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We study model checking for a first-order linear-time temporal logic. We present the computation
model: abstract description of state machines (ASMs), in which data and data operations are
described using abstract sort and uninter preted function symbols. ASMsare suitablefor describing
Register Transfer level designs. Wedefineafirst-order linear-timetemporal logiccalled Ly pg which
supportsthe abstract data representations. Both safety and liveness properties can be expressed in
Ly pg, however, only universal path quantification is possible. Fairness constraints can also be
imposed. Theproperty checking algorithmsarebased on implicit state enumer ation of an ASM and
implemented using Multiway Decision Graphs.
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1. INTRODUCTION

Symbolic model checking has proven to be an important
technique for the automatic verification of hardware designs
[1, 2, 3, 4]. However, these methods require the description
of the design to be at the Boolean logic level, and thus in
genera they are not adequate for verifying circuitswith large
datapath because of the state explosion problem.

Being motivated by a desire to combine the automation
feature of model checking and the abstract representation
of data in theorem proving, we developed model checking
agorithms for a few first-order linear-time temporal logic
patterns. Our approach is based on a computation model
called an abstract description of state machi(®SM) where
a data value is represented by a single variable of abstract
type, rather than by a vector of Boolean variables, and a
data operation is represented by an uninterpreted function
symbol [5, 6]. ASMs can be used to describe designs at
Register Transfer Level (RTL). An ASM is encoded using
Multiway Decision Graphs (MDGs) [6, 7] of which Reduced
Ordered Binary Decision Diagrams (ROBDDs) [8] are a
special case. The verification of ASMs is based on state
enumeration whose complexity is independent of the width
of the datapath. Thus, the state explosion problem caused by
descriptions of large datapaths at the Boolean logic level is
aleviated.

While our formalization of ASMswasintroducedin[6, 7],
and the invariant checking on ASMswas presented in[9], in
this paper we addressthe model checking problemfor ASMs.
Wedefinethefirst-order linear-timetemporal logic Lypg and

present the property checking algorithmsfor Lypg. Aspart
of the property checking algorithms, we also show a special
handling of the next operators, i.e. using ASMsto represent
thebasic Lypg sub-formulasinwhich only the next operator
X isalowed (called Next_let_formulas).

To check a property p in Lmpg on an ASM M, we first
build additional ASMsautomatically for Next_let_formulas,
then we compose the additional ASMs with M, and finally
check arelatively simpler property onthecompositemachine.
The property checking agorithms are based on implicit
state enumeration as supported by MDGs. However, the
algorithms do not always terminate. Decidability of model
checking for Lypg, just like decidability of reachability
analysisfor our ASMs, isleft as an open question.

There are previous devel opments reported in the literature
that aredirectly related to ours. Hungar, Grumberg, Damm et
al. proposed a ‘true symbolic model checking' techniquein
[10], and later improved in [11] by checking first-order-CTL
(FO-CTL) properties on systems with clear separation be-
tween control and datapath. In their method, the BDD-based
symbolic model checker is used to check the properties on
the control part, the data part is handled by annotating each
control-expanded state by a first-order formula, and BDDs
are used to represent and manipulate the first-order annota-
tions symbolically. The FO-CTL is more expressive than
Lvpa, since only alimited nesting of temporal operatorsis
dlowed in Lypg. However, their method differs from our
method in the way the property checking is achieved. Basi-
cally, they showed how to cast first-order model checking into
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BDD-based model checking, while our property checking al-
gorithmsare carried out directly on thefirst-order logic level.

Cyrluk and Narendran [12] defined a first-order temporal
logic—Ground Temporal Logic (GTL), which falls in
between thefirst-order and the propositional temporal logics.
Thevalidity problemin GTL isthe sameaschecking alinear-
time temporal logic formula for al computation paths. In
[12], the authors showed that the full GTL is undecidable.
They then identified adecidable fragment of GTL, consisting
of Op (adways p) formulas where p is a GTL formula
containing an arbitrary number of ‘Next’ operators, but no
other temporal operators. However, they did not show how
to build the decision procedure. We shall seein thefollowing
sections that the decidable fragment of GTL is actualy a
subset of the class of properties that we can verify.

Hojati, Braytonetal. proposed aconcurrency model called
integer combinational/sequential (ICS), which uses finite
relations, interpreted and uninterpreted integer functionsand
predicates, and interpreted memory functions to describe
hardware systems with datapath abstraction [13, 14, 15].
Verification of ICS models is performed using language
containment. They showed that for a subclass of ‘control-
intensive’ ICS models, integer variablesin the model can be
replaced by enumerated variables (i.e. finite instantiation)
and then the property verification can be carried out at the
Boolean logic level without sacrificing accuracy. They gave
a linear-time algorithm for recognizing those subsets. For
verifying properties of circuits with complex datapaths, i.e.
the circuit contains interpreted and uninterpreted functions,
finiteinstantiation cannot be used. Instead, they compute the
set of statesreachableinn stepsusing BDDsand check that no
error existsin thesen steps. Their algorithm, if it terminates,
computes the set of reachable states. Thus, they can check
only safety properties, while our methods can check safety
properties as well as certain liveness properties.

Burch and Dill [16] used a subset of first-order logic,
specifically, the quantifier-free logic of uninterpreted func-
tions and predicates with equality and propositional connec-
tives, for verifying microprocessor control circuitry. Velev
and Bryant [17] presented aEquality Validity Checker (EVC)
for alogic called Equality with Uninterpreted Functions and
Memories (EUFM). The EVC trandatesaformulain EUFM
to a propositional formula, and then evaluates the propo-
sitional formula using a Boolean satisfiability procedure.
Those methods are appropriate for verification of micropro-
cessor control because they allow abstraction of datapath
values and operations. However, those methods, unlike ours,
cannot verify propertiesinvol ving temporal operators, in par-
ticular, liveness properties. Another relevant but differently
focused approach was [18], in which Namjoshi and Kurshan
showed an algorithm that constructs a finite state ‘ abstract’
program from a given, possibly infinite state, ‘concrete’
program by means of a syntactic program transformation.

This paper is organized as follows: in Section 2, we first
describetheformal logic usedinour ASM approach, and then
definethe computation model, i.e. the definitionof ASMs. In
Section 3, we define the syntax and the semantics of Lypg,
as aproperty specification language for which we have been

able to develop property checking procedures. In Section 4,
we present in detail the property checking procedures. In
Section 5, we show how to impose fairness constraintsin our
verification system and the algorithms for checking liveness
properties under fairness constraints. In Section 6, we verify
some properties regarding the Island Tunnel Control bench
mark using our model checker and also using VIS from
University of Caifornia at Berkley. We also verify severa
properties regarding an abstract counter in which the value
of the counter is described using a variable of abstract type.
We conclude the paper in Section 7.

2. ABSTRACT DESCRIPTION OF STATE
MACHINES

Abstract description of state machine is a model used for
describing hardware designs at the RTL. Using ASMs, a
data value can be represented by asingle variable of abstract
type, rather than by a vector of Boolean variables, and a
data operation is represented by an uninterpreted function
symbol. The model checking method based on a first-order
linear-time temporal logic as developed in this paper alows
toverify propertieson designsrepresented by ASMs. Thus, it
is necessary to review first the terminology related to ASMs.

2.1. A many-sorted first-order logic

As in an ordinary many-sorted first-order logic, the
vocabulary consists of sorts constants variables and
function symbolgor operatord. Constants and variables
have sorts. We deviate from standard many-sorted first-
order logic by introducing a distinction between concrete
(or enumerateyisorts and abstract sorts the difference is
that concrete sorts have enumerationswhile abstract sorts
do not. The enumeration of a concrete sort « is a set of
distinct constants of sort «. We refer to constants occurring
inenumerationsasindividual constantsndto other constants
as generic constants

The distinction between abstract and concrete sorts leads
to adistinction between three kinds of function symbols. Let
f beafunction symbol of typews x a2 X - - - X oty = @p41-
If o,41 is an abstract sort then f is an abstract function
symbol If al theas, ..., a,41 are concrete, f isaconcrete
function symbol If «, 1 is concrete while at least one
of a1, ..., a, is abstract, then f is referred to as a cross-
operator. Both abstract function symbolsand cross-operators
may be uninterpretedor partially interpretedby conditional
rewrite rules. The termsand their types(sorts are defined
inductively as follows: a constant or a variable of sort «
isaterm of type «; and if f isafunction symbol of type
o1 X @2 X - X oy —> apy1,n > 1, and Ag, ..., A, are
terms of types a1, ..., a,, then f(Aq,..., A,) isaterm
of type a,+1. We say that a term, variable or constant is
concrete (resp. abstract) toindicatethat itisof concrete(resp.
abstract) sort. A termisconcretely reduced it only contains:
(i) theindividual constants; (ii) the abstract generic constants;
(i) the abstract variables, and (iv) the terms of the form
f(A1, ..., Ay)where fisafunctionsymboland A4, ..., A,
are concretely reduced terms. Thus, the concretely reduced
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terms are those that have no concrete subterms other than
individual constants. A term of the form f(A1,..., Ay,)
where f is a cross-operator and Ay, ..., A, are concretely
reduced terms is called a cross-term An equationis an
expression A1 = Ap where A1 and A are terms of same
type«. Atomic formulasrethe equations, plusT (truth) and
F (falsity). Formulas are built from the atomic formulas in
the usual way using logical connectives and quantifiers.

Aninterpretationisamapping v that assignsadenotation
to each sort, constant and function symbol such that:

(i) Thedenotation vy («) of anabstract sort o isanon-empty
set.

(i) If « isaconcrete sort with enumeration {as, ao, ..., a,}
then ¥ (o) = {Y(a1), ¥ (a2), ..., ¥(an)} and ¥ (a;) #
Y@ajp)forl<i<j<n.

(iii) If cisageneric constant of sort «, then v (c) € ¥ (). If
f isafunction symbol of typeay x -+ X @y = 41,
then ¥ (f) is a function from the Cartesian product
V(a1) X -+ X P(ay) into the set (ot 11).

Let X be a set of variables, a variable assignmentvith
domain X compatible with an interpretation v is afunction
@ that maps every variable x € X of sort « to an element
o(x) of Y(a). We write cI>>‘/Z for the set of yr-compatible
assignmentsto the variablesin X, v, ¢ = P if aformula P
denotes truth under an interpretation ¥+ and a y-compatible
variable assignment ¢ to the variables that occur freein P,
= P if aformula P denotestruth under every interpretation
and every yr-compatible variable assignment to the variables
that occur freein P.

2.2. Directed formulas

Given two digoint sets of variables U and V, a directed
formula (DF) of type U — V is aformulain digunctive
normal form (DNF) such that:

(i) Eachdigjunct isaconjunction of equations of theform

A = a, where A is aterm of concrete sort o of the
form' f(By, ..., By) (f isthusacross-operator) that
contains no variables other than elementsof U, and a
isanindividua constant in the enumeration of «, or

w = a,wherew € (UUYV) isavariableof concretesort
o and a isanindividual constant in the enumeration
of «, or

v = A,wherev € V isavariable of abstract sort « and
A is aterm of type o containing no variables other
than elements of U.

In each digunct, the left-hand sides (LHSs) of the

eguations are pairwise distinct.

Every abstract variable v € V appears as the LHS of

an eguation v = A in each of the diguncts. (Note that

there need not be an equation v = a for every concrete

variablev € V)

(i)
(iii)

Intuitively, in aDF of type U — V, the U variables play
theroleof independent variables, the V variablesplay therole
of dependent variables, and the disjuncts enumerate possible
cases. In each digunct, the equations of theformu = a and

A = a specify acase in terms of the U variables, while the
other equationsspecify thevaluesof (someof the) V variables
in that case. The cases need not be mutually exclusive, nor
exhaustive.

A DF is said to be concretely reducedf every A in an
equation A = a isacross-term, and every A in an equation
v = A isaconcretely reduced term. It is easy to see that
every DF is logicaly equivalent to a concretely reduced
DF, given complete specifications of the concrete function
symbols and concrete generic constants; the reduction can
be accomplished by case splitting. From now on, by DF we
shall mean concretely reduce®F.

Let P beaDF of type U — V. For agiven interpretation
¥, P can be used to represent the set of vectors Setﬁ(P) =
{¢ € @Yly. ¢ = AU)P).

In the following sections, DFs are used for two distinct
purposes: to represent sets (viz. sets of states as well as sets
of input vectors and output vectors) and to represent relations
(viz. the transition and output relations).

2.3. Abstract description of state machines
AnASM M isatupleD = (X, Y, Z, F;, Fr, Fp), where

() X, Y and Z are sets of variables, viz. the input, state
and output variables, respectively. Let n beaone-to-one
functionthat mapseach statevariable y toadistinct vari-
able n(y) obtained, for example, by adorning y with a
prime. ThevariablesinY’ = n(Y) are used asthe next-
statevariables. X, Y and Z must be disjointed fromY’.

Given aninterpretation ¥, an input vector of the state
machine M represented by D isa-compatible assign-
ment to the set of input variables X; thusthe set of input
vectors, or input alphabet, is db% Similarly, d% isthe
set of output vectors. A stateis a yy-compatible as-
signment to the set of state variables Y'; hence, the state
spaceis d)'ﬁ. A state ¢ can also be described by an as-

signment ¢’ =g on~1 € dY tothenext state variables.

A variablein X UY U Z iscaled an ASM_variable.
F; isaDF representing the set of initial states, of type
U — Y,whereU isaset of abstract variables digoint
fromX UY UY'UZ. Typicdly, F; isaone-digunct
DF representing the set of initial states.

Given an interpretation v, a state ¢ € d)'é’ is an
initial stateiff ¥, ¢ &= (QU)F;. Thusthe set of initial
statesis §; = Set” (F;) = {¢ € DY |¥, ¢ = QU)Fy).
Fr isaDF of type (X UY) — Y’ representing the
transition relation.

Given an interpretation , an input vector ¢ € d)')/;
andastate ¢’ € dY, astate¢” € dY isapossible next
stateiff ¥, pUg' Ug” o=t = Fr. Thusthetransition
relation of the state machine M represented by D is

Rr = {(¢. ¢/, ¢") € O x o
X DYy, U U (" on ™t E Fr.

Fo isaDF of type (X UY) — Z representing the
output relation.

(i)

(iii)

(iv)
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Given an interpretation v, the output relation of
the state machine M represented by D is Rp =

(@, ¢, 9") € DY x DY x Y|y, pUP UP"| = Fo).

For every interpretation ¢ of the sorts, constants and
function symbols of the logic, the abstract description D =
(X,Y,Z, Fy, Fr, Fo) represents the state machine M =
(@Y, ®Y, Y, S/, Rr, Rp) withtheset of input vectors b,
the state space d)‘é, the set of output vectors @Y, the set of
initial states S;, the transition relation Ry and the output
relation Rop.

2.4. Basicalgorithmsof DFs

Werecall the basic agorithmsused in[5, 6], but herewegive
their definitions in terms of DFs, since these algorithms will
be needed later in the model checking procedures.

Disjunction The disunction algorithm is n-ary. It takes
as inputs a set of DFs P;, 1 < i < n, of types U; —
V, and produces a DF R = Dig({Pi}1<i<n) Of type
(Ul<i<nUi) — Vsuchthat = R & (\/1<i<nPi)'

Thisa gorithm ismainly used to compute the union of sets
of states.

Conjunction The conjunction algorithm takes as inputs
aset of DFs P;,1 < i < n, of types Uy —
V; and produces a DF R = Conj({Pi}1<i<») Of type
(Ur<i<nUN\Ui<i<, Vi) = (U1<i<, Vi) such that =
R & (A1<;j<,Pi). A precondition of this operation is that
ViandV; (1 <i < j <n) musthavedisjoint setsof abstract
variables.

This algorithm is used to extract a common subset from
sets of states.

Relational product The algorithm takes as inputs a set of
DFs P;,1 <i < n, of typesU; — V;, aset of variables E
to be existentially quantified, and a renaming substitution 7,
and producesaDF R = RelP({ P;}1<i<n, E, n) such that

e (a5 ) )

1<i<n

The agorithm computes the conjunction of the P;,
existentially quantifies the variables in E, and applies the
renaming substitution n. The type of theresult R isthen

(WU )= (U ¥)NE) )

1<izn 1<i<n i<i<n
Inour property checking procedures, thisalgorithmisused
to compute the set of states reachable in one transition from
one set of states.

Pruning by subsumptiorT he algorithm takes as inputs two
DFs P and Q of typesU — Vi and U — V> respectively,
and produces a DF R = PbyS(P, Q) of type U — Vi
derivable from P by pruning(i.e. by removing some of the
digiuncts) such that

ERV@AU)Q & PV @AU)Q

The diguncts that are removed from P are subsumedby
0, hencethe name of thea gorithm. If R isF, thenit follows
tautologically that = P = (3U)Q.

This agorithm is used to check whether a set of states
is a subset of another set of states. Let Py, P> be two
DFs of type U — Y. Then for a given interpretation
Y, the two sets of states represented by Pi1, P, are re-
spectively S1=Sat? (P1) ={¢ € @} |y, ¢ |= (3U)P1} and
So=SetV(Pp)={¢ € <I>}/f|1ﬁ,¢ = 3U)Pz}. We say that
Py and P, are equivalentDFs (in that case, for any v,
S1 and So are equivalent sets) if PbyS(Py, P2) = F and
PbyS(P,, P1) = F.

3. A FIRST-ORDER LINEAR-TIME TEMPORAL
LOGIC: Lyps

Given a description of an ASM, and a set of ordinary
variableswhich are available for use in the specification of
a property to be verified, the atomic formulasof Lypg are
Boolean constant T, F, or equations r1 = 2, where ¢1 is an
ASM_variable, 1, isan ASM_variable, or a constant, or an
ordinary variable, or a function of ordinary variables. The
Next_let formulasre defined as follows:

(i) each atomic formulaisaNext_let formula;

(i) if p, g are Next_let_formulas, then so are: !p (not p),
p&q (p and g), plg (p or q), p — q (p implies g),
Xp (next-time p) and LET (v = ¢) IN p, wherer is
an ASM_variable, v an ordinary variable. (Note: the
LET construct allows us to use an ordinary variable
v to remember the value of an ASM_variable  at the
current state.)

We allow the formula LET (v1 = )& -+ & (v, = 1)
IN p as ashorthand for LET (v1 = 1) IN (LET (v1 =
t1) IN(..... LET (vu = #)INp))). Wecdl (v1 =
1) &---& (v, =t,) alLet_equation

The properties alowed in Lypg can have the following
forms:

Property ::=

Next_let formula

| G (Next_let_formula)

| F (Next_let_formula)

| (Next_let formula) U (Next_let formula)

| G ((Next_let_formula) = (F (Next_let_formula)))

| G ((Next_let_formula) = ((Next_let_formula) U
(Next_let_formula)))

3.1. Semanticsof Lyvpg

A path 7 is asequence of states. We use 7/ to denote a path
starting from 7; where ; denotesthe ith statein . All the
formulas in Lypg are path formulas. We write 7,0 = p
to mean that a path formula p is true at path = under a -
compatible assignment ¢ to the ordinary variables. We use
Valsuo (¢) to denotethe value of term ¢ under ay-compatible
assignment ¢ to the state, input and output variables, and a
w-compatible assignment o to the ordinary variables. We
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then define = inductively as follows:

(i) 7,0 =1 = riff Valous (11) = Valrous (12).
(i) 7,0 = LET(v = 1) IN p iff 7,0’ &= p where
o' = (@\{(v,a(v)}) U {(v, Valzous (1))}
(i) 7,0 E=!piffitisnotthecasethat 7, o = p.
(iv)y m,o=Ep&qiffr,o = pandn,o Egq.
(V) m,oEplgiffr,o Eporm,ok=gq.
(Vi) m,o=p > qiffr,o Elporm, o E=gq.
(vii) 7,0 EGpiff nl, 0 = p.
(viii) 7,0 =Gpiffn/, o = pfordl j > 0.
(ix) 7,0 =Fpiffr/, o = p for some j > 0.
(X) 7,0 = pUq iff for some k > 0, 7%, 0 =q, and
nl,o=pforal j (0<j <k).

Given a property in Lypg regarding an ASM under a
given interpretation v, the property holds on the ASM iff
the property istrue for every path 7 such that =g isan initial
state and, for every i, there is a transition from 7; to ;41
from some vr-compatible assignment to the input variables.

4. MODEL CHECKING FOR PROPERTIESIN
Lvpe

Our approach to model checking is to build automatically
additional ASMs that represent the Next let formulas
appearing in the property to be verified, connect these
additional ASMstotheoriginal one, and then check asimpler
property on the composite machine [19].

Given a Next let formula P regarding an ASM
D=X,Y,Z, F;, Fr, Fp), an ASM D,=(Xp,Yp, Zp,
Frp, Frp, Fop) can be constructed to represent the
Next_let formula. The input variables of D, are the
ASM_variables of D which appear in the property, i.e.
Xp € XUY UZ. They represent the values at the * current’
cycle. Let n be the maximum nesting number of X operators
in the property. The set of state variables Yp and the tran-
sition relation Fr, are constructed so as to ‘remember’ the
values of input variables of D), or the results of comparison
of the variables in the past n (or less than n) cycles. The
set of the state variables of D), contains a special state vari-
able of Boolean type, Flag, which indicates the truth of the
Next_let formula one cycle earlier. The initial set of states
Fp, are assigned differently depending on which property
template the Next_let formula P corresponds to. The gen-
eral ideaisthat theinitial states of D), should not affect the
result of verifying P on the original ASM D. There is no
output from D, i.e. Zpisempty. Hence, there is no output
relation either. Thedetailsof anagorithmfor constructingan
ASM representing a Next_let_formula can be found in [20].

In the following subsections, we describe algorithms for
verifying the various forms of the formulasin Lypg. When
our property checking algorithms report success to a query,
then the property holdsfor an ASM under any interpretation.
It is possible that a property holds for the ASM under the
intended interpretation of the abstract function symbols and
constants, but not under every interpretation. In that case,
the agorithm, if it terminates, will return a false negative
answer with respect to the original, non-abstracted problem.

However, if al the dataoperations are viewed asblack boxes,
a property is expected to hold for every interpretation; it is
in this sense that we say that our a gorithms are applicableto
designs where data operations are viewed as black boxes.

4.1. Verification of G(Next_let_formula)

To verify a property in the form of G(Next_let formula)
on an ASM D, we first build an additional ASM D,
with the special state variable Flag to represent the
Next_let formula, and then construct a composite machine
M= X, Y, Zn,Gr,Gr,Gp), where

(i) X,, = X isthe set of the input variables of D;

(ii) Y,y = Y U Yp isaset of the state variables, containing
both the variables in Y and Yp, however, since Mis a
composite machine (the states of D, are derived from
D) rather than the product machine of D and D, under
each interpretation v, the state space of M isactualy a
subset of d>',/,’ X d>',/,’P;

(il) Z,, = Z isthe set of the output variables of D;

(iv) G; = Fr A Frp isaDFof type U — Y, representing
the set of initial states of M;

(V) Gr = Fr A Frp, is the abstract description of the
transition relation of M;

(vi) Go = Fo is the abstract description of the output
relation of M.

We then transform the problem to verifying Flag = 1 on
each reachable state.

For example, to check the property G(req = 1 —
LET (v = Din) IN (X (Dout = v))) onanASM D, webuild
a composite ASM as shown in Figure 1, and then perform
reachability analysis and in each state check that Flag = 1.

The algorithm to check a property in the form of
G(Flag = 1) isasfollows:

(1) Check_G(M, C)

[* CistheDF Flag = 1. */

[*n' is the function that maps each state variable of M to

the corresponding next-state variables. */

(2) begin

(3 R:=G;;0:=G;K:=0;

(4) loop

()  P:=PbyS(Q, C);

(6) if P # F then return failure; /* if the property is
not satisfied, report failure */

(7) K:=K+1,

(8) I := Fresh(X,,, K); I*generate input values */

9 N :=ReP{l,Q.Gr}. XuUYm. 1) *
compute next states*/

(10) Q :=PbyS(N, R);
states */

(11) if Q = F thenreturn success,

reached, report success */

(12) R :=Dig(R, Q); [* compute al states reached
so far */

(13) end loop;

(14) end;

/* compute frontier set of

[* if fixpoint
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i -
addedSignal 02
| False addedSignal 08
|
ASM D | addedSignal 03
(circuit | addedSignal 04
to be )
verified)Pin v
bout AbsComparator _
T (Dout, v1) addedSignal 06
|

ASM Djfor (req=1 -> LET (v1=Din) IN (X (Dout =v1)))

FIGURE 1. The composite machine of ASM D and ASM D,,.

If the set of initial statesrepresented by G; doesnot satisfy
the property we report failure. Otherwise, we compute the
next new states and add them to those aready visited until a
fixpoint isreached. At each iteration, we verify the property
on the newly generated states.

To check a property in the form of Next_let formula, we
construct acomposite ASM in the sameway asin the case of
G(Next_let_formula), and then we verify that Flag = 1 on
the states reached in n + 1 transitions from the initial states,
where n is the maximum nesting depth of the X operatorsin
the property, and the 1 cycle delay is caused by the register
associated with Flag.

4.2. Verification of (Next_let_formula)U(Next_let
formula)

We use additional ASMsto represent the Next_let_formulas
and then transfer the problem to checking (FlagP = 1)
U(FlagQ = 1) on the composite machine.

(1) Check_UM, C,,Cy)

/*M isthe composite machine */

I*G isthe set of initial statesof M */

I* Gt isthetransition relation of M */

I* C, isthe DF containing FlagP = 1. C, isthe DF

containing FlagQ = 1 */

(2) begin

(3) X := &; /* ¥ isaset containing DFs with each DF
representing the set of states satisfying FlagP = 1 but
not FlagQ = 1 at each transition step */

(4 P:=0Gy,;

(5) K :=0;

(6) loop

(7) 0 :=PbyS(P,C,);

FlagQ = 1*/

(8) if QO := F return success,

(9) if 3T € =, PbyS(T, Q) = F return falure; /*This

step checksif DF Q coversany one of the DFsin X,

i.e.foreachDF T in , PbyS(T, Q) = F ischecked

to detect a cycle in which FlagP = 1 is true but

/*remove from P stateswith

FlagQ = 1 never becomes true. If there is a cycle,
then failureis reported*/

(10) R = PbyS(Q, C,); [*removefrom Q states with
FlagP = 1*/

(11) if R # Freturnfailure;

(12) X :=3xuU{Q}; *addDF Q asanelementinto = */

(13) K:=K+1;

(14) I :=Fresh(X,,, K); [* generate input values*/

(15) P := ReP{l, Q,Gr}, X,, U Yy, n'); I* compute
next states */

(16) end loop;

(17) end;

Theaboveal gorithm removesfromthereached set of states
those states satisfying FlagQ = 1. If the leftover Set(Q)
is empty, then the algorithm stops by reporting success.
Otherwise, if there is at least one cycle where states keep
satisfying FlagP = 1, i.e. FlagQ = 1 never becomes
true, then there is at least one path starting from the initial
state where pUgq does not hold, it stops and reports failure.
Otherwise, it checks whether all the statesin Set(Q) satisfy
FlagP = 1. If there are some states where FlagP = 1
does not hold, which means that there are some path(s) on
which FlagP = 1 does not hold in every state before a state
satisfying FlagQ = 1isreached, thenit also stopsand reports
failure. Otherwise, it computesthenext statesreachablefrom
Set(Q) and repeats the process.

To check a property in the form G(¢c = pUq) where
¢, p and g are Next_let formulas on machine D, we
need to build a composite machine M from D, an ASM
representing ¢, an ASM representing p and an ASM
representing ¢, and transfer to checking the property
G((FlagC=1) = ((FlagP=1)U(FlagQ=1))) on M. We
then do reachability analysis to obtain all the reachable
states of M (represented by W), collect from W the states
satisfying ‘FlagC = 1' (V := Conj(W, C.) where C. isa
DF containing FlagC = 1), and finally apply the algorithm
Check_U with the set V asthe set of initial states.

A property in the form of F(Next_let formula) can
be verified by checking TU(Next_let formula) using the
Check_U algorithm.
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5. VERIFICATION OF LIVENESS PROPERTIES
WITH FAIRNESS CONSTRAINTS

5.1. Fairnessconstraints

When verifying liveness properties, oneisusually interested
only in the so-called fair infinite computation paths. A fair
pathisacomputation path along which the states satisfy each
fairness condition infinitely often.

In the literature, different methods for specifying fairness
constraints have been developed for CTL model checking
[21] and for language containment using L -automata[ 22, 23].

In our method, we impose fairness constraints using a
subset of the criteria employed in the method based on
language containment, namely, by specifying cycle sets.
Let H;,i = 1,...,n, ben ‘exception’ conditions, and S,,
the set of infinitely repeating states along a computation
path. If at least one H; holds on al states in S, then the
computation path is not fair and need not satisfy the property
under investigation. That is, only those computation paths
along which the states satisfy every ! (H;) infinitely often are
considered. Therefore, |(H;) (1 < i < n) can be viewed
as the fairness constraints. We call the formula representing
the exception condition H; an H_formula The syntax of an
H_Formulaisasfollows:

(i) the equation x = y is an H_Formula, where x is
an ASM_variable and y either an ASM_variable or a
constant.

(ii) if p, g are H_Formulas, then so are: !p (not p), p&g

(p and q), plg (p or q), p — q (p implies g), Xp
(next-time p).

5.2. Verification of pUgq with fairness constraints

To verify that pUg (where p and ¢ are Next_let_formulas)
holds for the initial states of an ASM D under the fairness
constraints ' Hq, 'H», ..., 'H, , we build additional ASMs
to represent p, ¢ and H;(1 < i < n), and then transfer
the problem to checking (FlagP = 1)U(FlagQ = 1) on
the initial states of the composite machine derived from
D and the additional ASMs. The agorithm for verifying
(FlagP = 1U(FlagQ = 1) under fairness constraints
I(FlagH; = 1) (1 <i < n) isasfollows:

(1) Check_U_fair(M,Cp, Cy, Hy, ..., Hy)

/* M isthe composite machine, */

/* G isthe set of initial states of M, */

/* G isthetransition relation of M, */

I* Cp, isthe DF containing FlagP = 1, */

I* C4 isthe DF containing FlagQ = 1, */

/* H; (1 <i < n) isthe DF representing formula

FlagH; = 1. */

(2) begin

(3)  := @;/* X isaset containing DFs with each DF

representing the set of states satisfying FlagP = 1 but
not FlagQ = 1 at each transition step */
(4 P:=Gy;
(5) K :=0;

(6) loopl

(7) Snotq = PbyS (P, Cq);
with FlagQ = 1*/

(8) if Suorq = F then return success,

(9 if 3T €%, PoyS(T, Snotg) = F then return failure,
* This step checks if DF, S, covers any one of the
DFsinXi.e. foreachDF T in X, PbyS(T, Sporq) =F
is checked to detect a cycle. If thereis a cycle, then
failureisreported */

/* remove from P states

(10) R = PbyS(Snotg: Cp); [I* removefrom S, states
with FlagP = 1 */
(11) if R # Fthenreturn failure;
(12) X := X U {Shorg}; [* add DF S, as an element
into X */
(13) 81:= Snotq;
(14) fori =1tondo
(15) S0 = PbyS(S1, H;); I* remove from §; states
with FlagH; = 1*/
(16) S := Conj(S1, H;); I* S> representsthe statesin Sy
with FlagH; = 1*/
A7) if S, = Fthen Sa,0 = F;
(18) if S2 # F then begin
(19) S3:= 982,87 :=82, L :=0;
(20) loop2 /* to compute all the states reachable from S»
with FlagH; = 1*/
21 L:=L+1,
(22 I := Fresh(X,,, L); [* generate new input
values*/
(23) N1 := ReP({I2, Sf, Gr}, X U Yo, 0'); I* cOM-
pute next states */
(24) Nz = PbyS(Ni, C,); /* remove from Ny the
states with FlagQ = 1 */
(25) N3 := Conj(N2, H;); I* pick from N» the states
with FlagH; = 1*/
(26) if PbyS(N3, C,) # F then return failure; /* if the
statesin N3 do not satisfy FlagP = 1, report failure
*/
27) Sr = PbyS(N3, S3); /* compute the frontier set
of states*/
(28) if Sy = F then exit loop2; /* if all the states
reachable from S> have been visited, exit loop 2 */
(29 S3:=PbyS(Ss, Sy);
(30) S3 := Dig (83, Sy); /* add the states of Sy to S3
*/
(31) end loop2;
(32 I3 := Fresh(X,,,L); [* generate new input
values*/
(383)  Sa = ReP(I3, $3.Gr}, Xp U Y, 1), I*
compute the next states of S3 */
(34) Sa := PbyS(Sa1, H;); I* removefrom S4; the states
with FlagH; = 1*/
(35) S4n0tq = PbyS(S4’ CCI),
(36) if PbyS(S4norq, Cp) # F then return failure;
37) end.if
(38) NRES DIS (S4notq» SnotH);
(39) end_ for
(40) K:=K+1;
(41) I1:=Fresh(X,,, K); I* generate input values*/
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(42) S := RdP({I1, S1,G71}, X\ U Yy, 1'); I* compute
next states */

(43) end loopl

(44) end

Inthisalgorithm, X isaset containing the DFsrepresenting
each a set of states not satisfying FlagQ = 1 on the fair
computation paths after a transition step, P represents the
frontier set of statesto beexplored further, and»n isthenumber
of fairness constraints.

In loopl, Lines (7-12), S,.:, represents the set of states
in P not satisfying FlagQ = 1. If S, is empty, then the
computation stops by reporting success; otherwise, if S,
covers any setin P, which means thereis at least one cycle
that is not one of the cycle sets, and the statesin the cycle do
not satisfy FlagQ = 1, then the algorithm stops and reports
failure. If no cycle is detected, then we check whether the
statesin Sy, satisfy FlagP = 1. If not then report failure; if
yes, then S, is added to X and the computation continues
(Lines 10-12).

Lines (13-39) form a loop which is executed n times.
This loop deals with each exception condition. At every
i-th (1 < i < n) iteration, S, represents the set of states
in S1 that satisfy the excepting condition FlagH; = 1, and
Sqori represents the set of statesin S that does not satisfy
FlagH; = 1. If Sz is not empty, the algorithm computes
S3 (loop 20-31). This set represents al states that are
reachable from S by any number of transition steps and that
all states satisfy FlagH; = 1 and FlagP = 1, but do not
satisfy FlagQ = 1. In other words, S3 could contain cycles
which are formed by the states satisfying FlagH; = 1 and
FlagP = 1 but not FlagQ = 1. (Theway to compute S3isthe
same asthereachability analysis.) Then, one more transition
isdoneto computethe set of statesreachableby onetransition
step from the states of S3, but not satisfying FlagH; = 1, and
these statesarestored in Sa. Sanorq representsthe set of states
in S, that do not satisfy FlagQ = 1. If thisset containsat least
one state that does not satisfy FlagP = 1, then report failure
(Line 36). S isthe union of the set of states represented by
Sanorg and Sy at each iteration of the loop.

In Lines (4042), P is computed to represent the states
reachable in one transition step from the statesin S;. The
computation continuesinloop 1 with P beingthenew frontier
set of states to be checked.

In Figure 2, we show an example that illustrates how this
algorithm works. Suppose we wish to verify (FlagP= 1)U
(FlagQ=1) under the fairness constraint !(FlagH; = 1) on
the state transition graph given in Figure 2. We a so indicate
the values of FlagP, FlagQ and FlagH in each state. We
shall see that the algorithm stops and reports success at
the 3rd iteration in loopl. However, checking (FlagP=1)
U(FlagQ= 1) without the fairness constraint would fail on
thepahsl - 2+ s3—s2—- s3— s2— S3---.

The Check_U fair agorithm is conservative, i.e. it
requires that for every path, FlagP = 1 is satisfied on al
the states along the path before a state satisfying FlagQ = 1
isreached. Along some paths, if the states repeating forever
arecovered by acycleset andthereisno other statereached by

initia: =10,
Set(S) ={sl};
FlagP=1
'E:agg :_OO the 1st timein loopl:
o Set( g = {1}
z={{s}};
Set (Sy) ={sl};
Set (S) =0;
Set (9 ={ 2};
FlagP=1
E:Zggzzol e the 2nd time in loopl:
' Set(Shotg) = {2}
z={{s1}, {2}
Set (Sy) ={s2};
Set () ={s2};
Set (Sg) = {2, s3};
o Set (89 = (4
agQ= ot (9 = ;
FlagH; =1 e (9 ={s4
F[LTQPQ: ! 1 the 3rd time in loopl:
agQ= i
Flagh, =0 9 Se(Shorg = U, retu sucess,

FIGURE 2. Example of checking (FlagP = 1)U(FlagQ = 1)
under fairness congtraint !(FlagH, = 1).

@ FlagP=1

FlagP# 1, FlagQ# 1, FlagH = 1
FlagQ=1

FIGURE 3. Example of a false negative answer when verifying
(FlagP = 1U(FlagQ = 1) under the fairness constraint
! (FlagH =1).

those states as shown in Figure 3, Check_U_fair will report
failure. However, it isnot necessary that FlagP = 1 holdson
these states, since this path should not even be considered.
Thus Check_U _fair may give a false negative answer. In
real systems, this situation happens rarely.

To check G(c= pUg) where ¢, p,q are Next let
formulas under the fairness constraints ! Hy, 'Ho, ..., 'H,
onan ASM D, webuild acomposite machine M from D and
ASMsrepresenting ¢, p, g, H; (1 < i < n), andthen transfer
the problem to checking G((FlagC = 1) = ((FlagP =
DHUFlagQ = 1))) on M under the fairness constraints
I(FlagH, = 1)(1 < i < n). We then do reachability
analysisto get all the reachable states of M (represented by
W), collect from W the states satisfying ‘FlagC = 1" (V :=
Conj (W, C.) where C. isaDF containing FlagC = 1), and
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finally apply the agorithm Check_U_fair with the set V as
the set of initial states.

To verify that Fp (where p isaNext_let_formula) under
fairness constraints, we verify (TUg). The method will not
produce any false negative answer since T is satisfied by any
state in this case.

6. EXPERIMENTAL RESULTS

To show how to express propertiesin Lypg, and how to use
our model checker, we usethelsland Tunnel Controller (ITC)
[24] and the Abstract Counter [12] as examples. Although
the two examples are small and do not represent the scale of
designs that the MDG-based model checker can verify, they
are ideal for illustration purposes. From the two examples,
we can see how the ASMsare used to describe design models,
and how the properties can be stated using Lypg. We aso
carried out the same verification using the ROBDD-based
verification tool VIS [25]. Both tools showed the same
verification result. However, using the MDG-based method,
we were able to use abstract variables that describe the
datapath and thefirst-order temporal logic to state properties,
hence, the performance of the MDG-based model checker is
much better than that of VIS.

6.1. Checking propertiesof thel TC

The ITC was originally introduced by Fisler and Johnson
[24] to illustrate the notation of a heterogeneous logic
system supporting diagrams as logic entities, however, no
verification experiments were performed.

6.1.1. ThelTC

Generally speaking, the ITC controlsthe traffic lights at both
endsof atunnel based ontheinformation collected by sensors
installed at both ends of the tunnel: there is one lane tunnel
connecting the mainland to an island, as shown in Figure 4.
At each end of the tunnel, there is a traffic light. There are
four sensorsfor detecting the presence of vehicles: oneat the
tunnel entrance (ie) and oneat thetunnel exit ontheisland side
(ix), and one at the tunnel entrance (me and one at the tunnel
exit on themainland side (mXx). Itisassumed that all carsare
finite in length, that no car gets stuck in the tunnel, that cars
do not exit the tunnel before entering the tunnel, that cars do
not leave the tunnel entrance without travelling through the
tunnel, and that there is sufficient distance between two cars
such that the sensors can distinguish the cars.

In [24], one more constraint isimposed: ‘at most 16 cars
may be on theisland at any time’. The number ‘16" can be
taken as a parameter and it can be any natural number. The
constraint canthusberead asfollows: ‘at mostn (n > 0) cars
may be ontheisland at any time'. In our ASM approach, we
havetheluxury to model an abstract datapath, hence, weused
an abstract variable to describe the counter n. For ROBDD-
based verification methods, like VIS, a particular instance of
n hasto be given.

Fisler and Johnson proposed a specification of ITC using
three communicating controllers and two counters as shown

FIGURE 4. ThelTC.

mrl_ | mg _iu L ie
= Mainland [ T Isand [
mgl Light | gmy | Tunnel | jr Light | ix
- Controller | mu Controller=4 : Controller
me > irl
> (MLC g EUS) 1 ace >
m || MO ot ig
I!‘ ) . ICA
ic4 ic- te+ tc-
’ Island counter ‘ ’ Tunnel counter

FIGURE 5. The specification of the ITC.

in Figure 5. The idland light controller (ILC) has four
states: green entering red and exiting The outputs igl
and irl control the green and red lights on the island side,
respectively; iu indicates that the cars from the island side
are currently occupying the tunnel, and ir indicatesthat ILC
is requesting the tunnel. The input iy requests the ILC to
release control of the tunnel, and ig grants control of the
tunnel fromtheisland side. A similar set of signalsisdefined
forthemainlandlight controller (ML C). Thetunnel controller
(TC) processes the requests for accessissued by the ILC and
MLC. Theisland counter and the tunnel counter keep track
of the numbers of cars currently on the island and in the
tunnel, respectively. For the TC, at each clock cycle, the
counter tcisincreased by 1 depending ontc + or decremented
by 1 depending on tc— unless it is aready 0. The island
counter operates in a similar way, except that the increment
and decrement signals are ic+ and ic—, respectively.

In [24], Fider and Johnson proposed a set of properties
that the ITC design should satisfy. In the next section, we
will show how those properties are specified in Lypg, and
the CPU time and memory used for verifying the properties
using the MDG package.

6.1.2. Property checking using the MDG package

We first create an ASM model representing the ITC design
which could be read by the MDG verification system. We
created modulesrepresenting ILC, ML C, TC and thecounters
as specified. All the signals are described using concrete
variables, except that two state variables of abstract sort
WORDN for n-bit word are used to describe the island
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counter (ic) and the tunnel counter (tc). The uninterpreted
function inc of type WORDN — WORDN is used to
describe the operation of incrementation by 1, and dec of
the same type to describe the decrementation by 1. The
environment (ENV) is built in such a way that it alows a
non-deterministic choice of values on the primary inputs ie,
me, ixand mx.

The following properties were verified on the ITC design:

ProOPERTY 1. The lights at both entrances of the tunnel do
not show green at the same time

Thisisatypical safety property that atrafficlight controller
should satisfy. This property isdescribed in the specification
language Lvpg asfollows:

G(1((igl = 1) & (mgl = 1)));

PROPERTY 2. The island counter is never ordered to
increment and decrement simultaneously:

G(! ((ic— =1) & (ic+ = 1)));

PrOPERTY 3. The tunnel counter behaves properly if
ordered to increment and decrement simultaneously

G(((tc+ =1) & (tc— =1))
— (LET (v=tc) IN X (tc = V)));

We used an ordinary variable v to remember the value of
tc at the current state, and compare the value of tc at the next
state with v. The property states that if both the signals tc+
andtc— areset, thentheval ueof tc should not changefromthe
current state to the next state. Rewrite rules which interpret
dedinc(v)) and inc(dedqv)) as v are used in the verification
of this property.

PrOPERTY 4. The tunnel counter is never ordered to

increment simultaneously by both the ILC and the MLC.
G (!((itc+ = 1) & (mtc— = 1)));

Table 1 shows the CPU time and the memory used in
building the composite machine and checking the simplified
property regarding the signal Flag on the composite machine.
The experiment was carried out on a SPARC Station 20 with
128 MB of memory.

6.1.3. Property checking using VIS

Besides the ASM-based verification experiments, we also
verified the same set of properties using VIS [25]. The same
ITC behaviour model was recoded in a subset of Verilog
HDL, accepted by VIS. However, since VIS is based on
finite state machines, the counterstc and ic are now assigned
concrete val ues which indicate the maximum number of cars
that areallowedinthetunnel and ontheisland. We devel oped
models according to the number of register bits used for the
counters. For example, if 4 bits are used to describeic (¢¢),
then the maximum of 16 cars are alowed on the island (in
the tunnel). It takes 65 transition steps to compute al the
reachable states when 4 bit counters are used. From Table 2,

TABLE 1. Statisticsfor the ITC property verificationin MDG.

Building the Checking the

composite machine simplified property

CPU Memory CPU Memory
Verification time (s) (MB) time (s) (MB)
Property 1 0.25 0.95 0.94 3.66
Property 2 0.32 0.98 0.61 353
Property 3 0.38 1.02 147 5.69
Property 4 0.27 1.03 0.68 4.04

we can seethat the number of transition stepsincreases when
the counter width increases. The properties were described
in CTL asfollows:

PrOPERTY 1. G(!((igl = 1*mgl = 1)));
PROPERTY 2. G(!((ic_minus = 1*ic_plus = 1)));

PrROPERTY 3. In CTL, this property could be expressed
as the conjunction of the following formulas. We have to
enumerate all the possible values that tc could take, i.e. from
Oto 15.

G(((tc+ = D*(tc— = 1™ (tc<0> = 0*tc<1> = 0*tc<2> = 0*tc<3> = 0))
— (AX(tc<0> = 0*tc<1> = 0*tc<2> = 0*tc<3> = 0)));
G(((tc+ = D*(tc— = D* (tc<0> = 1*tc<1> = 0*tc<2> = 0*tc<3> = 0))
— (AX(tc<0> = 1*tc<1> = 0*tc<2> = 0*tc<3> = 0)));
G(((tc+ = D*(tc— = 1*(tc<0> = I*tc<1> = 1*tc<2> = 1*tc<3> = 1))
— (AX(tc<0> = 0*tc<1> = 0*tc<2> = 0*tc<3> = 0)));

PROPERTY 4. G(!((itc+ = 1) x (mtc— = 1)) );

Table 2 shows the CPU time and the memory used for
verifying al the four properties on models with different
counter widths. We also indicate the number of transition
steps needed for the state exploration and the number of
reachable states for the different models. The experiment
was also carried out on a SPARC Station 20 with 128 MB of
memory.

6.1.4. Discussion

From the experimental results shown in Tables 1 and 2, we
can see that the MDG-based model checking can verify a
parameterized implementation having n bits, and it does so
very efficiently and independently of the datapath width.
That is exactly the purpose behind the development of the
ASM-based model checking methods. On the other hand,
using the ROBDD-based tool VIS, the number of transition
steps needed for state exploration and the number of states
get doubled, and the resource usage (CPU time and memory)
for the property verification increases exponentially with the
counter width.

6.2. Verification of properties of an abstract counter

In this section, we use the MDG-based model checker
to verify both safety and liveness properties on a small
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TABLE 2. Statistics for the ITC property verification using VIS.

Number of transition steps

Counter width (bits) CPU time (9) Memory (MB) Number of reachable states needed for state exploration
4 4 5.67 59808 65
5 15 6.01 234400 129
6 46 6.70 927648 257
7 205 (3:25) 8.35 3.69 x 10% 513
8 875 (14:35) 11 1.47 x 1097 1025
9 3097 (51:37) 22 5.88 x 1097 2049
10 12697 (211:3 8) 50 2.35 x 10%8 4097
c No_op TABLE 3. Statistics for the abstract counter verification in
MDG.
Building the Checking the
¢ Load composite machine  simplified property
ocr—éi‘ﬁ}cz CPU Memory CPU Memory
¢ Load Verification time(s) (MB) time (s) (MB)
pc :=loadin Property 1 0.17 0.80 0.04 0.14
Property 2 0.21 0.89 0.04 0.15
Property 3 0.31 0.90 0.12 1.75
double = true Property 4 0.37 1.65 0.06 0.51

FIGURE 6. An abstract counter.

design: an abstract counter which was introduced in [12].
The abstract counter was used in [12] as an example to show
how formulasin GTL can be used to describe state transitions
and to specify design properties. Figure 6 shows the state
transition graph of the counter. There are four control states:
¢ _Fetch ¢ Load c_Incland c_Inc2 Depending on the
input, the counter pc will get a new value, or increase by
one, or keep the previous value.

6.2.1. Property checking using the MDG package

To use our model checker, we first describe the behaviour of
the counter using the MDG-HDL language. The counter pc
is of abstract sort. The control stateisinitialized to ¢c_Fetch
the initial value of pcis a free variable called init_pc (i.e.
the initial state is generalized to any value). As the counter
variable pc is of abstract sort and implicit enumeration is
applied, a set of states represented by DF pc = init_pc and
its next states represented by DF pcd = finc(init_pc) are
viewed as equivalent sets of states by the PbyS algorithm, all
the reachable states are computed in three transition steps.
The following properties were verified:

PrROPERTY 1. From state c_Fetch, if the input isc_Inc2,
then the machine goes to the nstete c_Incl. This property

is expressed inypg as follows:
G( (state = ¢_Fetch & input = ¢ _Inc2)
— (X(state = c_Incl)));

PROPERTY 2. From state ¢_Fetch, if the input isc_Inc2,
then the machine always reachetate c_Inc2 in two
transition steps. This property is expressedLifypg as
follows:

G( (state = ¢_Fetch & input = c_Inc2)
— (XX(state = c_Inc2)));

PrROPERTY 3. From state ¢_Fetch, if the input isc_Inc2,
then the machine reachesate c_Fetch in three transition

steps and the counter pc has been increased by 2. This

property is expressed indpg as follows:

G( (state = ¢_Fetch & input = c_Inc2)

— (LET(v1 = pc) IN (XXX (state = ¢_Fetch& pc
= finc(finc(vl))))));

PROPERTY 4. From state c_Fetch, the machine will
eventually reactstate ¢ Load if the input is notc No_op
or c_Incl or c_Inc2 forever. The property is expressed in
Lwvpg as:

G( (dtate = c_Fetch) = (F(state = ¢_Load)));
under the following fairness constraint:
I( (state = c_Fetch)
— ((input = c_Incl)|(input = c_No_op)
[(input = c_Inc2)) );
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TABLE 4. Statistics for the abstract counter verification using VIS.

Number of transition steps

Counter width (bits) CPU time (9) Memory (MB) Number of reachable states needed for state exploration
4 0.56 2.84 448 6
8 3 3.72 7168 6
16 7 4.80 1.83501 x 10° 6
32 12 6.12 1.20259 x 1011 6

These propertieswere verified by our model checker using
less than one second. Table 3 shows the CPU time in
secondsusedin building thecompositemachineand checking
the simplified property regarding Flag on the composite
machine. The experiment was carried out on a SPARC
Station 20 with 128 MB of memory.

6.2.2. Property checking using VIS

To compare the performance of the MDG-based model
checker to that of an FSM-based verification tool, and to
verify partialy the verification results, we carried out the
same property verification using VIS. Again, for the counter
pc, wehaveto giveitsupper bound. We modelled the abstract
counter in a subset of Verilog using registers with different
width for the counter pc, i.e. registers consisting of 4 hits,
8 hits, 16 bits and 32 bits. On each model, we verified the
same set of propertiesasin Section 6.2.1. The propertiesfor
the model with 4 bit pcregister are stated in CTL asfollows:

PROPERTY 1. G( ((state=c_fetch)*(input_instruction =
c_inc2)) — (AX(state = c_incl)));

PROPERTY 2. G( ((state=c_fetch)=(input_instruction =
c_inc2)) — (AX(AX(state = c_inc2))));

PROPERTY 3. G(((state = c_fetch)*(input_instruction =
c inc2) x (pc<3> = 0 * pc<2> = 0% pc<l> =
0% pc<0> = 0)) - (AX(AX(AX((state = c_fetch) *
(pc<3> = 0% pc<2> = 0% pc<l> = 1% pc<0> =
0)))))); with (pc<3>pc<2>pc<1>pc<0>) ranging over
from 0000 to 1111;

PROPERTY 4. G((state = c fetch) —
c_load)));

(AF(state =

under the following fairness constraint
!((state = ¢_Fetch) — ((input = ¢_Incl)|
(input = ¢_No_op)|(input = c_Inc2)) ).

Table 4 shows the number of transitions it takes for each
model to compute all the reachabl e states, the number of the
reachable states, the CPU time and the memory needed to
verify Properties 1-4.

6.2.3. Discussion

The dtatistics shown in Tables 3 and 4 again demonstrate
that the MDG-based model checking can verify both safety
and liveness properties on a parameterized implementation

independent of the datapath width very efficiently. However,
from Table 4, we can see that with the counter width
increasing, the number of reachable states increases
exponentialy, but the number of transition steps needed for
state exploration stays the same and the usage of CPU time
and memory only increases slightly, which was not the case
inthe ITC. Thereason isthat in this particular example, the
counter pcisindependent of the statetransitions, i.e. thestate
transitions are not gated by the value of pc. Every timewhen
loading in a new value of pc it can take any value within
its range, hence, the node pc will not appear in the BDD
expression of the sets of states. Therefore, no matter how
large the width of pcis, the time and memory usage will
not grow significantly. Nevertheless, the MDG-based model
checking still outperformsthe ROBDD-based model checker
in the sense that one ASM model of the Abstract Counter
and one set of properties automatically cover al the possible
pc widths. Using VIS on the other hand, we have to build
separate model s and to devel op separate sets of propertiesfor
pcinstances of different widths.

6.3. Implementation issues

To check properties expressed in Lypg automatically, we
devel oped programs that

(i) check if the signals in a property (except the ordinary
variables) aredeclaredintheoriginal circuit description;
report any errors,

(ii) check the syntax of the property; report any errors;

(iii) build additional  circuits to represent the
Next_let formulas in the property and the excep-
tion conditions if fairness constraints are imposed;

(iv) merge the description of the additional circuitswith the
description of the original circuit, which means adding
declarations of componentsand signalsof the additional
circuits to the original circuit description file and the
variable order file.

The above programs were implemented in C with Yacc
& Lex. The model checking algorithms were developed
upon the existing MDGs package implemented in Quintus
Prolog V3.2.

7. CONCLUDING REMARKS

We studied model checking for a first-order linear-time
tempora logic based on the ASMs. Since a data value
is represented by a single variable of abstract type, rather
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by a vector of Boolean variables, and a data operation is
represented by an uninterpreted function symbol , thewidth of
adatapath of adesignhasno effect on thedescription model of
the design. We can then alleviate the state expl osion problem
in symbolic model checking caused by alarge datapath.

We defined Lypg as the property specification language
and developed property checking algorithms for Lypg.
Using Lvpg, both safety and liveness properties can be
expressed with or without fairness constraints. To check a
property of Lypg onan ASM M, we first build additional
ASMs for al the Next_let formulas (which contain the
temporal operator X) that appear in the property. We then
compose the additional ASMs with M, and finally verify a
simpler property onthecompositemachine. WeuseMDGsto
encodesetsof statesand thetransitionrelations. Theproperty
checking procedures are based on implicit state enumeration
and are carried out fully automatically. We illustrated the
application of our model checker onthel TC and the Abstract
Counter benchmarks. The experimental results demonstrate
that the MDG-based model checking can verify both safety
and liveness properties on parameterized implementations
independent of the datapath width very efficiently. Due
to space limit, the proof of the correctness of the property
checking procedures are not presented in this paper, while it
can befoundin[20].

Since we use first-order logic, the reachability analysis
may not terminate [26], thus the property checking may not
terminate either. We are currently exploring techniques that
can mitigate this problem [27, 28]. We are also applying
the MDG-based model checker to verify some industrial
scale designs with large data path (most telecommunication
circuits happen to fall into this category).
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