
27

2006 IEEE International High Level Design and Test Workshop

Automated Coverage Directed Test Generation Using
a Cell-Based Genetic Algorithm

Amer Samarah, Ali Habibi, Sofiene Tahar, and Nawwaf Kharma
Department of Electrical and Computer Engineering

Concordia University
1455 de Maisonneuve West
Montreal, Quebec H3G 1M8

Emails:{amer sam, habibi, tahar, kharma}@ece.concordia.ca

Abstract- Functional verification is a major challenge in the
hardware design development cycle. Defining the appropriate
coverage points that capture the design's functionalities is a
non-trivial problem. However, the real bottleneck remains in
generating the suitable testbenches that activate those coverage
points adequately. In this paper, we propose an approach to
enhance the coverage rate of multiple coverage points through
the automatic generation of appropriate test patterns. We employ
a directed random simulation, where directives are continuously
updated until achieving acceptable coverage rates for all coverage
points. We propose to model the solution of the test generation
problem as sequences of directives or cells, each of them with
specific width, height and distribution. Our approach is based on
a genetic algorithm, which automatically optimizes the widths,
heights and distributions of these cells over the whole input
domain with the aim of enhancing the effectiveness of test
generation. We illustrate the efficiency of our approach on a
set of designs modeled in SystemC.

I. INTRODUCTION

Due to the increasing complexity of hardware design and
the never ending pressure of shorter time-to-market, functional
verification has become a major challenge in the design devel-
opment cycle. With unceasing growth in system functionality,
the challenge today concerns, in particular, verifying that the
logic design obeys the intended functional specification, and
that it performs the tasks required by the overall system
architecture [16].

Several methodologies have been developed lately in order
to tackle the functional verification problem: simulation based
verification, assertion based verification and coverage based
verification [16]. In simulation based verification, a dedicated
test bench is built to functionally verify the design by pro-
viding meaningful scenarios. On the other hand, assertion
based verification is used to catch errors on the spot, where
assertions are written either in a hardware description language
or a specialized assertion language (e.g., Property specification
Language (PSL) [1] or System Verilog Assertion (SVA) [5]).

The concept of coverage based verification requires the
definition of coverage metrics which are used to assess the
progress of the verification cycle and to identify functionalities
of the design that have not been tested. The most widely
used metrics are: code coverage, finite state machine (FSM)
coverage and functional coverage. Code coverage evaluates
the degree to which the structure of the hardware description
language source code has been exercised, while the FSM

coverage provides more clues about the functionality of the
system. The main problem with FSM coverage is that the
generation of large FSMs leads to combinatorial explosion
(state explosion problem). In functional coverage, a set of
points represent the important behavior and specification of
the design are investigated. Accordingly, the coverage could
be the number of activations of these points [16].
Random test generators are commonly used for exploring

unexercised areas of the design. Coverage tools are used
side by side with random test generator in order to assess
the progress of the test plans during the verification cycle.
The coverage analysis allows for (1) the modification of the
directives for the test generators; and (2) the targeting of areas
of the design that are not covered well [6]. This process of
modifying the directives for the test generator according to
feedback based on coverage reports (called Coverage Directed
test Generation (CDG)) is a manual and exhausting process,
but essential for the completion of the verification cycle.
Considerable effort is being invested in finding ways to close
the loop connecting coverage analysis to adaptive generation
of test directives.

In this paper, we propose an approach for automatic CDG.
We aim at (1) constructing efficient test generators for check-
ing the important behavior and specification of the Design
Under Test (DUT); (2) finding common directives that activate
multiple coverage points; (3) improving the coverage progress
rate; and (4) designing directives that can reach uncovered
tasks (coverage points). By achieving these goals, we increase
the efficiency and quality of the verification process and reduce
the time and effort needed to implement a test plan.

Our final objective is to increase the coverage of mul-
tiple coverage tasks at the same time. Hence, we propose
an algorithm that is capable of targeting complex coverage
tasks and groups of correlated coverage tasks while achieving
adequate coverage rates. This is done by moving from a
blind random test generation over the inputs domains to
an optimized generation in relation to the coverage points.
We split the input domains into sub ranges each having a
specific weight (that represents the probability of generating
values from that range). We refer to these ranges as cells.
Our proposed algorithm (called Cell-based Genetic Algorithm
(CGA)) automatically optimizes the widths, heights and dis-
tributions of these cells over the whole domain with the aim

1-4244-0679-X/06/$20.00 ©2006 IEEE 19

of enhancing the effectiveness of the tests generation process

for the considered coverage group.

Our algorithm inherits the advantages of genetic algorithms,
which are techniques inspired by evolutionary biology [11].
The evolution starts from a population of completely random
abstract potential solutions and continues over generations.
In each generation, all individual members of the population
are evaluated for fitness using a fitness evaluation function or

methods; multiple individuals are stochastically selected from
the current population based on their fitness values and are

then possibly modified by genetic operators to form a new

population for further evolution. The process of evaluation,
selection and diversification iterates until a termination crite-
rion is satisfied.

In order to evaluate our algorithm, we consider two designs
modeled in SystemC [12]. This latter is the standard for
system level design. It is a library and modeling platform
built on top of C++ to represent functionality, communications,
and software and hardware implementation at various levels
of abstraction. The main advantage of SystemC is a faster
simulation speed that enables faster convergence of the genetic
algorithm. Experimental results illustrate the effectiveness of
the proposed algorithm in achieving the goals of CDG.

The rest of this paper is as follows. Section II reviews related
work. Section III describes our methodology of integrating the
CGA within the design flow. Section IV presents the details
of the proposed genetic algorithm. Section V illustrates the
experimental results. Finally, Section VI concludes the paper.

II. RELATED WORK

Considerable effort has been expended in the area of func-
tional verification. Several approaches based on simple genetic
algorithm, machine learning, and Markov chain modeling
have been developed. For instance, the work in [8] uses a

simple genetic algorithm to improve the coverage rates for
SystemC RTL models. This work tackles a single coverage

point at a time, and hence is unable to achieve high coverage
rates in the case of complex coverage point. In contrast, our

methodology, which is based on multiple sub-range directives,
is able to handle multiple coverage points simultaneously. In
[4] Bayesian networks are used to model the relation between
coverage space and test generator directives. This algorithm
uses training data during the learning phase, and the quality
of this data affects the ability of the Bayesian network to
encode knowledge correctly. In contrast, our algorithm starts
with totally random data, where the quality of initial values
affects only the speed of learning and not the quality of the
encoded knowledge. [15] proposes the use of a Markov chains
to model the DUT, while coverage analysis data is used to
modify the parameters of the Markov chain which is then used
to generate test cases for the design.

Genetic algorithms have been used for many verification and
coverage problems. For example, [7] addresses the exploration
of large state spaces. This work is based on BDDs (Binary
Decision Diagrams) and is restricted to simple Boolean asser-

tions. In [3], genetic programming is used to develop automatic

test programs and instruction sequences for microprocessor
cores. Besides functional verification, genetic algorithms have
been used for Automatic Test Pattern Generation (ATPG)
problems in order to improve the detection of manufacturing
defects [10].

III. METHODOLOGY OF AUTOMATIC COVERAGE
DIRECTED TEST GENERATION

We propose a verification technique that aims at automati-
cally directing the test generation based on functional coverage

metric. Figure 1 illustrates the overall CDG approach, where
designers provide the verification team with the design under
verification and its functional specification. This latter is
given in the form of functional coverage points that represent
important behaviors and specifications of the design. After
evaluating the coverage reports, the verification engineers
continually write and update directives and constraints for
the random test generator to activate the coverage points and
achieve high coverage rates.

______________ ______I I II.I
: | ~~~~~Coverage Designde

I I _ I I ~~~~~~~~~Verification I

Biased Pattern

Directive for Coverage
l Random Report (rate

Generation and count)

CGA

Fig. 1. Automatic Coverage Directed Test Generation (CDG)

To close the loop between the coverage report and directives
for test generation, our CGA analyzes the coverage reports,
evaluates the current test directives, and acquires the knowl-
edge over time to modify the test directives. This increases the
efficiency and quality of the verification process and reduces
the time, manual effort, and human intervention needed to
implement a test plan.

Figure 2 presents the proposed CGA based CDG methodol-
ogy. It starts by producing initial random potential solutions,
then two phases of iterative processes are performed: a Fitness
Evaluation phase and a Selection and Diversification phase.
During the Fitness Evaluation phase, we evaluate the quality
of a potential solution that represents possible test directives.
This process starts with extracting the test directives and
generating test patterns that stimulate the DUT. Thereafter,

20

28

A. Representation (Encoding)
Traditionally, genetic algorithms use a fixed-length bit string

to encode a single value solution. However, the solution of
the CDG problem is described as sequences of directives that
direct the random test generator to activate the whole coverage
group. This introduces the need of more complex and rich
representations of the potential solution.
A Cell is the fundamental unit introduced to represent a

partial solution. Each cell represents a weighted uniform ran-
dom distribution over two limits. Moreover, the near optimal
random distribution for each test generator may consist of one
or more cells according to the complexity of that distribution.
However, we call the list of cells represents that distribution
a Chromosome. Usually, there are many test generators that
drive the DUT, and so we need a corresponding number of
chromosomes to represent the whole solution, which we call
Genome. Figure 3 represents a possible solution for some input
i which is composed of 3 cells.

Display
Output

Fig. 2. CDG Methodology using CGA

the CGA collects the coverage data and analyzes them, then
assigns a fitness value to each potential solution that reflects
its quality. The evaluation criterion is based on many factors
including coverage rate, variance of the coverage rate over

the same coverage group, and the number of activated points.
In the Selection and Diversification phase, several evolution-
ary operations (Elitism and Selection) and genetic operators
(Crossover and Mutation) are applied on the current population
of potential solutions to produce a new better population.
These two phases will be applied to each population until the
algorithm satisfies the termination criterion.

IV. CELL-BASED GENETIC ALGORITHM - CGA
Like any genetic algorithm, following components of our

CGA for CDG should be carefully chosen:
1) a genetic representation for potential solutions.
2) a way to create the initial population of solutions.
3) an evaluation that plays the role of the environment.
4) genetic operators (e.g., crossover and mutation) that alter

the composition of new population.
5) values for various parameters that the genetic algorithm

uses (e.g., population size, probabilities of applying
genetic operators, weight and selection of genetic op-

erators, etc.).
In the next section, we describe in details specification

and implementation issues of all components of the CGA
including initialization, elitism, selection, crossover, mutation,
and termination criteria.

Domain representation of chromosome i /

Cell j, Cell i2 Cell j3
Ii1 I1

Fig. 3. Chromosome Representation

Let Cellij be the jth cell corresponding to test generator i
that is represented by ni bits. This cell has three parameters
(as shown in Figure 3) to represent the uniform random distri-
bution: low limit Lij, high limit Hij, and weight of generation
Wij. Moreover, these parameters have the following ranges:

ni c [1, 32], number of bits to represent input i
. wij e [0, 255], weight of Cellij
Lmax < 2i , maximum valid range of chromosome i
Lij, Hij e [0, Lmax -1] limit ranges of Cellij

Each chromosome encapsulates many parameters used dur-
ing the evolution process including the maximum useful range

Lmax for each test generator and the total weight of all
cells. Finally, the representation of a chromosome and the
mapping between a chromosome and its domain representation
is illustrated in Figure 3.

Figure 4 depicts a genome, which is a collection of many
chromosomes each representing one of the test generators.
Each genome is assigned a fitness value that reflects its quality.
A genome also holds many essential parameters required
for the evolution process. These include the complexity of
chromosomes which equals the number of cells in it, the
mutation probability Pm of a cell, the crossover probability

21

29

Cn)
(D
(D
a
0

<

(D

0)

LL]
UON)

No

Fig. 4. Ge:

P, of a chromosome, and 1

of each type of mutation
probabilities and weights
process.

B. Initialization
The CGA starts with an ii

to one of the following twc
1) Fixed period random

some Chromi that spans

represented by ni bits, we
into ni equal sub-ranges a

cell within each sub-range

Cell j, Cell 2

2

Li2 Hi2

Fig. 5. Fixed Pe

This configuration is bias
such may not guarantee cor

space. On the other hand, it
range will be represented b

2) Random period rando
a random initial cell withi
new cell will span over the
the successive cells withir
reach the maximum range

low limit of each cell must
cell.

C. Elitism

To ensure continues non

generations, we use an elit
copy the best 5% of the fiti

and forward them to the next generation of solutions. This
mechanism guarantees that the best chromosomes are never

destroyed by either the crossover or the mutation operators.

D. Selection
For reproduction purposes, the CGA employs the well

known roulette wheel fitness proportionate and tournament
selection methods [11]. Selection operators and methods must
ensure a large diversity of the population and prevent prema-

ture convergence on poor solutions while pushing the popula-
tion towards better solutions over generations. In the case of
the tournament selection, we can control the selection pressure

of highly fitted individuals by changing the tournament size.

E. Crossover

Crossover operators are applied with a probability PC for
nome Representation each chromosome. In order to determine whether chromo-

some will undergo a crossover operation, a random number
p c [0,1] is generated and compared to P, If p < P, , the

wihssover(W)hev ofthegenera chromosome will be selected for crossover, else it will be for-
and crossover. The values Of the

are constant during the evolution
warded without modification to the next generation. Crossover
is important to keep useful features of good genomes of the
current generation and forward that information to the next
generation. It is considered as the wheel of learning for genetic

nitial random population according algorithm.
) initialization schemes: We define two types of chromosome-based crossover: (1)
i initialization: Given a chromo- single point crossover, where cells are exchanged between
over the range [0, Lmax] and is two chromosomes; and (2) inter-cell crossover, where cells
Jivide the whole range of Chromi are merged together to produce a new offspring. Moreover,
nd then generate a random initial we assign two predefined constant weights: Wcross-1 to
as shown in Figure 5. Single Point Crossover and Wcross-2 to Inter Cell Crossover.

The selection of either type depends on these weights; we

generate a uniform number N e [1, Wcross- + Wcross -21 and
C~ell j3 Cell j4Cell j Cel accordingly we choose the crossover operators as follows:

Wi5 . Type I: Single Point Crossover
W 1 < N < W,I88_1

Lx HD Li. Hi4 Li His Chromi * Type II: Inter-Cell Crossover

Wcross-l < N < Wcross-l + Wcross-2

riod Random Initialization (1) Single Point Crossover is similar to a typical crossover

operator where each chromosome is divided into two parts and
sed (not uniformly random) and as an exchange of these parts between two parent chromosomes
nplete coverage of the whole input is taken place around the crossover point as shown in Figure
t ensures that an input with a wide 6. The algorithm starts by generating a random number C
'y many cells. e [0, Lmax], then it searches for the position of the point C
pm initialization: Here, we generate among the cells of the involved chromosomes in the crossover
n the useful range [0, Lmaxl; this operation. If point C lies within the range of Cellij that is
range [Lio, Hio], then we generate [Lij, Hij], then this cell will be split into two cells [Lij, C]
the range [Hij, Lmax] until we and [C, Hij] around point C, as shown in Figure 6. Finally, an
limit Lmax. In other words, the exchange of the cells between the two involved chromosomes
come after the end of the previous takes place around point C to produce a new chromosome. At

this point, the complexity of the solution as well as the total
weights of cells must be computed for future use.

(2) Inter-Cell Crossover is a merging of two chromosomes
-decreasing maximum fitness over rather than an exchange of parts of two chromosomes. Given
tism mechanism. Accordingly, we two chromosomes Chromi and Chromj, we define two types
test individual without any change of merging as follows:

22

30

03|Li, Hi, | l12 |H12 |W12 | >|Lia |Hia |El,

El ZIZIE EJEE KIiELI|H21 |21 EL22EE22JEW22 EJEH-E W2b

ES |L31 31 31 ||L32 |H32 |W32 L2C H2, |W2c

kl |Hkl kj k2|H,2 Wk --
--- ----- L,z Hk, k

Mutation probability per cell: Pmj cell
Weights of each mutation type: Wadd/delete, wadjust/ shift, Wchange weight
Crossover probability per chromosome: Pc/ chromosome
Weights of each crossover type: Wsingle point, Wunion/ intersecion

Wil Cross point C

LHW~ ~ ~ ~ ~ ~ ~ W

Li Hi, Li2 e Hi2 Li3 Hi

Ljl Hjl Lj2 Hj2 _j Hj3 L,4 Hj4

Cell j, Cell i2 Cell i3

Egn Li, Hi, W'l l L2 Hi2|Wi| Li3 |HD3|Wi

InF Ljl HjlI|W Lj2 |Hj2 W,2 |Lj3 |H |W |L |Hj4 |Wj4|E

Li C I________. ______

Wil

W i~~~~~W2
Wi

(a) L H L H L H Chnromi

wjl

r ~~~~~~~Wj2
(b) 1 - ChromjLj Hl Hj Lj2hrm

Wil m F

wj2 WD

LL

[Wil(Hil Li,) + Wil(Hjl Ljl) + Wi2(Hi2 Li2)]/(Hi2 Li,)

(d) LLl HH2Hj2 LD HD N

(W + Wil)/2
(WL +Wi2W

(e) LHLj Hi Hl

Fig. 6. Single Point Crossover

Merging by Union (Chromi U Chromj): Combine
Chromi and Chromj while replacing the overlapped
cells with only one averaged weighted cell to reduce the
complexity of the solution and to produce a less con-

strained random test generator (phenotype). The weight
of a new merged cell will be proportional to the relative
width and weight of each cell involved in the merging
process as illustrated in Figure 7.
Merging by Intersection (Chromi n Chromj): Extract
average weighted cells of the common parts between
Chromi and Chromj, where the new weight is the
average of the weights of the overlapped cells. This will
produce a more constrained random test generator.

The inter-cell crossover operation is illustrated in Figure 7.
This type of crossover is more effective in producing a new

useful offspring since it shares information between chromo-
somes along the whole range rather than at single crossover

points as in the first type. Furthermore, inter-cell crossover

is able to transfer the good features over generations while
presenting distinct cells that enrich the learning process.

We use the same procedure to find out the union and
intersection of two chromosomes. Given a Cellij spanning
over the range [Lij,Hij], a random number N 6 [0,Lmal]
may lay in one of the following three regions with respect to
Cellij as shown in Figure 8:

RegionO, if N < Lij
Regionl, if (N > Lij) and (N < Hij)
Region2, if N > H

For example, to find the possible intersection of Cellik
with Cellij, the procedure searchs for the relative position of
Lik (low limit of Cellik) with respect to Cellij starting from
Region2 down to RegionO for the purpose of reducing the
computational cost. If Lik lies in Region2, then no intersec-
tion nor merging is possible, else the procedure searches for

Fig. 7. Inter Cell Crossover

the relative position of Hik (high limit of Cellik) with respect
to Cellij. According to the relative position of both Lik and
Hik with respect to Cellij, the procedure decides whether
there is an intersection or a merging or not, and whether it
has to check the relative position of Cellik with respect to the
successive cells of Cellij for possible intersection or merging
regions.

Fig. 8. Inter Cell Crossover Procedure

F Mutation

Mutation operators introduce new features to the evolved
population which are important to keep a diversity that helps
the genetic algorithm to escape from a local minimum and
explore hidden areas of the solution space. Mutation is applied
on individual cells with a probability Pm for each cell in
contrast to crossover operators, which is applied to pairs of
chromosomes. Moreover, the mutation rate is proportional
to the complexity of chromosome such that more complex
chromosomes will be more sensible to mutation.

23

31

-3 Chrom i + Chromj

Union Crossover
Chrom i + Chromj

Intersection Crossover
Chrom i n Chromj

(c) LLi, Lj, Hi, Li2 Hj. Hi, Hj, Lj, Li, HD

Again, due to the complex nature of our genotype and
phenotype, we propose many mutation operators that are able
to mutate the low limit, high limit, and the weight of cells.
According to the mutation probability Pm, we can decide
whether a cell will be selected for mutation or not. In case that
a cell is chosen for mutation, we apply one of the following
mutation operators:

Insert or delete a cell.
Shift or adjust a cell.
Change cell's weight.

The selection of the mutation operator is based on pre-

defined weights associated with each of them, in a similar
manner to the selection of crossover operators.

1) Insert or delete a cell: This mutation operator is to
delete a Cellij or to insert a new one around it. Moreover,
we select either insertion or deletion with equal probability.
If deletion is chosen, we pop Cellij out of the chromosome
and proceed for the next cell to check the applicability of
mutation on it. In case insertion is selected, we insert a new

randomly generated cell either behind or next to Cellij. This
new random cell must reside within the gap between Cellij
and the previous or next cell according to the relative position
of this new cell, with respect to Cellij.

2) Shift or adjust a cell: If Cellij is chosen for this type
of mutation, then either we shift or adjust Cellij with equal
probability. This type of mutation affects either one or both
limits of Cellij, but it does not affect its weight. Moreover, if
shifting is selected, then we equally modify both the low and
high limits of Cellij within the range of high limit Hij-1 of
the previous cell and low limit Lij+1 of the next cell to Cellij.
On the other hand, if adjusting is selected, we choose randomly
either the low or high limit of Cellij, and then modify the
chosen limit within a range that prevents overlapping between
the modified cell and other cells of the chromosome.

3) Change cell's weight: This mutation operation replaces
the weight of Cellij with a new randomly generated weight
within the range [0, 255].

G. Fitness Evaluation
The evaluation of solutions represented by fitness values

is important to guide the learning and evolution process in
terms of speed and efficiency. The potential solution of the
CDG problem is a sequence of weighted cells that constrain
a random test generator to maximize the coverage rate of a

group of coverage points. The evaluation of such a solution is
somehow like a decision making problem where the main goal
is to activate all coverage points among the coverage group

and then to maximize the average coverage rate for all points.
The average coverage rate is not a good evaluation function

to discriminate potential solutions when there are many cov-

erage points to consider simultaneously. For instance, we may
achieve 100% for some coverage points while leaving other
points totally inactivated. Accordingly, we designed a four
stages fitness evaluation that targets to activate all coverage

points before tending to maximize the total coverage rate as

follows:

1) Find a solution that activates all coverage points at least
one time regardless of the number of activations.

2) Push the solution towards activating all coverage points
according to a predefined coverage rate threshold Cov-
Rate].

3) Push the solution towards activating all coverage points
according to a predefined coverage rate threshold Cov-
Rate2 which is higher than CovRatel.

4) After achieving these three goals, we consider the aver-

age number of activation of each coverage point. Either
a linear or a square root scheme [14] will be used to
favor solutions that produce more hits of coverage points
above the threshold coverage rates.

H. Termination Criterion
The CGA termination criterion checks for the existence of

a potential solution that is able to achieve 100% or other
predefined value of coverage rate, that is acceptable for all
coverage groups. If the CGA terminates without achieving that
coverage rate, it reports the best potential solution of the final
generation run.

I. Random Number Generator

Random number generator is frequently used in simulation
based verification like the Specman environment. Besides, it is
used by genetic algorithm and other evolutionary techniques
during the process of evolution and learning. The question
of how random is the random process becomes an important
issue. A poor random generator will not be useful for simu-
lation based verification where sequences tend to be repeated
within a short cycle that may be shorter than the simulation
runs. Besides, a poor random generator might drive the genetic
algorithm to the same local optima. This is why we adopt
the Meanness Twisted algorithm [9] for stochastic decision
during the learning and evolution process as well as during
the simulation.

Mersenne Twister is a pseudo-random number generating
algorithm designed for fast generation of very high quality
pseudo-random numbers. The algorithm has a very high order
(623) of dimensional equidistribution and very long period of
219937 i1

V. EXPERIMENTAL RESULTS

The proposed CGA has been implemented in C++ using
the STL library on a Windows XP OS. The CGA was tested
on a number of hardware designs modeled in SystemC [2].
We compare some results of our CGA with those obtained
with Specman Elite [14] to show the effectiveness of our

algorithm with respect to such an industrial tools. Table I
below summarizes the parameters used in the experiments to
follow.

A. Small CPU

Specman Elite [14] and the e-language [13] enable verifica-
tion engineers to define environmental constraints, to direct the
random test generation, and to collect the coverage results. In

24

32

Parameter Value
Population size 50
Tournament size 5

Number of generations 50
Mutation probability 95%
Crossover probability 20%
Weights of crossover W0ross-1 1, WcrOss-2 = 2
Weights of mutation Wmut,t 1 2, Wmu,t-2 = 3,

Wmut-3 = I
Coverage rate 1 10
Coverage rate 2 25

TABLE I
CGA PARAMETERS

this experiment we compare the results of our algorithm with
Specman Elite for a tutorial from Specman that is a model of
a simple CPU represented by 4 state machines (see Figure 9).

No.] Coverage Points Rate (%)
1 Verify data on channel 1-5 only 100
2 Verify data on channel 4,9, and 15 only 100
3 Verify data on channel 4-7 and ensure that 100

the length of packets do not exceed 100 bytes
4 Verify data on channel 9 and 10 and ensure that 100

the length of packets do not exceed 100 bytes and
is not less than 30 bytes

TABLE III
COVERAGE RESULTS (ROUTER)

The router gets input packets and directs them to one of 16
output channels, according to their address fields. A packet is
composed of four fields: destination address (4 bits), packet's
length (8 bits), data and parity byte (8 bits). FigurelO shows
the block diagram of the router.

Fig. 9. Simple CPU

We define 4 types of coverage points inherited form the
Specman tutorial. The first point covers all state machines and
the second one covers all opcodes. The purpose of the third
point is to find a suitable input that is able to set the carry flag
as much as possible. The last point is a cross coverage point
that tries to maximize the cases of setting the carry flag with
all addition instructions.
The results in Table II show that our CGA achieved better

results in half of the cases. The CGA was able to activate all
FSM states and generate all opcodes. Furthermore, the CGA
found the best instruction sequences in order to maximally
utilize the carry flag.

Coverage point Random Specman CGA
FSM 100 100 100

Opcode 100 100 100
Carry flag is set 13 15 45

Carry flag / Add instruction 30 30-77 85

TABLE II
COVERAGE RESULTS (CPU)

B. Router
In the second experiment, we consider a router model. The

aim here is to evaluate the performance of our CGA when
dealing with coverage points that may raise conflicts while
optimizing the input ranges.

Fig. 10. Router Block Diagram

Packets are submitted to the router, one at a time, to the
inject buffer, which splits them into a byte stream. The router
module latches the first two bytes of the packet and sends the
data to the channel specified in the address field. The inject
buffer, asserts the packet valid signal at the begging of the
first byte (the header) and negates it at the beginning of the
parity byte. The master packet generator passes each packet
to the inject buffer and waits until the packet valid signal is
negated before submitting the next packet.

Table III summarizes the coverage results obtained using
the CGA. The first column in Table III includes four coverage

points to check the output on some specific channels of the
router, i.e., the packet's destination address. The third and
fourth points, add more constraints by checking not only the
packet address but also the packet's length. The experimental
results in the second column of the same table confirms that
the CGA succeeded to find the appropriate parameters in order
to generate only useful packets for toggling the corresponding
coverage points. For instance, the CGA takes advantage from
the multi-cell model used to represent the input ranges (see
Section IV-A).
The above coverage points shown in Table III concern

the destination address (4 bits) and packet length (8 bits).
Accordingly, we encode only these two fields of the packet

25

33

into a genome of a single chromosome of 12 bits range (it
could be a genome of two chromosomes, one chromosome to
represent the destination address while the other represents the
packet length).

Figure 11 shows the evolution progress related to the first
coverage point. It highlights the improvement of the average

coverage rate of the whole population over many generations
of evolution. A noticeable average coverage improvement
occurred around the fifth generation. In the same manner,

Figure 12 shows the evolution progress related to the second
coverage point.

100

90

70

60

50

40-

30-

20-

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generation no.

Fig. 11. Coverage Improvement Over Generations (First Coverage Point)

100

90

80

70

60

50

40

30

20

10

0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generation no.

Fig. 12. Coverage Improvement Over Generations (Second Coverage Point)

VI. CONCLUSION
In this paper, we presented a methodology based on genetic

algorithms to enhance the coverage rate for a group of cor-

related coverage points by closing the feedback path between
the coverage space and test directives. The experimental results
show the efficiency of our cell-based genetic algorithm in find-
ing useful directives for many coverage points. Moreover, our

algorithm shows better results and achieved higher coverage

rates than the industrial Specman tool [14]. In addition, our

algorithm shows a distinguishable ability in finding proper data
and address directives and achieving up to 100% coverage

rates for each individual coverage point.
In a future work, we intended to develop a self adaptation

scheme of our genetic evolutionary framework, where the
weights of mutation and crossover operators as well as the
probability of applying each of them can be adapted during the
evolution process. This will make our CGA totally evolvable
and more flexible.

REFERENCES

[1] Accellera Organization. Accellera Property Specification Language
Reference Manual, version 1.1. www.accellera.org, 2005.

[2] D. Black and J. Donovan. SystemC: From the Ground Up. Springer,
May 2004.

[3] F. Corno, G. Cumani, M. S. Reorda, and G. Squillero. Fully Automatic
Test Program Generation for Microprocessor Cores. In Proc. of Design
Automation and Test in Europe, pages 11006-11011, Munich, Germany,
2003. IEEE Computer Society.

[4] S. Fine and A. Ziv. Coverage Directed Test Generation for Functional
Verification using Bayesian Networks. In Proc. of Design Automation
Conference, pages 286-291, New York, NY, USA, 2003. ACM Press.

[5] H. Foster, D. Lacey, and A. Krolnik. Assertion-Based Design. Kluwer
Academic Publishers, 2003.

[6] L. Foumier, Y. Arbetman, and M. Levinger. Functional Verification
Methodology for Microprocessors using the Genesys Test-Program
Generator. In Proc. of Design Automation and Test in Europe, pages
434-441, Munich, Germany, 1999. IEEE Computer Society.

[7] P. Godefroid and S. Khurshid. Exploring Very Large State Spaces using
Genetic Algorithms. In Tools and Algorithms for the Construction and
Analysis ofSystems, LNCS 2280, pages 266-280. Springer-Verlag, 2002.

[8] A. Habibi and S. Tahar. Design and Verification of SystemC Transaction-
Level Models. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 14(1):57-68, 2006.

[9] M. Matsumoto and T. Nishimura. Mersenne Twister: a 623-
Dimensionally Equidistributed Uniform Pseudo-Random Number Gen-
erator. ACM Transaction on Modeling and Computer Simulations,
8(1):3-30, 1998.

[10] P. Mazumder and E. Rudnick. Genetic Algorithms for VLSI Design,
Layout and Test Automation. Prentice Hall Professional Technical
Reference, 1999.

[11] Z. Michalewics. Genetic Algorithm + Data Structures = Evolution
Programs. Springer, 1992.

[12] Open SystemC Initiative OSCI. IEEE 1666 SystemC Standard, 2006.
[13] S. Palnitkar. Design Verification with e. Prentice Hall Professional

Technical Reference, 2003.
[14] Specman Elite. www.verisity.com, 2006.
[15] S. Tasiran, F. Fallah, D. G. Chinnery, S. J. Weber, and K. Keutzer. A

Functional Validation Technique: Biased-Random Simulation Guided
by Observability-Based Coverage. In Proc. International Conference on

Computer Design, pages 82-88, Los Alamitos, CA, USA, 2001. IEEE
Computer Society.

[16] B. Wile, J. Goss, and W. Roesner. Comprehensive Functional Verifica-
tion: The Complete Industry Cycle. Morgan Kaufmann, June 2005.

26

34

a
0
m
n
CL
0
CL
(L)
7E)
m

(L)
.E
0
(L)

2
(L)
CY)
LI'
(L)

0
1)
(L)
CY)
2
(L)

c
0
t
n
CL
0
CL
(L)
0
m

(L)
z
z
2
m

(L)
0)
m
(L)
0
C.)
(L)
0)
m
(L)

