
Design for Verification of the PCI-X Bus

Haja Moinudeen, Ali Habibi and Sofiène Tahar

Electrical and Computer Engineering Department

Concordia University, Montreal, Canada

Email: {haja m,habibi,tahar}@ece.concordia.ca

Abstract— The importance of re-usable Intellectual Properties
(IPs) cores is increasing due to the growing complexity of
today’s system-on-chip and the need for rapid prototyping. In
this paper, we provide a design for verification approach of a
PCI-X bus model, which is the fastest and latest extension of
PCI technologies. We use two different modeling levels, namely
UML and AsmL. We integrate the verification within the design
phases where we use model checking and model based testing,
respectively at the AsmL and SystemC levels. This case study
presents an illustration of the integration of formal methods and
simulations for the purpose of providing better verification results
of SystemC IPs.

I. MOTIVATION AND PROPOSED METHODOLOGY

With the advent of high technology applications, an increas-

ingly evident need has been that of incorporating the tradi-

tional microprocessor, memories and peripherals on a single

silicon. This is what has marked the beginning of the System-

on-Chip (SoC) era. An SoC can be viewed as a collection of

various Intellectual Property (IP) cores, with interconnecting

buses running among them. There is a dire need for standard

buses to connect IPs obtained from different vendors. One

such and latest bus standards is PCI-X [8], which is a high

performance bus for interconnecting chips, expansion boards,

and processor/memory subsystems. It has the performance

to feed the most bandwidth-hungry applications and helps

to alleviate the I/O bottleneck problem while at the same

time maintaining complete hardware and software backward

compatibility to previous generations of PCI [8].

In this paper, we present a design for verification effort done

for the PCI-X bus. We start with an informal specification

of PCI-X and model it with the Unified Modeling Language

(UML) in order to have a clear view of the design modules

and their interactions. Then, we construct an Abstract Machine

Language (AsmL) [3] model from the UML representation.

We define a set of properties of the PCI-X in the Property

Specification Language (PSL) [1] that we verify using model

checking. Finally, we translate the AsmL model to SystemC

[5]. Unfortunately, not all bus properties can be verified using

model checking, that is why we use model based testing

(MBT) [6] to perform a guided simulation of the IP.

Related work to ours in the context of PCI technologies

design and verification environment concerns, in particular, the

work of Shimizu et al. [7] who presented a specification of the

PCI bus as a Verilog monitor. Any modification or refinement

of the model provided [7] is complex due to the low level

of specification of the bus. Furthermore, the PCI-X standard

includes very complex transaction rules in comparison to PCI

which cannot be handled only using model checking.

II. PCI-X BUS

PCI-X provides backward compatibility by allowing devices

to operate at conventional PCI frequencies and modes. The

bus structure includes an arbiter that performs the bus access

arbitration among multiple initiators and targets (see Figure

1). Unlike the conventional PCI bus, the arbiter in PCI-X

systems monitors the bus in order to ensure good functioning

of the bus. PCI-X supports two modes of operations: Mode 1

and Mode 2. In Mode 1 operation, data transfers always use

common clock. Mode 2 operation of PCI-X also supports 16

bit bus interface which facilitates low cost interface.

Fig. 1. General Architecture of PCI-X.

III. DESIGN PHASES

UML Level: From the specification of PCI-X, we identify the

core components of the bus viz, initiators, targets, arbiters,

PCI-X bus, which will be represented as classes, where

specific instances of the components are called as objects.

In addition to these four components, we also added another

component, the Simulation Manager (SimManager), in order

to have a notion of updates. We modeled different modes and

types of operations of PCI-X using sequence diagrams which

enable us to model the bus in AsmL easily and efficiently.

AsmL Level: Class diagrams in UML help implementing the

classes in AsmL. Each of the five core components of PCI-X

has its own data members (signals) and methods (behavior)

in addition to a constructor. We also use enumeration features

(enum) of AsmL to model different modes of PCI-X, different

types of transaction phases, the state of the system and

the clock. In Figure 2, we show how a target can signal

Proceedings of the Formal Methods in Computer Aided Design (FMCAD'06)
0-7695-2707-8/06 $20.00 © 2006

its readiness using the TRDY# signal. We call this method

as PCIX Target TRDY Assert(). The pre-conditions are the

following: TRDY# is false, FRAME# and DEVSEL# are true,

CLK is CLK UP, Phase is DATA PHASE FIRST and the AD

of the Bus should be the ID of the target. If the pre-conditions

are true, then TRDY# will be asserted.

public PCIX Target TRDY Assert()

require me.TRDY = false and Bus.FRAME = true

and Bus.AD = me.ID and Bus.DEVSEL = true

and Smanager.CLK = CLK UP

and Phase = DATA PHASE FIRST

me.TRDY := true

me.AD := Bus.AD

Bus.TRDY := true

Phase := DATA PHASE

Fig. 2. Target Assert AsmL Method.

SystemC Level: After the AsmL model of a PCI-X is verified

against the properties, we translate it to SystemC using a sound

syntactical transformation developed by Habibi et al. in [4].

IV. VERIFICATION APPROACH

Model Checking: The AsmL model is validated using a set

of user-defined PSL properties. Any incorrect property de-

tection halts the reachability algorithms and outputs a trace

for counter-examples. Table I provides the results of model

checking of PCI-X model with 5 initiators and 5 targets 1. We

show the CPU time, number of states and transitions for the

PCI-X model with various properties that we defined. As can

be seen from the table, all properties have been verified except

Property 6 and Property 7 due to a state explosion problem.

For instance, these properties are related to the successful

completion of a data transfer which typically takes more cycles

than other transactions.

TABLE I

MODEL CHECKING RESULTS

Property CPU Time (s) States Transitions

P1 385.24 2169 3250
P2 194.23 1800 2563
P3 150.52 1578 2156
P4 130.45 1489 2096
P5 156.35 1478 2265
P6 – – –
P7 – – –
P8 173.50 1925 2439
P9 174.47 2013 2698
P10 178.42 1873 2359
P11 256.63 2192 2980
P12 143.52 1356 1923

Model Based Testing: In MBT the behavior of a system is

defined in terms of actions that change the state of the system.

Such a model of the system results in a well-defined Finite

State Machine (FSM) which helps understand and predict the

1Experimentation platform: Pentium IV(2.4 GHz) / 768 MB of memory.

system’s behavior. We first generate the FSM of the PCI-

X model in AsmL based on the algorithm developed by

Grieskamp et al. in [2]. Then, using existing graph traversing

techniques, test cases are obtained from the generated FSMs to

validate the PCI-X model. Table II shows the CPU time, states

and number of transitions in the generated FSM, for several

combinations of initiators and targets. Using the generated

FSM, we apply various techniques to choose the tests. We

took advantage of several efficient graph traversing techniques

in the open literature, in particular, the Chinese Postman Tour

(CPT) and Random walk methods. MBT was of a great help

in identifying several bugs in the SystemC PCI-X model we

developed.

TABLE II

FSM GENERATION: DIRECT ALGORITHM.

Number of CPU States Transitions
Initiators Targets Time (s)

1 5 27.95 234 253
2 5 59.50 466 505
3 5 108.04 698 757
4 5 171.73 930 1009
5 2 69.89 472 511
5 3 118.20 702 761
5 4 204.93 932 1011
5 5 254.82 1162 1261
10 10 2925.31 4622 5021

V. CONCLUSION

We presented a design for verification approach applied on

the latest high speed PCI-X standard bus. Starting with a UML

formal specification, we derived an AsmL model which we

model checked against a set of PSL properties. We then trans-

lated the AsmL model to SystemC on which we investigated

the potential of model based testing approach for SystemC

designs. The traversal of the FSM was performed to generate

test cases. The final PCI-X SystemC IP was thoroughly and

formally verified, which makes it very suitable for use as

external monitor to validate existent PCI-X compatible IPs.

We believe that our approach shows how one can improve the

verification of SystemC models by integrating formal methods

and guided simulation in a single design flow.

REFERENCES

[1] Accellera Organization. Accellera Property Specification Language Ref-
erence Manual, version 1.1. www.accellera.org, 2005.

[2] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating Fi-
nite State Machines from Abstract State Machines. Software Engineering

Notes, 27(4):112–122, 2002.
[3] Y. Gurevich, B. Rossman, and W. Schulte. Semantic Essence of AsmL.

Technical report, Microsoft Research, MSR-TR-2004-27, March 2004.
[4] A. Habibi and S. Tahar. On the Transformation of SystemC to AsmL

using Abstract Interpretation. Electronic Notes in Theoretical Computer

Science, 131:39–49, May 2005.
[5] Open SystemC Initiative. www.systemc.org, 2006.
[6] H. Robinson. Model-based testing.

website: http://www.geocities.com/model based testing/, 2006.
[7] K. Shimizu, D. L. Dill, and A. J. Hu. Monitor-based formal specification

of PCI. In Formal Methods in Computer-Aided Design, pages 335–353.
LNCS 1954, Springer-Verlag, 2000.

[8] PCI Special Interest Group. Website: www.pcisig.com, 2006.

Proceedings of the Formal Methods in Computer Aided Design (FMCAD'06)
0-7695-2707-8/06 $20.00 © 2006

