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Abstract— Sharing Intellectual Property (IP) blocks in today’s
competitive market poses significant high security risks. In this
paper, we present a tutorial for a watermarking approach based
on the embedding of the ownership proof as part of the IP
design’s finite state machine (FSM). It utilizes coinciding as
well as unused transitions in the state transition graph of the
design. Based on this approach, we have developed a robust
watermarking framework, used for copyright protection. The
developed technique increases the robustness of the watermark
and allows a secure implementation, hence enabling the develop-
ment of the first public-key IP watermarking scheme at the FSM
level. In order to integrate these algorithms in the design cycle
of industrial projects, we extend the above techniques to enable
the watermarking of hierarchical finite state machines (HFSMs).

I. INTRODUCTION

Digital media piracy problems can be categorized in the

following three classes: 1) Illegal Access, where the pirate

tries to receive a digital product from a network site without

permission; 2) Intentional Tampering, where the pirate mod-

ifies a digital product in order to extract/insert features for

malicious reasons and then proceeds to its retransmission. The

authenticity of the original product is lost; and 3) Copyright
Violation, where the pirate receives a product and resells it

without getting the permission to do so from the copyright

owner. The same applies to Intellectual Property (IP) blocks

used in digital electronic design.

In order to solve above problems, the VSI Alliance IP

protection development working group [9] identifies three

main approaches to secure IPs. (1) Deterrent approaches,

where the owner uses legal means trying to stop attempts

for illegal distribution; (2) Protection techniques that try to

prevent illegal access of the IP physically by encryption. These

approaches are used at the distribution phase as well, i.e.,

the buyer has to have the correct key to decrypt the design

and so to use it. Yet, it does not secure leakage from trusted

parties, such as employees, broker; (3) Detection approaches,

where the owner detects and traces both legal and illegal

usages of the designs as in watermarking and fingerprinting.

These approaches mainly try to prevent copyright violation as

described above. The VSI alliance proposes the usage of the

three approaches for proper protection of IP designs.

The detection approaches pose an overhead on the design

cycle. IP watermarking and IP fingerprinting are the main

approaches in this category, where the design is watermarked

(tagged) then different tracking techniques are applied to

keep track of its usage. Watermarking is considered a passive

approach, because the designer can only track his/her design

but not stop copying or altering effectively.

In this paper, we present a tutorial for an IP watermarking

technique that can be used early in the design cycle, mainly

on the behavioral or register transfer levels. The watermarking

approach (proposed earlier in [1]) utilizes both existing and

unused transitions in the finite state machine (FSM) part of

the design to embed the signature. Using existing transitions

provides a supraliminal channel 1 as it would give more

strength to the system against different attacks. It also helps

balancing between adding enough data to identify the owner

and the design overhead (area, power, delay) this data may

introduce. On the other hand, the unused transitions guarantee

the uniqueness of the watermark, and ensure the addition of

the desired watermarking sequence.

The rest of the paper is organized as follows: Section II

describes related approaches from the open literature. Section

III presents our IP watermarking insertion and extraction

algorithms. Section IV evaluates the performance of the

presented approach and analyzes different attacks. Section

V presents a prototype implementated tool and discusses

different experimental results, Finally, Section VI concludes

the paper.

II. RELATED WORK

In this tutorial we are concerned primarily with FSM

watermarking techniques. In following we will limit our

discussions to these techniques. For more information about

other watermarking techniques, the reader can refer to a survey

given in [2].

1A low bandwidth channel that the intruder cannot afford to modify as it
uses the most significant components of the object as a means of transition
[5]
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FSM Watermarking Based on Unused Transitions: In [17],

Torunoglu and Charbon introduced the first IP protection

approach through FSM watermarking. The algorithm is mainly

based on extracting the unused transitions in a state transition

graph (STG) of the behavioral model. These unused transitions

are inserted in the STG and associated with a new defined

input/output sequence, which will act as the watermark. The

main advantage of this approach is the ability to detect the

presence of the watermark at all lower design levels.
The authors of [17] used the probability of coincidence

as the only measure for robustness, which only covered the

false-positives case. The algorithm is vulnerable to masking

attacks. Masking attacks do not delete the whole watermark,

yet they cover the authorship information, which means

that the direct detection method proposed by the authors is

not reliable enough and exhaustive search or the Genome

search [17] will be the main watermark extraction method.

The authors did not rely on a fixed length signature, which

would raise questions about the amount of information

embedded especially in large designs. Finally, finding the

input sequence that satisfies the probability of coincidence

and is not considered with a high overhead on the STG is an

NP-hard problem [12].

FSM Watermarking by Property Implanting: In [12],

Oliveira tried to manipulate implicitly the STG of the finite

state machine to implant the watermark as a property in the

new one. The author of [12] adds extra states and transitions

in a systematic way to satisfy this property. The algorithm has

a low overhead on the design flow, because it does not need to

go through the FSM to find the unused transitions. In [12], it

is even proposed to use a very strong way to build and implant

the watermark without the need of building the FSM of the

design, i.e., low building overhead.
The author in [12] used a 128 bit signature, which is large

enough to identify different users. The approach depends on

adding a counter that checks for the input sequence expected

and reaches a certain value to indicate that the design has

traversed the implanted watermark. This counter can be a real

weak point when it comes to masking attacks, as deleting the

counter or changing its behavior means destroying the whole

watermark. Also, the counter, and the way the property is

added should be secret in order to insure proper security, Ker-

ckhoffs’ secrecy law. The author in [12] did not show how the

probability of false positives are calculated, yet he mentioned

that he calculated and found that only 2 designs from the

whole IWLS93 test bench might have higher probability of

false-positives larger than zero.
Furthermore, the extra states added can be removed using

reduction approaches, which he proposed to solve by slightly

changing the functionality of the STG. This is hard to be done

mechanically as it is pretty complicated and might affect the

design functionality.

III. WATERMARKING FSMS USING COINCIDING

TRANSITIONS

As a passive technique, one of the main challenges of

watermarking schemes is the authenticity of the watermark. In

the scheme, we describe in this paper, this problem is solved

by using a secure third party, e.g., a watermarking governing

body. This governing body will be responsible for generating

and distributing time-stamped authenticated signatures, as well

as keeping a record for such signatures for the extraction

phase.

The scheme is composed of three main parts: Signature
generation, watermark insertion (embedding), and watermark
detection (extraction). The watermark embedding phase is

done by the designer, where he/she uses the authentic signature

to embed the watermark using one of the two alterative

embedding algorithm showed below. Finally, in the manufac-

turing facilities and afterwards, the designer introduces the

key needed to detect the watermark, in order to prove the

authenticity of the design.

A. Signature Generation

The signature generation (see Figure 1), is done by the wa-

termarking authority (third party). This will prevent intruders

from searching for ghost watermark and consider it as their

watermark (known as ghost attacks). The generated signature

should be time-stamped as well to prevent intruders from re-

embedding a new watermark in the system.

Key

Watermarking Authority

Authorship Proof

Watermark Extraction

Watermark Extraction

Watermarked IP

Authorship Information

Hash Function

Time Stamp          Authentication

Encryptor

Watermark Embedding

Signature

Watermark Insertion

IP Owner

IP Design

Random IP

Database
Design

Fig. 1. IP Watermarking using a Third Entity as a Governing Body

The secure third party will use the ownership informa-

tion provided by the IP designer and encrypts it using any

public/private-key encryption algorithm after time-stamping

it. The encrypted information is then hashed giving a short

digest to decrease the watermark embedding overhead. This

digest is computationally infeasible to find another message

that hashes the same value. Using a constant number of bits

will guarantee a certain strength for the watermark. Also, it

allows the watermarking authority to specify a definite amount

of bits that is long enough to differentiate and keep track of

different companies.

In the above model, the owner chooses any arbitrary length

message that will prove his/her ownership and encrypts it

using his/her own private key of any encryption algorithm.

The encrypted message is then hashed to shorten it to a certain

length using a one-way hash function, MD5 [15] for instance,

to generate a constant length bit sequence (128 bits) as a proof

of ownership.
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Fig. 2. Input Comparison Watermark Insertion: Example

In following, we describe details of two watermark insertion

(embedding) algorithms for plain FSMs, then an algorithm

for hierarchical FSMs, and finally an algorithm for watermark

extraction.

B. Watermark Insertion Using Input Comparison Algorithm

This algorithm associates the previously generated signature

with totally randomly generated inputs, then uses these pairs

as watermark transition set. Starting from an arbitrary state,

these pairs will be added to the STG as follows:

1) Starting from any randomly chosen state (Sx), the ran-

dom input ai
w is compared to all inputs of the transitions

associated with this state.

2) If input ai
w is not being used in state Sx, an extra

transition is added directly to the STG and the next state

(Sy) will be decided randomly.

3) If input ai
w is already being used in the selected state,

the output of such pair is compared to the output of the

transition, to check if it coincides with the generated

signature. The transition will be then considered as part

of the added signature, and the algorithm will advance

to the next state that already exists in the STG.

4) In case the inputs are already being used, an extra

input bit, ei
w, is added to the system to extend the

FSM. This input bit will have the same logic value for

already existing transitions. For instance, a logic value

’0’ assigned to all existing transitions and logic value

’1’ will be used for the watermark transition added. The

next state will be chosen randomly.

5) The algorithm will loop until the embedding of all the

signature bits is done.

Figure 2 depicts a step-by-step application of the above

algorithm on a simple FSM. The initial, as well as, the final

signature sequences are given in the bottom of the figure.

Figure 2(a) shows the original design before any signature

transitions are added. Checking state S0, input (11) is available

for usage, a new transition carrying a part of our signature is

then added, the next state is decided randomly, here state S3

(Figure 2(b)). The transition pair (10/11) already coincides

with an existing transition. We then advance to the next state,

S2, using this transition (Figure 2(c)). In S2, the input (00) is

already used, and the output is not coinciding with the output

needed by the signature. Therefore, an extra input bit will be

added for the whole design, changing (0-/10) to (0-0/10), the

next state is determined randomly (Figure 2(d)).

The input mapping algorithm does not search the system

state of the STG to insert the watermark. This makes the

algorithm faster and has a low overhead on the design flow.

The algorithm is not maximizing the coinciding transitions, but

it is a best-effort algorithm that randomly finds the coinciding

transitions. The performance of this algorithm would decrease

as the number of output bits increases, since the probability

that the transitions would coincide decreases. To solve this

problem, the algorithm tries several iterations. Each iteration

works with different number of outputs, and tries to coincide

more transitions. Also, the algorithm adds inputs even if the

FSM is non-completely specified, a problem that might cause

a high overhead in some systems.

C. Watermark Insertion Using Output Mapping

This watermark insertion algorithm coincides a part of the

watermark on the FSM transitions to increase the watermark

robustness. This is done by searching different outputs of

each visited state in the FSM, and comparing it to a part

of the generated signature in order to map this signature on

the system outputs. Starting form any randomly chosen state

(Sx), the watermark will be added to the FSM according to

the following steps:

1) Compare the outputs of the state Sx to the generated

signature to check if they coincide.

2) In case one of the outputs is equal to the watermark bits,

this transition will be considered part of our watermark.

3) If the signature sequence is not equal to any of the

outputs, then the inputs of Sx will be checked to

determine if there is any free input that can be used to

add an extra transition. The next state in this case will

be chosen randomly, with preference given to states with

free transitions.

4) In case all inputs are already being used, an extra

input bit, ei
w, is added to the system to extend the

FSM. This input bit will have the same logic value for

already existing transitions. For instance, a logic value

’0’ assigned to all existing transitions and logic value

’1’ for the watermark transition added. The next state

will be chosen randomly.

5) The algorithm will loop until the embedding of all the

signature bits is done.

Figure 3 illustrates an example for the above algorithm using

the signature given at the bottom of the figure. Starting from

state S0 (Figure 3(a)), we find a coinciding output (00) and

move to S3. In S3 (Figure 3(b)), output 11 exists but input 00

is free. The next state in this case will be decided randomly
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and the algorithm advances to state S2. In S2 (Figure 3(c)), the

output is not coinciding with (01) and all inputs are being used,

hence an extra input bit is added to extend the whole FSM.

This bit will be forced to be equal to “0” for existing transitions

out of S2 and “1” for added ones. This extra transition will

drive the FSM to state S0 randomly as well.
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Fig. 3. Output Mapping Watermark Insertion: Example

It was noted that the number of coinciding transitions will

decrease as the number of outputs increases. This happens

as the probability to find coinciding outputs decreases as

the number of output increases. To solve this problem, the

algorithm tries several iterations. Each iteration works with

a different number of outputs, and tries to coincide more

transitions. Afterwards, the algorithm decides between the

generated solutions based on the robustness, as well as lower

design overhead, as discussed in the next section. It is worth

to be noted that the added transitions use the whole output bits

and not a part of them. This decreases the overhead further.

D. Watermark Insertion for Hierarchical FSMs
Practical systems have a higher number of states and

transitions, This is considered a major weakness for basic

FSMs, because their representation and analysis will become

more difficult and the designer will be faced with the state

space explosion problem. In [8], Harel introduced a Statecharts

model as the first technique for hierarchal description of

FSMs (HFSMs). Since then a large number of models and

variations have been introduced by many people (see [18] for

a description and comparison between these models). In an

HFSM, a state may be further refined into another FSM to

increase the system complexity. We define the HFSM in the

same way as defined in Ptolemy [7]. Figure 5(a) shows an

example of an HFSM machine. The inside FSM is usually

called the slave and the outside FSM the master in such a

composition. If the state can be refined, it is called hierarchical
state like state S2 in Figure 5, else it is called an atomic state,

e.g., S1.

The input alphabet for the slave FSM is defined to be a

subset of the input alphabet of its master FSM. Similarly,

the output signals from the slave FSM are a subset of the

output signals from its master. Also, the slave FSM reacts

relative to the reaction of its master FSM. Girault et al. [7]

define one reaction of the hierarchical FSM as follows: if the

current state is not refined, the hierarchical FSM behaves just

like a basic FSM. If the current state is refined, then first

the corresponding slave FSM reacts and then the master FSM

reacts. Thus, two transitions are triggered, so two actions are

taken. These two actions must be somehow merged into one.

Using this definition, we extend our watermarking technique

for such designs as following (Figure 4):

1) Starting from any randomly chosen state Sx, check if

this state is atomic or hierarchical.

2) In case of an atomic state, compare the outputs of the

state Sx to the generated signature to check if they

coincide.

3) In case one of the outputs is equal to the watermark bits,

this transition will be considered part of our watermark.

The next state will be decided according to the transition

used.

4) If the signature sequence is not equal to any of the

outputs, then the inputs of Sx will be checked to

determine if there is any free input that can be used to

add an extra transition. The next state in this case will

be chosen randomly, with preference given to states with

free transitions.

5) If state Sy is a hierarchical state, the entry point of the

slave FSM is considered the newly reached state.

6) Compare the outputs of the state Sy to the generated

signature to check if they coincide.

7) In case one of the outputs is equal to the watermark bits,

this transition will be considered part of our watermark.

The next state will be decided according to the transition

used. In this case, the newly reached state is either an

exit point or, just another state in the slave FSM.

8) If the reached state is not an exit point of the slave

HFSM, the master state will be forced to stay in the

same state by using the self loop transition. Only a part

of the output, the slave part, will be considered in the

watermark.

9) If the reached state is an exit point of the slave HFSM,

the master state will be considered as an atomic state.

10) The algorithm will loop until the embedding of all the

signature bits is done.

Figure 5 illustrates an example for the above algorithm using

the signature given at the bottom of the figure. Starting from

an atomic state S0 (Figure 5(a)), we find a coinciding output

(0010) and move to S2. S2 is a hierarchical state, so we use

its entry point (ent) as our new state. In Figure 5(b), output

11 does not exist but input 00 is free. The next state in this

case will be decided randomly and the algorithm advances to

state s2. State s2 is not an exit point for the slave FSM, so

S3 will be forced to use the inputs 10 as the self loop input,

and state s2 will still be considered our reached state. Only the

first part of the output is considered a part of our watermark in
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this case. In s2 (Figure 5(c)), the output coincides with (01),

hence the next reached state is s1, which is an exit state. The

output (11) is found not to coincide with any of the outputs of

state S3, but the input (10) can be used to embed such output,

and it will drive us randomly to state S1 as shown in Figure

5(d). This will generate a fully watermarked design using the

input sequence shown below.

E. Watermark Extraction

The third phase of the watermarking process is tracking the

watermarked design. We use a direct detection, by supplying

the previously generated input and checking the generated out-

put signature. Yet, direct detection is not immune to masking

attacks as discussed in details in the next section. Deleting

one added transition will prevent the watermark from being

detected using the direct detection. Traces of the watermark

still exist and it is enough to be considered as an evidence

in front of a court. In such case, rebuilding the whole FSM

is the ultimate solution to extract all the traces left from the

watermark, but this is an expensive and complicated task.

In our approach, coinciding transitions cannot be deleted.

This gives the watermarked design extra robustness as the

intruder will have to decide between used and unused tran-

sitions. To solve masking attacks, we utilize an extraction

algorithm making use of coinciding transitions as marks, or

semaphores, to detect if the watermark traces do exist. The

extraction algorithm is given as follows:

1) During the embedding of the watermark, we save the

different sequence paths that lead to the coinciding

transitions.

2) When the direct detection fails, we use the previously

saved information to pin-point and check the availability

of coinciding transitions.
3) In case of finding a coinciding transition, we consider

this state as a pivot and search for all the extra added

transitions that might exist around this state.

4) We extract all coinciding transitions and check for the

non-deleted extra transitions in the system.

This algorithm will force the attacker to delete all extra

added transitions in the system. A very hard process with a

very low probability, defined as a measure of robustness in

the next section. The algorithm still needs to be optimized in

order to decrease the search time. Other algorithms that can

help in extracting the watermark as well could be investigated,

such as the Genome search proposed in [17].

IV. EVALUATING WATERMARK PERFORMANCE AND

COMPARISON

In [13], Petitcolas identified a set of measures for watermark

evaluation. Although these measures were developed mainly

for multimedia applications, we find some of them to be

applicable to IP watermarking. We defined the requirements

of any IP watermarking approach as follows:

1) Does not rely on the secrecy of the algorithm: According

to one of the oldest security rules, defined by Kerckhoffs

[10] in 1883, any encryption or security technique

should not rely on the secrecy of the algorithm, but to

the mathematical complexity of such algorithm, “The
system must not require secrecy and can be stolen by
the enemy without causing trouble”.

2) Prevents intruder from re-embedding another watermark:

One of the main problems facing watermarking schemes

is the ability of intruders to embed another watermark in

the design, especially if these are third parties and have

the source code of the design.
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3) Easy detection and tracking tools: Watermark insertion

is only half of the process. Tracking and detection is the

second important aspect in any watermarking technique.

A watermarking technique should be easily detectable

at all lower levels of the design, even after design

manufacturing.

4) Does not affect the design functionality: Testing and

verification of hardware systems is an extremely com-

plicated task. A watermarking technique should not

affect the design functionality under any circumstances,

i.e., not introducing new design behavior, nor deleting

behavior that already exists.

5) Embeds enough data to identify the owner of the system:

The watermarking scheme should add enough data to

identify the owner of the design. This data should be

concrete enough to be considered as an ownership proof

(ownership evidence) in front of a court.

6) Does not have high implementation overhead: Water-

marking a design is a complementary process to increase

its competitiveness but affecting the design performance

or having a high time overhead in the insertion process

would be considered a real drawback.

7) Robustness: Any proposed watermarking technique

should be strong enough to face most of the attacking

techniques without being totaly destroyed.

8) Asymmetric: Since Diffie and Hellman [6] presented

their public encryption scheme, public techniques have

proven their strength especially in non-secure environ-

ments. Sharing IP designs poses the same threats as other

secret data in the public domain.

We used these aspects to evaluate and compare different

watermarking algorithms. These measures are described in

details in the next subsections. We will state the mathematical

theorem for the soundness of the approach as a measure of

perceptibility. Asymmetry or public-key operating mode will

be addressed with the level of reliability, because its measure

is directly related to robustness.

A. Impact on Design Functionality

A watermark insertion should not affect the behavior of

the system nor interfere with the original system operation.

Soundness of the watermark can be shown through the

following theorem that states the relationship between the

watermarked design automaton Mw and the original system

M .

Theorem: The watermarked design Mw behaves exactly
as the original design M for any set of arbitrary inputs,
under the condition that all extra added bits ew, used for
watermarking, are set to the same secure logical level defined
at the watermarking insertion stage.

Considering ã is any arbitrary input sequence composed of

m elements, such that ã = (a0, a1, ...am−1). ãwm is the same

input sequence for the watermarked design, where ãwm =
〈ã, ewm〉, then:

∀ ã ewm. ewm = C → (λ(q0, ã) = λwm(q0
wm, ãwm))

where C is a secure constant logical value of all extra added

bits pre-defined at the time of inserting the watermark, q0
wm

is the initial state of the watermarked design. The theorem

was proved mathematically in [2], by applying the basic

concepts of FSM equivalence. It was proved that under the

given condition the initial state in both designs will behave

identically. And then proved that the output functions (λ and

λwm) will produce the same values for any given set of input

sequence.

B. Reliability and Attack Analysis

The level of reliability can be divided into two main aspects:

robustness, which measures the strength of the hidden mark

against attacks, and false positive, which defines the probabil-

ity a watermark detector can find an ownership mark in a non-

watermarked design. In the case of public-key operation, the

level of reliability should include more measures for asymme-
try robustness. In the multimedia domain, the robustness of a

watermark is usually measured usually using benchmarks, e.g.,

Stirmark [14] for images. Benchmarking an IP watermarking

scheme is much harder as the watermark might be spread

in many design levels, given the different nature through the

design span.

1) Attack Analysis: Removal attacks aim at the removal

of the watermark information. This is attempted without

breaking the security of the watermark. Removal attacks are

divided into either elimination attacks or masking attacks. In

elimination attacks, the intruder tries to completely eliminate

the watermark. On the other hand, masking attacks do not

aim at remove the watermark itself, but aim at distorting the

watermark detector such that it will not be able to detect the

availability of the watermark.

Coinciding transitions are considered as supraliminal chan-

nels, attacking such transitions or changing any of their values

will directly result in destroying the design under investiga-

tion. Using this fact, we define the probability of watermark

deletion (P s) as the “probability to delete at least one added
transition without deleting any coinciding ones”. This will

differ according to the operation mode and is calculated as

(P s
m = m1

n+m1
) for symmetric operation mode, and as

(P a
m = m1

m1+m2
= m1

m1+m2
) in the public-key (asymmetric)

mode, where n is the total number of transitions, m1 is the

total number of extra added transitions and m2 is the total

number of coinciding transitions.

For removal attacks, we defined the removal probability of

the watermark (Pr) as “probability any attack would change or
delete all extra added transitions without deleting one original
transition”. As discussed above this probability depends on the

mode of operation (symmetric or asymmetric).

This will differ according to the operation mode and is

calculated as (P s
r = 1

C
m1
n+m1

) for symmetric operation mode,

and as (P a
r = 1

C
m1
m1+m2

) in the public-key (asymmetric) mode.

2) Detecting False Positives: In [17], the probability of

coincidence (Pu) for an FSM is defined as the “odds that
an unintended watermark is detected in a design”. This

probability was defined in [17] under the approximation that
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all the transitions have the same probability of occurrence as

follows:

Pu =
1

[2|Δ|]x − 1
n ≥ 1

where x is the number of extra added transitions and | Δ |
is the total number of possible outputs. In our system, we are

only adding m2 extra transitions, but the owner still needs a

sequence of length m to detect the watermark. In the case of

using the MD5 hash function, a constant number of bits for

the watermarking sequence (128 bits) is introduced. We can

calculate the lower bound of the coinciding probability, the

worst achievable case, is equal to 2.938× 10−39. This means

that we can safely state, that our probability of coincidence is

nearly constant and is larger than the above value for a 128

bits signature.

C. Watermarking Overhead

Watermark approaches rely on embedding signatures gener-

ated from hash functions in order to decrease the watermarking

process overhead. In our particular case, the number of bits

added by using MD5 hash function is equal to 128 bits. This

amount can be increased at the expense of the number of

input bits as well as the area and extra logic added to the

system. Mapping more coinciding transitions directly means

that we will have less overhead. The watermarking overhead

is divided into three different issues: area, delay, and power.

We have measured the percentage of increase on a number of

benchmark designs before and after watermarking. Also, we

have measured the time needed for watermark insertion. The

results are shown and discussed in next section.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

To validate and test the performance of the watermarking

algorithms, we have implemented a prototype tool [4] in C++

under Unix environment. IP FSM designs can be provided in

VHDL or Verilog, which we translate to kiss2 format [16].

The tool is composed of four main blocks (Figure 6). We

started by building a tree for the FSM representation using the

FSM builder block. The signature generation block provides

the signature to the watermarker block after hashing it, while

the random input and next states needed are provided using a

random generator built in our tool. In the watermarker block,

the user can choose the number of iterations the algorithms can

run to watermark his/her design. The watermarker block also

includes a decision unit that chooses between iteration results

using the highest probability P a
r that is smaller than a certain

value defined by the user (10−6 in our case). The choice takes

into consideration the lowest overhead possible (least added

transitions and lowest number of added bits). Finally, using the

Kiss-to-HDL block [3], a synthesizeable watermarked VHDL

code is generated.

To evaluate our approach, the presented watermarking al-

gorithms were applied on the IWLS93 benchmark set [11]

using the FSMs generated by the available SIS tool. The

benchmark circuits were synthesized using Synopsys Design
Analyzer. The tables below describe the results obtained with

the output mapping algorithm. Details on results with the

input mapping also can be found in [1]. All experimental

results was conducted on on a Sun Sparc Ultra 5 machine

with a 256 MHz Processor and 512 MB of memory. Table

I shows for each design, the number of inputs/outputs, and

transitions/states. The total number of added transitions (m),

coinciding transition (m1), extra added transitions (m2), and

extra inputs needed to add the watermark (ew) are also shown.

C/NC in the table defines if the design under investigation is

completely specified (C), so at least one input is needed, or

not (NC). (N) represents the number of iterations needed, and

(t) is the time needed to insert the watermark in each design is

given in ms. The time for inserting the watermark is extremely

short, hardly exceeded 8 seconds in the case of scf with 54

iterations involved (Table I), which gives a good indication

about the low overhead the algorithm can introduce in the

design cycle.

Table II provides the removal probabilities (P s
r and P a

r )

discussed earlier (for the output mapping case), as well as

the area, power, and delay overhead percentage as compared

to the synthesized original circuit. The experimental results

demonstrate that our approach has a very low effect on delay

and power, especially when the design get larger. On the

other hand, the area overhead is high for small designs, then

decreases as the designs get larger. This is due to the large

signature size compared to the original circuit. As for the

robustness of the system, the algorithm failed to watermark

some designs efficiently, either it could not coincide transi-

tions, such as for S1488, where watermarking cannot operate

in public-mode. This can be solved by changing the signature

generated or re-watermark the design, but this will result in a

higher design overhead.

VI. CONCLUSIONS

Digital watermarking has emerged as a candidate solution

at the detection phase of copyright protection for IP blocks.

In this paper, we presented a short tutorial on how to analyze,

and implement an approach for watermarking sequential IP

designs. The approach is based on the utilization of coinciding
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TABLE I

EXPERIMENTAL RESULTS FOR OUTPUT MAPPING ALGORITHM

Circuit �I[O] �T[S] ewm m m1 m2 C/NC N t
MC 3[5] 10[4] 2 33 17 16 C 3 455

LION 2[1] 11[4] 1 128 116 12 C 1 35

DK27 1[2] 14[7] 2 64 48 16 C 1 85

EX4 6[9] 21[14] 0 26 13 13 NC 6 416

OPUS 5[6] 22[10] 0 22 9 13 NC 4 149

EX1 9[19] 138[20] 1 8 3 5 NC 17 1001

S208 11[2] 153[18] 1 64 43 21 C 1 87

STYR 9[10] 166[30] 1 15 7 8 C 8 566

SCF 27[56] 166[121] 0 3 0 3 NC 51 8021

SAND 11[9] 184[32] 0 7 0 7 NC 7 425

SAND 11[9] 184[32] 1 14 6 9 NC 7 425

S820 18[19] 232[25] 1 7 0 7 C 17 1480

S832 18[19] 245[25] 1 7 0 7 C 17 743

S1494 8[19] 250[48] 1 8 7 1 C 17 646

S1488 8[19] 251[48] 1 7 0 7 C 17 1407

KIRKMAN 12[6] 370[16] 0 22 11 11 NC 10 201

S298 3[6] 1096[218] 1 22 3 19 C 4 154

TBK 6[3] 1569[32] 1 43 18 25 C 1 144

TABLE II

EXPERIMENTAL RESULTS FOR OUTPUT MAPPING ALGORITHM (CONT’D)

Circuit P s
r P a

r Area% Power% Delay%

MC 3.770e-12 8.570e-10 323 28.6 2.4

LION 1.500e-17 4.214e-17 240 17.307 0

DK27 5.814e-17 2.046e-15 153.2 19 3.6

EX4 7.1084e-12 9.614e-8 29.3 23.4 5.8

OPUS 1.926e-11 2.010e-6 34.9 13.2 6.3

EX1 1.938e-9 0.0178 17.391 14.516 3.5

S208 1.193e-29 2.432e-17 12.6 13.2 2.7

STYR 4.094e-14 1.554e-4 13.4 15.4 1.8

SCF 1.265e-6 1 3.5 9.8 1.4

SAND 6.074e-13 1 9.2 6.3 2.6

SAND 4.373e-11 2.997e-3 41.5 12.7 1.8

S820 3.385e-11 1 8.7 7.2 1.9

S832 1.236e-13 1 6.8 6.4 0

S1494 8.494e-14 0.125 11.6 3.2 1.8

S1488 0.0038 1 14.6 3.2 0

KIRKMAN 1.369e-21 1.417e-6 2.1 1.6 0.5

S298 1.436e-41 6.493e-4 5.4 5.8 0.7

TBK 1.223e-55 1.643e-12 1.7 3.2 0.2

transitions as well as the unused transitions of the design

FSM in order to give higher robustness. We also extended this

approach to cover HFSMs making it possible to watermark a

larger level of industrial size designs.

We defined different parameters needed to evaluate such

approach and tested it using experimental results with the

IWLS93 benchmark. The implemented algorithms are fast

and have a comparatively low overhead on the design, which

would ease their integration in the design cycle. We have

also compared between our proposed approach and other

approaches already available in the open literature .
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