
SETIT 2007
4th International Conference: Sciences of Electronic,

Technologies of Information and Telecommunications
March 25-29, 2007 – TUNISIA

 - 1 -

A SystemC Transaction Level Model for the
 MIPS R3000 Processor

Yon Jun Shin and Sofiène Tahar
Concordia University

1455 de Maisonneuve West, Montreal, Quebec H3G 1M8, Canada

{yon shin,tahar}@ece.concordia.ca

Ali Habibi*
MIPS Technologies

1225 Charleston Rd., Mountain View, CA, 94041, USA

habibi@mips.com

Abstract: Processor cores in embedded applications build today the cornerstone of System-on-Chip designs. Among
the most successful RISC (Reduced Instruction Set Computer) cores are the MIPS processors used in applications such
as DVD, automotive, broadband access, networking, etc. In this paper, we design and verify a Transaction Level
Modeling (TLM) architecture of the MIPS R3000 in SystemC. The TLM in SystemC is adopted so that abstract data
types can be used for higher (abstract) level modeling and faster simulation. The processor is implemented such that the
instruction and data caches contain all the necessary instructions and data to eliminate complex memory access
management, respectively. To simulate the processor, we provide a script that automatically generates the machine
instruction code from assembly language.

Key words: SystemC, MIPS Processor, Transaction Level Modeling.

INTRODUCTION
System-on-Chip (SoC) is a popular technology

used in embedded applications these days. Electronic
components that are laid out on a PCB (Printed Circuit
Board) to make systems not too long ago can be now
integrated in a single piece of silicon to be produced in
a chip. As a system is developed on a single chip, it
not only requires hardware components but also
software components that have to be developed.
Hence hardware description languages such as VHDL
or Verilog show their limitations when used in SoC
development. Alternative languages for integrating
both hardware and software development were sought
after and several languages have been introduced such
as SystemC [Gro02] and SystemVerilog [Sys06]. But
recent acceptance of SystemC as an IEEE standard
[IEE05], it became the premier choice for SoC
development language.

SystemC was developed by Open SystemC
Initiative (OSCI) on top of C++ which is a mature and
one of the widely used software development
languages. With the modeling of hardware behavior as
library in C++, both software and hardware can now
be modeled in a single language, making it easy to

simulate and test a system in early stages of the design
cycle. Due to rapidly changing product cycles and
required time to introduce in the market, SystemC, as
an IEEE standard, becomes even more attractive
language when it comes to system-level design due to
reuse of intellectual property (IP) blocks.

The basic idea of Transaction Level Modeling
(TLM) is to establish communication through function
calls that represent transactions rather than signals as
at the Register Transfer Level (RTL). In this paper, we
adopt the OSCI interpretation of TLM including
Programmers View (PV), which contains no timing;
Programmers View with Timing (PVT), which adds
timed protocols and can analyze latency or
throughput; and Cycle Accurate, which is accurate to
the clock edge but does not model internal registers
[OSI06].

MIPS processors are very popular processor cores
in SoC applications due to their effectiveness in terms
of simplicity, processing power, and low power
consumption. In this paper, we design and verify a
TLM architecture in SystemC of the MIPS R3000
processor. As a high level abstract model, TLM
enables both hardware and software to be developed

* This work was done while the first author was at
Concordia University

SETIT2007

 - 2 -

concurrently at an early design stage hence making it
an effective way for new product development.

There can be found in the open literature two
related work on SystemC modeling of MIPS
processors. For instance, the company CoWare has
developed a library of SystemC based models for
Electronic System Level (ESL) design [CoW06]. The
library contains several processors from the MIPS and
ARM families. The second is a work of Madsen et al.
[Jor03], who developed a MIPS R2000 processor in
SystemC and implemented it in Xilinx Spartan II
FPGA. Their SystemC model was at the Register
Transfer Level (RTL). In contract to the above, in this
paper, we are interested in a TLM design for the
processor that can be used either as a testbench or a
model to guide the implementation of a synthesizable
core MIPS R3000.

The rest of the paper is organized as follows.
Section 1 introduces the MIPS R3000 architecture.
Section 2 describes details of the MIPS R3000
SystemC TLM design steps. Section 3 presents
experimental results we conducted for evaluating the
model. Finally, Section 4 concludes the paper.

1. MIPS R3000 Processor
MIPS R3000 processor is a 5 stage pipelined

processor that implements 32-bit MIPS instruction set
architecture (ISA). It was introduced in 1988 and
contained 0.11 million transistors on 66.12mm2 die
size with 1.2 µm process technology [HP02]. It also
contained instruction cache and data cache with sizes
of 64k byte each and was running between 20 to
40MHz consuming 4W of power. Due to small power
consumption and heat characteristics of embedded
MIPS implementations, low cost, widely available
development tools, and simple architecture, etc., this
processor is a good candidate to be used in SoC.

Figure 1. MIPS R3000 Instruction Format

1.1. MIPS Instruction Format
MIPS instructions have 3 different formats,

namely R, I, and J type instructions. Figure 1 shows
the format of each 32 bit instruction type [HP02]. R-
type instructions access two general purpose registers
rs, rt and use them as operands of ALU (Arithmetic

and Logic Unit) operations and save the result back to
rd. These instructions require not only opcode but also
function field to further specify the operations. Most
of the R-type ALU instructions have “000000” as
opcode field deferring the operation decision to the
function field.

I-type instructions take immediate constant value
as one of the operands. The result of the ALU
operation is saved back to rt as well.

J-type instructions, which is Jump instruction, uses
26 bit address field to get the target address.

1.2. MIPS Pipeline Stages
Each instruction is stored in instruction cache in

the order of execution and fetched at every clock
cycle. It goes through 5 pipeline stages to be
completed. The 5 stages that each instruction goes
through are: instruction fetch (IF), instructions decode
(ID), execute (EX), data memory (MEM), and write-
back (WB).

Figure 2. MIPS Pipeline Structure [Bre02]

The Instruction Fetch stage fetches the instruction
from instruction memory (instruction cache) in the
address given by the program counter (PC) and
updates its value for next instruction. Fetched
instructions are then passed on to the ID stage.

The Instruction Decode stage decodes the
instruction and accesses the General Purpose Register
(GPR) for the operands (two for ALU operations) in
the EXE stage. Also immediate values are sign-
extended to be 32 bit vector and Jump target address
and Branch condition as well as target addresses are
determined in this stage. If the branch condition is
met, then the program counter will be updated with
the target address and the new PC will be used as next
instruction address to be fetched.

SETIT2007

 - 3 -

The Execute stage “executes” the instruction. In
fact, all ALU operations are done in this stage. The
ALU is the Arithmetic and Logic Unit and performs
operations such as addition, subtraction, logical AND,
logical OR, etc. In the EXE stage, the address for
memory access for load or store instructions is also
calculated.

The Memory Access stage performs any memory
access required by the current instruction. So, for
loads, it would access a memory location and load the
value onto GPR. For stores, it would store an operand
into memory address specified in the instruction.

The Write-Back stage writes the result of
instruction back to register file. Careful attention is
needed to write the register file before it is read by
another instruction.

Figure 2 provides a general description of how the
5 stage pipeline is structured. Figure 3 shows how the
sequence of instructions is executed through the
pipeline in each cycle. The main advantage of pipeline
architecture is that theoretically at each clock cycle,
each pipeline block is processing an instruction.
Therefore the throughput of the processor becomes 1
at each clock cycle ignoring the initial latency to fill
up the pipeline for 5 clock cycles.

Figure 3. MIPS Instruction Execution Sequence in
Pipeline [HP02]

2. TLM SystemC Design

2.1. SystemC Transaction Level Modeling
TLM in SystemC is motivated to provide early

system model platform for software development.
Without such platform for software in the early stage
of system development, software and hardware have
to be developed side by side and they can only be put
together for testing/verification after the prototype
system has been produced. By using higher abstract
TLM, which functionality is presumably correctly

modeled, system verification can be started early in
the development stage. TLM also emphasizes on
functionality rather than actual implementation, it
enables faster simulation speed than pin-based model
[Ghe05].

First, two classes of SystemC modules
(sc_module), moduleA and moduleB are generated.
Each module can pass transactions through an
interface, and it has to be defined for communication
between two modules. Once the interface class is
defined with transaction function that can be used in
it, a port of type interface is declared in one of the
module and the interface member functions are
implemented in the other module. The SystemC code
in Figure 4 is an example of how to implement
Transaction Level Model using interface.

First, two classes of sc_module, moduleA and
moduleB are created. Each module has its own process
therefore can work concurrently. Once the modules
are created, class of interface, moduleA_moduleB_if is
created with member function(s) declared in it.
Interface can be directly connecting two modules or
can have intermediate channel between two modules.
Interface is directly connected between the two
modules in the above example. moduleA declares a
sc_port of type moduleA_moduleB_if and the member
function moduleA_moduleB_function will be called
through moduleA_moduleB_port to pass parameters to
moduleB. Parameters can be any number and any
types defined by a specific member function. This
abstracts any communication/protocol needed for data
to move from one module to another in the real
implementation and it saves the declaration of many
ports and simulation time, since the actual
communication may take a number of clock cycles to
establish connection before sending/receiving data.
The virtually declared member function
moduleA_moduleB_function () is implemented in the
body of moduleB.

Depending on the implementation of member
function, moduleA can pass parameters to moduleB or
it can read parameters from moduleB. Figure 5
describes the structure of above implementation. The
modules and processes inside them can be
synchronized with an external clock signal just like an
RTL model. But in TLM, modules can be
synchronized without the use of clock signal at all.
When parameters are passed from moduleA to
moduleB through moduleA_moduleB_function, as
soon as the function is called, moduleB can be notified
by SystemC built in notify () function. This will
reduce latency for modules waiting for clock to be
asserted, resulting in reduced simulation time.

SETIT2007

 - 4 -

/**

Interface declaration

**/

template <class T> class modlueA_moduleB_if :

virtual public sc_interface

{ public:

virtual void

moduleA_moduleB_function (T& parameterA,

T& parameterB) = 0;

};

/**

Module A

**/

template <class T> class moduleA : public sc_module

,

public moduleA_moduleB_if<T>

{ public:

sc_port <modlueA_moduleB_if <type> >

moduleA_moduleB_port;

SC_HAS_PROCESS(moduleA);

moduleA(sc_module_name name):sc_module(name)

{

SC_METHOD(entry);

}

private:

private variables declaration

};

template <class T> void moduleA<T>::entry() {

// body of main function of moduleA;

// calling interface function to pass

// parameters to moduleB

moduleA_moduleB_port->moduleA_moduleB_function(

parameterA, parameterB);

}

/**

Module B

**/

template <class T> class moduleB : public sc_module

{ public:

SC_HAS_PROCESS(moduleB);

moduleB(sc_module_name name):sc_module(name)

{

SC_METHOD(entry);

}

private:

private variables declaration

};

template <class T> void moduleB<T>::entry() {

// body of main function of moduleB;

}

template <class T> void moduleB <T> ::

moduleA_moduleB_function (T& parameterA,

T& parameterB)

{

// body of member function if interface;

}

Figure 4. SystemC TLM Template

Figure 5. SystemC TLM Structure

2.2. MIPS R3000 Processor TLM Design
We designed the MIPS R3000 processor in

SystemC Transaction Level Model. Even though the
abstract model may deviate from the actual
hierarchical structure, it is designed such that the
structure remains very close to the pipeline structure
shown Figure 2. Each block is defined as sc_module
and as explained in Section 3, each module is
connected through pre-defined interfaces if
transactions are needed between particular modules.
Figure 6 below depicts the modules used in the design.

 The main functional modules are:

 • ICACHE: instruction cache
 • FETCH: instruction fetch module
 • DECODE: instruction decode module
 • EXE: execution/ALU module
 • DCACHE: data cache module 4
 • FPU (optional): floating point unit module

Figure 6. MIPS R3000 Model Structure

FETCH
DECODE EXE DCACHE

ICACHE

interface

in
te

rfa
ce

in
te

rfa
ce

in
te

rfa
ce

interface

FPU

in
te

rfa
ce

interface

Figure 7. MIPS R3000 TLM Structure

SETIT2007

 - 5 -

Although each module has to work in
synchronization, the notion of clock signal and the
data movement from one module to another at the
clock edge is abstracted to transactions. Hence the
“WRITE BACK” stage from MIPS 5 stage pipeline is
not a separate module whereas each of EXE, FPU and
DCACHE writes results back to the GPR as soon as
they are available. Each module passes data to
necessary modules via interfaces.

The new architecture block diagram that includes
interfaces is shown in Figure 7. The SystemC
implementation of R3000 processor is separated in 10
files: 6 header files corresponding to each module
from the block diagram, 1 header file for all the
interface declarations, 1 main module that connects all
the sub modules, 1 directive header file that contains
some global constants and the last is the main for
simulation. All the names of modules/files and their
detailed function/implementation are explained below.

2.2.1. Icache Module
The icache sc_module reads an instruction file

called “icache” and stores in the array of length
defined in “derective.h” as MAX CODE LENGTH.
As it reads instructions from the file, it prints out at
initialization. The Icache module does not have a
process, since once it is initialized it only provides
instruction cache structure in the form of an array. The
fetch module will read the corresponding location of
array depending on the program counter. For the fetch
module to have access to the array in the icache
module, an icache_read () member function is defined.

2.2.2. Fetch Module
The fetch module is connected to both the icache

and decode modules, hence it needs an interface for
each transaction. fetch_icache_if is used for
transaction from the icache module and fetch decode
if is used for transaction to the decode module.
fetch_icache_if provides icache_read (current PC) for
the transaction of reading instructions from the
instruction cache array, whereas fetch_decode_if
provides a fetch_to_decode (instruction, next PC)
function for transaction to the decode module passing
instructions and the next program counter. Each of the
transactions has to go through a predefined port of
corresponding interface type. icache_read () uses port
fetch_icache_port of type fetch_icache_if and
fetch_to_decode () uses port fetch_decod_port of type
fetch decode if. Once all the structure is well defined,
the main body is implemented such that the fetch
module receives the program counter as
address_if_instruction_cache and read an instruction
from instruction cache. Read instruction is then passed
to the decode module along with the next program
counter, which is the current PC + 1 (assuming the
instruction cache is 32 bit registers). After executing
one cycle of its duty, the fetch module notifies its main

process with event that the process is sensitive to so
that next cycle can be started as well.

2.2.3. Decode Module
The decode module is the busiest module of all in

the MIPS processor model. It decodes instructions
from the fetch module, passes the decoded parameters
to the EXE or FPU module, determines if the branch
condition is met, updates the program counter to
branch target address if the branch condition is met
and sends a no-op instruction if the branch instruction
is not met, etc. At initialization, the constructor reads a
file called “register”, which the user writes as initial
register file. When the processor is started, it receives
an instruction and PC from the fetch module. The
unsigned instruction value is treated as 32 bit binary
number and each of the necessary bit fields, such as
opcode, rs, rt, rd, immediate, etc, are extracted by
shifting the binary string. The extracted bit fields are
assigned to corresponding variables for them to be
passed to the EXE module according to the decoded
result. If an instruction is found to be branch or jump,
then the condition is checked and the next program
counter is updated with the branch/jump target address
according to the outcome of the condition. The
original program counter or the updated one,
according to branch, is then transferred to the fetch
module. This module uses three interfaces:
decode_fetch_if, decode_exe_if, and decode_fpu_if.
Also due to interaction with number of other modules,
it defines many interface member functions:
fetch_to_decode (), alu_result_to_GPR (),
mult_div_result (), and dcache_to_GPR ().

2.2.4. Exe Module
The Exe module receives operands and function

code from the decode module and the process starts
from there. Upon process start, it executes one of the
following ALU operations: add, sub, or, and, xor, nor,
address calculation (addition), mult, or div. Unless the
instruction is load/store which requires dcache access,
the results of ALU operations are written to the
register file in the decode module. If an instruction is
load/store then the calculated address and
corresponding data or destination register address are
passed onto the dcache module for memory access.
Exe module has three interface member functions all
from the decode module. The decode module uses one
of the three functions to pass correct parameters to the
Exe module depending if the instruction is R-type, I-
type, or Load/Store. When one of the member
functions is called in the decode module, the Exe
module process is notified and started its cycle.

2.2.5. Dcache Module
The dcache module contains the dcache array

which is data cache. It initializes an array dcache[]
which size is determined by the user from directive.h.
Then a memory file called “dcache” is read and
updates the value. The process of this module is

SETIT2007

 - 6 -

sensitive only to load/store instructions from the Exe
module so that it is activated only when needed. It
only reads from the dcache array or writes to it
depending whether it is a load or store instruction.

2.2.6. FPU Module
The FPU module can be started only when an

instruction is found to be a floating point instruction in
the decode module. FPU has its own 32 bit floating
point register file and it reads the “float register” file
to initialize the register file. In a real MIPS processor,
the floating point unit is a separate processor that can
execute IEEE754 arithmetic. Once a floating point
instruction is decoded in the decode module, it passes
all instruction information to the FPU module then the
FPU process is started. Received floating point
instructions are executed according to the
specification of the instruction using its own float
register. If the instruction needs memory access, then
the parameters are passed to the dcache module.

2.2.7. MIPS CPU Module
This is the top module that contains all the sub-

modules to make a complete processor. It declares all
the units from corresponding modules and connects all
the ports between the modules. This MIPS CPU
module can be used as one of the processors in a
multi-processor platform later on.

2.2.8. MIPS CPU.cpp
This is the main for the MIPS TLM to simulate the

processor. It defines time intervals and the maximum
time for simulation.

2.2.9. Machine Code Instruction Generator
To run the MIPS R3000 processor model,

instructions in binary machine code need to be stored
in the instruction cache. Normally, it is the compiler
that generates the machine code from assembler
program. To test various instructions in timely manner,
a simple Perl script code from SystemC 2.0.1 risc_cpu
example library has been modified to be fully
compatible to MIPS instructions.

sub dec2bin {

my $str = unpack("B32", pack("N", shift));

return $str;

}

sub bin2dec {

return unpack("N",

pack("B32",

substr("0" x 32 . shift, -32)));

}

Figure 8. Perl Routines: bin2dec, dec2bin

We define two sub routines, “bin2dec” and
“dec2bin” (see Figure 8), which would allow the
program to read assembly code written in text file.
“bin2dec” converts a 32 bit binary string to integer,
while “dec2bin” converts an integer argument to a 32
bit binary string.

Using a while loop, the program reads one
assembly code at a time converting it to corresponding
machine code. From a single assembly code, it
extracts necessary information such as opcode, two
operands, destination, immediate, and address, etc.
The opcode is taken as character string whereas all
others are taken as integers (see Figure 9).

chop($_);

$_ =˜ s/\s+/ /g;

($opcode, $arg_1, $arg_2, $arg_3) = split(/ /,$_);

$arg_1 =˜ (s/(R||F||r||f)//g);

$arg_2 =˜ (s/(R||F||r||f)//g);

$arg_3 =˜ (s/(R||F||r||f)//g);

Figure 9. Extraction of Assembly Arguments

Once all the necessary register fields are extracted
in integer, they are converted to 32 bit binary strings
and again necessary binary digits are extracted (see
Figure 10). For example, operands or destination
register fields are 5 bit binary number. Hence from 32-
bit binary string corresponding to the register number,
27 leading zeros are deleted to make them 5 bit binary
string.

$rd = dec2bin($arg_1);

$rs = dec2bin($arg_2);

$rt = dec2bin($arg_3);

$imm = dec2bin($arg_3);

$target = dec2bin($arg_1);

$imm_branch = dec2bin($arg_2);

$rt =˜ s/000000000000000000000000000//g;

$rs =˜ s/000000000000000000000000000//g;

$rd =˜ s/000000000000000000000000000//g;

$rzero = "00000";

$fp_op = "010001";

$single = "10000";

$double = "10001";

Figure 10. Variable Assignment

Using if statements, the opcodes are decoded to
construct corresponding machine code strings. From
the opcode, 32 bit binary string is constructed by
concatenating necessary fields in order. Then using the
bin2dec sub-routine, it is converted to a decimal
integer. Then again the decimal integer is converted to
8 digit hexadecimal output and printed (Figure 11).

SETIT2007

 - 7 -

if ($opcode =˜ /\badd\b/)

{

$funct = "100000";

$bin_code = $R_type.$rs.$rt.$rd.$rzero.$funct;

$dec_code = bin2dec($bin_code);

printf ("0x");

printf ("%08x",$dec_code);

}

Figure 11. Machine Code Construction

After the while loop goes through every assembly
instruction and printing each instruction in a new line,
an additional instruction 0xffffffff is printed indicating
that there are no more instructions to be executed
while running the simulation.

“MIPS assembler.pl” can decode and convert
standard MIPS assembly instructions that are
compatible to MIPS R3000. It contains 39 integer
instructions and 55 floating point instructions (single
precision and double precision). However, there are
two special attentions required to use MIPS
assembler.pl effectively. First, when an instruction
requires to calculate a memory address using base and
immediate, standard MIPS instructions write
“instruction $destination, (offset) $base”. The
convention in the MIPS assembler is “instruction
$destination, $base, offset” in memory accessing
instructions. Second, floating point instructions are
required to write “f” in front of every floating
instruction to indicate that this instruction is a floating
point instruction. And also the use of “.” is not
permitted. For example, a standard MIPS floating
point instruction writes “add.s”, meaning single
precision floating point addition.

lw $1, (100)$2 -> lw $1, $2, 100

div.d $f2, $f4, $f6 -> fdivd $f2, $f4, $f6

c.lt.s $f2, $f4 -> fclts $f2, $f4

Figure 12. Special Assembly Instructions for
Machine Code Generator

addi R1, R0, 15 0x2001000f
addi R2, R0, 16 0x20020010
addi R3, R0, 1 0x20030001
addi R4, R0, 3 0x20040003
sub R5, R2, R1 0x00223020
add R6, R1, R2 0x00412822
add R7, R3, R4 0x00643820
add R8, R8, R1 0x01014020
subi R1, R1, 1 0x28210001
beq R1, R0, 1 0x10200001
j 4 0x08000004
add R10, R9, R0 0x01205020
addi R11, R0, 15 0x200b000f
sw R11, R1, 0 0xac2b0000
lw R12, R0, 10 0x8c0c000a
addi R2, R0, 16 0x20020010

Figure 13. Test Assembly Code and Corresponding
Machine Code

It is required to write this particular instruction as
“fadds”, writing “f” in front and deleting the dot.
Figures 12 and 13 give some examples of above
mentioned cases.

3. Experimental Results

3.1. Description
To test if the processor is executing the

instructions correctly, an assembly test code is written
and the corresponding machine code is generated
using MIPS assembler.pl. This simple test code first
updates several registers with immediate values then
sets up a branch instruction for conditional branch. If
this branch condition is met, then it will skip the next
instruction, if not it will execute the next instruction.
The instruction in Figure 14 is found to be Jump and it
forces a branch to the instruction at address #4. This
forms a loop and the loop terminates when branch
condition is met. It is a very simple program but useful
to see every register updates and the movement of data
through data path. For every cycle, each module will
print out what it is processing in terms of instruction
number. So it can be easily seen how the instruction
moves through each cycle in a pipelined fashion.

Figure 14 is the portion of the output of running
the test code. It goes through 114 instruction cycles till
it breaks out of loop and does store, load, and addi
instructions. Looking at the output diagonally from
left low to right high indicates at one cycle, each
module has a different instruction being processed.
For example, when instruction #112 is fetched, the
decode module is decoding instruction #111, Exe
module is executing instruction #110. On the other
hand, looking diagonally from left high to right low
will show how a particular instruction goes through
the pipeline. For example, it can be seen that
instruction #111 is fetched, decoded, executed through
3 cycles.

Using the register dump option in directive.h, the
output can have register file at every cycle of
simulation so its content can be easily seen. Figure 15
is the output of the same test code with register dump
option.

3.2. Discussion
The design of a simple pipelined RISC processor,

R3000 in TLM has several advantages over RTL.

 • Transaction of arguments by function calls
through interfaces eliminates number of ports
needed in RTL.

 • Abstract data type such as integer, unsigned,
byte, word, etc. can be used for arguments not

SETIT2007

 - 8 -

just bit or bit vector and this makes it easier to
interact with software.

 • Because of the flexibility of TLM, it can be
used as IP block easily.

 • The simulation time can be reduced thanks to
abstracting actual implementation.

• Since the details of implementation can be
abstracted, the design time can be reduced.

Figure 14. MIPS TLM Simulation Output

Figure 15. MIPS TLM Simulation Output with
Register Dump

4. Conclusion
In this paper, we modeled a MIPS R3000

processor at the Transaction Level (TLM) in SystemC.
The processor has sub-modules defined as pipeline
stages and at a high level of abstraction, data moves
from one sub-module to another by function calls
through interfaces. The use of function calls
eliminates the notion of clock cycles. Hence some
modules that require multiple clock cycles to process
in the real implementation can be simplified in terms
of simulation time. Also TLM does not implement
pins other than sc_ports, it can easily be used as an IP
block in other designs. The concept of TLM as well as
SystemC is a relatively new practice but as the need
for system level simulation rapidly increases, it will be
an important part in early development stages of an
SoC design flow.

5. References
[Bre02] C. Brej. A MIPS R3000 Microprocessor on a

FPGA. Technical report, The University of
Manchester, Computer Science Department,
2002.

[CoW06] CoWare Inc. CoWare Model Library.
Website,2006.
http://coware.com/products/mod
ellibrary_datasheet.php.

[Ghe05] F. Ghenassia. Transaction-Level Modeling
with SystemC: TLM Concepts and
Applications for Embedded Systems.
Kluwer Academic Publishers, 2005.

[Gro02] T. Grotker. System Design with SystemC.
Kluwer Academic Publishers, Norwell, MA,
USA, 2002.

[HP02] J. L. Hennessy and D. A. Patterson.
Computer Architecture: A Quantitative
Approach, Series in Computer Architecture
and Design. Morgan Kaufmann, 2002.

[IEE05] IEEE Standards Association. IEEE Std
1666TM-2005 Open SystemC Language
Reference Manual. Website 2005.
http://standards.ieee.org/geti
eee/1666/download/1666-005.pdf.

[Jor03] N. A. Jorgensen. MIPS R2000 Core model in
SystemC. Website, 2003.
http://www2.imm.dtu.dk/˜jan/so
cmobinet/courseware/elements/m
ips_core.htm.

[OSI06] Open SystemC Initiative. The SystemC
Library, Website, 2006.
http://www.systemc.org/.

[Sys06] SystemVerilog. IEEE 1800TM SystemVerilog
Standard. Website, 2006.
http://www.systemverilog.org.

