction cycles till 
it breaks out of loop and does store, load, and addi 
instructions. Looking at the output diagonally from 
left low to right high indicates at one cycle, each 
module has a different instruction being processed. 
For example, when instruction #112 is fetched, the 
decode module is decoding instruction #111, Exe 
module is executing instruction #110. On the other 
hand, looking diagonally from left high to right low 
will show how a particular instruction goes through 
the pipeline. For example, it can be seen that 
instruction #111 is fetched, decoded, executed through 
3 cycles. 

 

Using the register dump option in directive.h, the 
output can have register file at every cycle of 
simulation so its content can be easily seen. Figure 15 
is the output of the same test code with register dump 
option. 

 

3.2. Discussion 
The design of a simple pipelined RISC processor, 

R3000 in TLM has several advantages over RTL. 

 • Transaction of arguments by function calls 
through interfaces eliminates number of ports 
needed in RTL. 

 • Abstract data type such as integer, unsigned, 
byte, word, etc. can be used for arguments not 
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just bit or bit vector and this makes it easier to 
interact with software. 

 • Because of the flexibility of TLM, it can be    
used as IP block easily. 

 • The simulation time can be reduced thanks to 
abstracting actual implementation. 

• Since the details of implementation can be 
abstracted, the design time can be reduced. 

 

 

 
 
 
Figure 14. MIPS TLM Simulation Output 

 

 

 

 
 

 

Figure 15. MIPS TLM Simulation Output with 
Register Dump 
 

 

4. Conclusion 
In this paper, we modeled a MIPS R3000 

processor at the Transaction Level (TLM) in SystemC. 
The processor has sub-modules defined as pipeline 
stages and at a high level of abstraction, data moves 
from one sub-module to another by function calls 
through interfaces. The use of function calls 
eliminates the notion of clock cycles. Hence some 
modules that require multiple clock cycles to process 
in the real implementation can be simplified in terms 
of simulation time. Also TLM does not implement 
pins other than sc_ports, it can easily be used as an IP 
block in other designs. The concept of TLM as well as 
SystemC is a relatively new practice but as the need 
for system level simulation rapidly increases, it will be 
an important part in early development stages of an 
SoC design flow. 
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