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We study model checking for a first-order linear-time temporal logic. We present the computation
model: abstract description of state machines (ASMs), in which data and data operations are
described using abstract sort and uninterpreted function symbols. ASMs are suitable for describing
Register Transfer level designs. We define a first-order linear-time temporal logic called LMDG which
supports the abstract data representations. Both safety and liveness properties can be expressed in
LMDG, however, only universal path quantification is possible. Fairness constraints can also be
imposed. The property checking algorithms are based on implicit state enumeration of an ASM and

implemented using Multiway Decision Graphs.
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1. INTRODUCTION

Symbolic model checking has proven to be an important
technique for the automatic verification of hardware designs
[1, 2, 3, 4]. However, these methods require the description
of the design to be at the Boolean logic level, and thus in
general they are not adequate for verifying circuits with large
datapath because of the state explosion problem.

Being motivated by a desire to combine the automation
feature of model checking and the abstract representation
of data in theorem proving, we developed model checking
algorithms for a few first-order linear-time temporal logic
patterns. Our approach is based on a computation model
called an abstract description of state machine(ASM) where
a data value is represented by a single variable of abstract
type, rather than by a vector of Boolean variables, and a
data operation is represented by an uninterpreted function
symbol [5, 6]. ASMs can be used to describe designs at
Register Transfer Level (RTL). An ASM is encoded using
Multiway Decision Graphs (MDGs) [6, 7] of which Reduced
Ordered Binary Decision Diagrams (ROBDDs) [8] are a
special case. The verification of ASMs is based on state
enumeration whose complexity is independent of the width
of the datapath. Thus, the state explosion problem caused by
descriptions of large datapaths at the Boolean logic level is
alleviated.

While our formalization of ASMs was introduced in [6, 7],
and the invariant checking on ASMs was presented in [9], in
this paper we address the model checking problem for ASMs.
We define the first-order linear-time temporal logicLMDG and

present the property checking algorithms for LMDG. As part
of the property checking algorithms, we also show a special
handling of the next operators, i.e. using ASMs to represent
the basic LMDG sub-formulas in which only the next operator
X is allowed (called Next_let_formulas).

To check a property p in LMDG on an ASM M , we first
build additional ASMs automatically for Next_let_formulas,
then we compose the additional ASMs with M, and finally
check a relatively simpler property on the composite machine.
The property checking algorithms are based on implicit
state enumeration as supported by MDGs. However, the
algorithms do not always terminate. Decidability of model
checking for LMDG, just like decidability of reachability
analysis for our ASMs, is left as an open question.

There are previous developments reported in the literature
that are directly related to ours. Hungar, Grumberg, Damm et
al. proposed a ‘true symbolic model checking’ technique in
[10], and later improved in [11] by checking first-order-CTL
(FO-CTL) properties on systems with clear separation be-
tween control and datapath. In their method, the BDD-based
symbolic model checker is used to check the properties on
the control part, the data part is handled by annotating each
control-expanded state by a first-order formula, and BDDs
are used to represent and manipulate the first-order annota-
tions symbolically. The FO-CTL is more expressive than
LMDG, since only a limited nesting of temporal operators is
allowed in LMDG. However, their method differs from our
method in the way the property checking is achieved. Basi-
cally, they showed how to cast first-order model checking into
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BDD-based model checking, while our property checking al-
gorithms are carried out directly on the first-order logic level.

Cyrluk and Narendran [12] defined a first-order temporal
logic–Ground Temporal Logic (GTL), which falls in
between the first-order and the propositional temporal logics.
The validity problem in GTL is the same as checking a linear-
time temporal logic formula for all computation paths. In
[12], the authors showed that the full GTL is undecidable.
They then identified a decidable fragment of GTL, consisting
of �p (always p) formulas where p is a GTL formula
containing an arbitrary number of ‘Next’ operators, but no
other temporal operators. However, they did not show how
to build the decision procedure. We shall see in the following
sections that the decidable fragment of GTL is actually a
subset of the class of properties that we can verify.

Hojati, Brayton et al. proposed a concurrency model called
integer combinational/sequential (ICS), which uses finite
relations, interpreted and uninterpreted integer functions and
predicates, and interpreted memory functions to describe
hardware systems with datapath abstraction [13, 14, 15].
Verification of ICS models is performed using language
containment. They showed that for a subclass of ‘control-
intensive’ ICS models, integer variables in the model can be
replaced by enumerated variables (i.e. finite instantiation)
and then the property verification can be carried out at the
Boolean logic level without sacrificing accuracy. They gave
a linear-time algorithm for recognizing those subsets. For
verifying properties of circuits with complex datapaths, i.e.
the circuit contains interpreted and uninterpreted functions,
finite instantiation cannot be used. Instead, they compute the
set of states reachable inn steps using BDDs and check that no
error exists in these n steps. Their algorithm, if it terminates,
computes the set of reachable states. Thus, they can check
only safety properties, while our methods can check safety
properties as well as certain liveness properties.

Burch and Dill [16] used a subset of first-order logic,
specifically, the quantifier-free logic of uninterpreted func-
tions and predicates with equality and propositional connec-
tives, for verifying microprocessor control circuitry. Velev
and Bryant [17] presented a Equality Validity Checker (EVC)
for a logic called Equality with Uninterpreted Functions and
Memories (EUFM). The EVC translates a formula in EUFM
to a propositional formula, and then evaluates the propo-
sitional formula using a Boolean satisfiability procedure.
Those methods are appropriate for verification of micropro-
cessor control because they allow abstraction of datapath
values and operations. However, those methods, unlike ours,
cannot verify properties involving temporal operators, in par-
ticular, liveness properties. Another relevant but differently
focused approach was [18], in which Namjoshi and Kurshan
showed an algorithm that constructs a finite state ‘abstract’
program from a given, possibly infinite state, ‘concrete’
program by means of a syntactic program transformation.

This paper is organized as follows: in Section 2, we first
describe the formal logic used in our ASM approach, and then
define the computation model, i.e. the definition of ASMs. In
Section 3, we define the syntax and the semantics of LMDG,
as a property specification language for which we have been

able to develop property checking procedures. In Section 4,
we present in detail the property checking procedures. In
Section 5, we show how to impose fairness constraints in our
verification system and the algorithms for checking liveness
properties under fairness constraints. In Section 6, we verify
some properties regarding the Island Tunnel Control bench
mark using our model checker and also using VIS from
University of California at Berkley. We also verify several
properties regarding an abstract counter in which the value
of the counter is described using a variable of abstract type.
We conclude the paper in Section 7.

2. ABSTRACT DESCRIPTION OF STATE
MACHINES

Abstract description of state machine is a model used for
describing hardware designs at the RTL. Using ASMs, a
data value can be represented by a single variable of abstract
type, rather than by a vector of Boolean variables, and a
data operation is represented by an uninterpreted function
symbol. The model checking method based on a first-order
linear-time temporal logic as developed in this paper allows
to verify properties on designs represented by ASMs. Thus, it
is necessary to review first the terminology related to ASMs.

2.1. A many-sorted first-order logic

As in an ordinary many-sorted first-order logic, the
vocabulary consists of sorts, constants, variables and
function symbols(or operators). Constants and variables
have sorts. We deviate from standard many-sorted first-
order logic by introducing a distinction between concrete
(or enumerated) sorts and abstract sorts; the difference is
that concrete sorts have enumerations, while abstract sorts
do not. The enumeration of a concrete sort α is a set of
distinct constants of sort α. We refer to constants occurring
in enumerations as individual constantsand to other constants
as generic constants.

The distinction between abstract and concrete sorts leads
to a distinction between three kinds of function symbols. Let
f be a function symbol of type α1 × α2 × · · · × αn → αn+1.
If αn+1 is an abstract sort then f is an abstract function
symbol. If all the α1, . . . , αn+1 are concrete, f is a concrete
function symbol. If αn+1 is concrete while at least one
of α1, . . . , αn is abstract, then f is referred to as a cross-
operator.Both abstract function symbols and cross-operators
may be uninterpreted, or partially interpretedby conditional
rewrite rules. The termsand their types(sorts) are defined
inductively as follows: a constant or a variable of sort α

is a term of type α; and if f is a function symbol of type
α1 × α2 × · · · × αn → αn+1, n ≥ 1, and A1, . . . , An are
terms of types α1, . . . , αn, then f (A1, . . . , An) is a term
of type αn+1. We say that a term, variable or constant is
concrete (resp. abstract) to indicate that it is of concrete (resp.
abstract) sort. A term is concretely reducedif it only contains:
(i) the individual constants; (ii) the abstract generic constants;
(iii) the abstract variables; and (iv) the terms of the form
f (A1, . . . , An) where f is a function symbol and A1, . . . , An

are concretely reduced terms. Thus, the concretely reduced
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terms are those that have no concrete subterms other than
individual constants. A term of the form f (A1, . . . , An)

where f is a cross-operator and A1, . . . , An are concretely
reduced terms is called a cross-term. An equation is an
expression A1 = A2 where A1 and A2 are terms of same
type α. Atomic formulasare the equations, plus T (truth) and
F (falsity). Formulas are built from the atomic formulas in
the usual way using logical connectives and quantifiers.

An interpretationis a mapping ψ that assigns a denotation
to each sort, constant and function symbol such that:

(i) The denotation ψ(α) of an abstract sort α is a non-empty
set.

(ii) If α is a concrete sort with enumeration {a1, a2, . . . , an}
then ψ(α) = {ψ(a1), ψ(a2), . . . , ψ(an)} and ψ(ai) �=
ψ(aj ) for 1 ≤ i < j ≤ n.

(iii) If c is a generic constant of sort α, then ψ(c) ∈ ψ(α). If
f is a function symbol of type α1 × · · · × αn → αn+1,
then ψ(f ) is a function from the Cartesian product
ψ(α1) × · · · × ψ(αn) into the set ψ(αn+1).

Let X be a set of variables, a variable assignmentwith
domain X compatible with an interpretation ψ is a function
ϕ that maps every variable x ∈ X of sort α to an element
ϕ(x) of ψ(α). We write �

ψ
X for the set of ψ-compatible

assignments to the variables in X, ψ , ϕ |= P if a formula P

denotes truth under an interpretation ψ and a ψ-compatible
variable assignment ϕ to the variables that occur free in P ,
|= P if a formulaP denotes truth under every interpretationψ

and every ψ-compatible variable assignment to the variables
that occur free in P .

2.2. Directed formulas

Given two disjoint sets of variables U and V , a directed
formula (DF) of type U → V is a formula in disjunctive
normal form (DNF) such that:

(i) Each disjunct is a conjunction of equations of the form
A = a, where A is a term of concrete sort α of the

form ‘f (B1, . . . , Bn)’ (f is thus a cross-operator) that
contains no variables other than elements of U , and a

is an individual constant in the enumeration of α, or
w = a, where w ∈ (U ∪V ) is a variable of concrete sort

α and a is an individual constant in the enumeration
of α, or

v = A, where v ∈ V is a variable of abstract sort α and
A is a term of type α containing no variables other
than elements of U .

(ii) In each disjunct, the left-hand sides (LHSs) of the
equations are pairwise distinct.

(iii) Every abstract variable v ∈ V appears as the LHS of
an equation v = A in each of the disjuncts. (Note that
there need not be an equation v = a for every concrete
variable v ∈ V .)

Intuitively, in a DF of type U → V , the U variables play
the role of independent variables, the V variables play the role
of dependent variables, and the disjuncts enumerate possible
cases. In each disjunct, the equations of the form u = a and

A = a specify a case in terms of the U variables, while the
other equations specify the values of (some of the)V variables
in that case. The cases need not be mutually exclusive, nor
exhaustive.

A DF is said to be concretely reducediff every A in an
equation A = a is a cross-term, and every A in an equation
v = A is a concretely reduced term. It is easy to see that
every DF is logically equivalent to a concretely reduced
DF, given complete specifications of the concrete function
symbols and concrete generic constants; the reduction can
be accomplished by case splitting. From now on, by DF we
shall mean concretely reducedDF.

Let P be a DF of type U → V . For a given interpretation
ψ , P can be used to represent the set of vectors SetψV (P ) =
{φ ∈ �

ψ
V |ψ, φ |= (∃U)P }.

In the following sections, DFs are used for two distinct
purposes: to represent sets (viz. sets of states as well as sets
of input vectors and output vectors) and to represent relations
(viz. the transition and output relations).

2.3. Abstract description of state machines

An ASM M is a tuple D = (X, Y, Z, FI , FT , FO), where

(i) X, Y and Z are sets of variables, viz. the input, state
and output variables, respectively. Let η be a one-to-one
function that maps each state variable y to a distinct vari-
able η(y) obtained, for example, by adorning y with a
prime. The variables in Y ′ = η(Y ) are used as the next-
state variables. X, Y and Z must be disjointed from Y ′.

Given an interpretation ψ , an input vector of the state
machine M represented by D is a ψ-compatible assign-
ment to the set of input variables X; thus the set of input
vectors, or input alphabet, is �

ψ
X. Similarly, �

ψ
Z is the

set of output vectors. A state is a ψ-compatible as-
signment to the set of state variables Y ; hence, the state
space is �

ψ
Y . A state φ can also be described by an as-

signment φ′ = φ ◦η−1 ∈ �
ψ
Y to the next state variables.

A variable in X ∪ Y ∪ Z is called an ASM_variable.
(ii) FI is a DF representing the set of initial states, of type

U → Y , where U is a set of abstract variables disjoint
from X ∪ Y ∪ Y ′ ∪ Z. Typically, FI is a one-disjunct
DF representing the set of initial states.

Given an interpretation ψ , a state φ ∈ �
ψ
Y is an

initial state iff ψ, φ |= (∃U)FI . Thus the set of initial
statesis SI = Setψ(FI ) = {φ ∈ �

ψ
Y |ψ, φ |= (∃U)FI }.

(iii) FT is a DF of type (X ∪ Y ) → Y ′ representing the
transition relation.

Given an interpretation ψ , an input vector φ ∈ �
ψ
X

and a state φ′ ∈ �
ψ
Y , a state φ′′ ∈ �

ψ
Y is a possible next

state iff ψ, φ ∪φ′ ∪φ′′ ◦η−1 |= FT . Thus the transition
relation of the state machine M represented by D is

RT = {(φ, φ′, φ′′) ∈ �
ψ
X × �

ψ
Y

× �
ψ
Y |ψ, φ ∪ φ′ ∪ (φ′′ ◦ η−1) |= FT }.

(iv) FO is a DF of type (X ∪ Y ) → Z representing the
output relation.
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Given an interpretation ψ , the output relation of
the state machine M represented by D is RO =
{(φ, φ′, φ′′) ∈ �

ψ
X ×�

ψ
Y ×�

ψ
Z |ψ, φ ∪φ′ ∪φ′′| |= FO}.

For every interpretation ψ of the sorts, constants and
function symbols of the logic, the abstract description D =
(X, Y, Z, FI , FT , FO) represents the state machine M =
(�

ψ
X, �

ψ
Y , �

ψ
Z, SI , RT , RO) with the set of input vectors �

ψ
X ,

the state space �
ψ
Y , the set of output vectors �

ψ
Z , the set of

initial states SI , the transition relation RT and the output
relation RO .

2.4. Basic algorithms of DFs

We recall the basic algorithms used in [5, 6], but here we give
their definitions in terms of DFs, since these algorithms will
be needed later in the model checking procedures.

Disjunction. The disjunction algorithm is n-ary. It takes
as inputs a set of DFs Pi , 1 ≤ i ≤ n, of types Ui →
V , and produces a DF R = Disj({Pi}1≤i≤n) of type
(
⋃

1≤i≤nUi) → V such that |= R ⇔ (
∨

1≤i≤nPi).
This algorithm is mainly used to compute the union of sets

of states.

Conjunction. The conjunction algorithm takes as inputs
a set of DFs Pi, 1 ≤ i ≤ n, of types Ui →
Vi and produces a DF R = Conj({Pi}1≤i≤n) of type
((

⋃
1≤i≤nUi)\(⋃1≤i≤nVi)) → (

⋃
1≤i≤nVi) such that |=

R ⇔ (
∧

1≤i≤nPi). A precondition of this operation is that
Vi and Vj (1 ≤ i < j ≤ n) must have disjoint sets of abstract
variables.

This algorithm is used to extract a common subset from
sets of states.

Relational product. The algorithm takes as inputs a set of
DFs Pi , 1 ≤ i ≤ n, of types Ui → Vi , a set of variables E

to be existentially quantified, and a renaming substitution η,
and produces a DF R = RelP({Pi}1≤i≤n, E, η) such that

|= R ⇔
((

(∃E)

( ∧
1≤i≤n

Pi

))
· η

)
.

The algorithm computes the conjunction of the Pi ,
existentially quantifies the variables in E, and applies the
renaming substitution η. The type of the result R is then
(( ⋃

1≤i≤n

Ui

)∖( ⋃
1≤i≤n

Vi

))
→

((( ⋃
i≤i≤n

Vi

)∖
E

)
· η

)
.

In our property checking procedures, this algorithm is used
to compute the set of states reachable in one transition from
one set of states.

Pruning by subsumption. The algorithm takes as inputs two
DFs P and Q of types U → V1 and U → V2 respectively,
and produces a DF R = PbyS(P, Q) of type U → V1
derivable from P by pruning (i.e. by removing some of the
disjuncts) such that

|= R ∨ (∃U)Q ⇔ P ∨ (∃U)Q

The disjuncts that are removed from P are subsumedby
Q, hence the name of the algorithm. If R is F, then it follows
tautologically that |= P ⇒ (∃U)Q.

This algorithm is used to check whether a set of states
is a subset of another set of states. Let P1, P2 be two
DFs of type U → Y . Then for a given interpretation
ψ , the two sets of states represented by P1, P2 are re-
spectively S1 = Setψ(P1) = {φ ∈ �

ψ
Y |ψ, φ |= (∃U)P1} and

S2 = Setψ(P2) = {φ ∈ �
ψ
Y |ψ, φ |= (∃U)P2}. We say that

P1 and P2 are equivalentDFs (in that case, for any ψ ,
S1 and S2 are equivalent sets) if PbyS(P1, P2) = F and
PbyS(P2, P1) = F.

3. A FIRST-ORDER LINEAR-TIME TEMPORAL
LOGIC: LMDG

Given a description of an ASM, and a set of ordinary
variableswhich are available for use in the specification of
a property to be verified, the atomic formulasof LMDG are
Boolean constant T, F, or equations t1 = t2, where t1 is an
ASM_variable, t2 is an ASM_variable, or a constant, or an
ordinary variable, or a function of ordinary variables. The
Next_let_formulasare defined as follows:

(i) each atomic formula is a Next_let_formula;
(ii) if p, q are Next_let_formulas, then so are: !p (not p),

p&q (p and q), p|q (p or q), p → q (p implies q),
Xp (next-time p) and LET (v = t) IN p, where t is
an ASM_variable, v an ordinary variable. (Note: the
LET construct allows us to use an ordinary variable
v to remember the value of an ASM_variable t at the
current state.)

We allow the formula LET (v1 = t1)& · · · &(vn = tn)

IN p as a shorthand for LET (v1 = t1) IN ((LET (v1 =
t1) IN (. . . . . . LET (vn = tn) IN p))). We call (v1 =
t1) & · · · & (vn = tn) a Let_equation.

The properties allowed in LMDG can have the following
forms:

Property ::=
Next_let_formula
| G (Next_let_formula)
| F (Next_let_formula)
| (Next_let_formula) U (Next_let_formula)
| G ((Next_let_formula) ⇒ (F (Next_let_formula)))
| G ((Next_let_formula) ⇒ ((Next_let_formula) U

(Next_let_formula)))

3.1. Semantics of LMDG

A path π is a sequence of states. We use πi to denote a path
starting from πi where πi denotes the ith state in π . All the
formulas in LMDG are path formulas. We write π, σ |= p

to mean that a path formula p is true at path π under a ψ-
compatible assignment σ to the ordinary variables. We use
Valφ∪σ (t) to denote the value of term t under a ψ-compatible
assignment φ to the state, input and output variables, and a
ψ-compatible assignment σ to the ordinary variables. We
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then define |= inductively as follows:

(i) π, σ |= t1 = t2 iff Valπ0∪σ (t1) = Valπ0∪σ (t2).
(ii) π, σ |= LET(v = t) IN p iff π, σ ′ |= p where

σ ′ = (σ\{(v, σ (v))}) ∪ {(v, Valπ0∪σ (t))}.
(iii) π, σ |= !p iff it is not the case that π, σ |= p.
(iv) π, σ |= p & q iff π, σ |= p and π, σ |= q.
(v) π, σ |= p|q iff π, σ |= p or π, σ |= q.

(vi) π, σ |= p → q iff π, σ |= !p or π, σ |= q.
(vii) π, σ |= Gp iff π1, σ |= p.

(viii) π, σ |= Gp iff πj , σ |= p for all j ≥ 0.
(ix) π, σ |= Fp iff πj , σ |= p for some j ≥ 0.
(x) π, σ |= pUq iff for some k ≥ 0, πk, σ |= q, and

πj , σ |=p for all j (0 ≤ j < k).

Given a property in LMDG regarding an ASM under a
given interpretation ψ , the property holds on the ASM iff
the property is true for every path π such that π0 is an initial
state and, for every i, there is a transition from πi to πi+1
from some ψ-compatible assignment to the input variables.

4. MODEL CHECKING FOR PROPERTIES IN
LMDG

Our approach to model checking is to build automatically
additional ASMs that represent the Next_let_formulas
appearing in the property to be verified, connect these
additional ASMs to the original one, and then check a simpler
property on the composite machine [19].

Given a Next_let_formula P regarding an ASM
D = (X, Y, Z, FI , FT , FO), an ASM Dp = (Xp, Yp, Zp,

FIp, FTp, FOp) can be constructed to represent the
Next_let_formula. The input variables of Dp are the
ASM_variables of D which appear in the property, i.e.
Xp ⊆ X ∪ Y ∪ Z. They represent the values at the ‘current’
cycle. Let n be the maximum nesting number of X operators
in the property. The set of state variables Yp and the tran-
sition relation FTp are constructed so as to ‘remember’ the
values of input variables of Dp or the results of comparison
of the variables in the past n (or less than n) cycles. The
set of the state variables of Dp contains a special state vari-
able of Boolean type, Flag, which indicates the truth of the
Next_let_formula one cycle earlier. The initial set of states
FIp are assigned differently depending on which property
template the Next_let_formula P corresponds to. The gen-
eral idea is that the initial states of Dp should not affect the
result of verifying P on the original ASM D. There is no
output from Dp, i.e. Zp is empty. Hence, there is no output
relation either. The details of an algorithm for constructing an
ASM representing a Next_let_formula can be found in [20].

In the following subsections, we describe algorithms for
verifying the various forms of the formulas in LMDG. When
our property checking algorithms report success to a query,
then the property holds for an ASM under any interpretation.
It is possible that a property holds for the ASM under the
intended interpretation of the abstract function symbols and
constants, but not under every interpretation. In that case,
the algorithm, if it terminates, will return a false negative
answer with respect to the original, non-abstracted problem.

However, if all the data operations are viewed as black boxes,
a property is expected to hold for every interpretation; it is
in this sense that we say that our algorithms are applicable to
designs where data operations are viewed as black boxes.

4.1. Verification of G(Next_let_formula)

To verify a property in the form of G(Next_let_formula)
on an ASM D, we first build an additional ASM Dp

with the special state variable Flag to represent the
Next_let_formula, and then construct a composite machine
M = (Xm, Ym, Zm, GI , GT , GO), where

(i) Xm = X is the set of the input variables of D;
(ii) Ym = Y ∪ Yp is a set of the state variables, containing

both the variables in Y and Yp; however, since Mis a
composite machine (the states of Dp are derived from
D) rather than the product machine of D and Dp, under
each interpretation ψ , the state space of M is actually a
subset of �

ψ
Y × �

ψ
YP

;
(iii) Zm = Z is the set of the output variables of D;
(iv) GI = FI ∧ FIp is a DF of type U → Ym representing

the set of initial states of M;
(v) GT = FT ∧ FTp is the abstract description of the

transition relation of M;
(vi) GO = FO is the abstract description of the output

relation of M .

We then transform the problem to verifying Flag = 1 on
each reachable state.

For example, to check the property G(req = 1 →
LET(v = Din) IN (X (Dout = v))) on an ASM D, we build
a composite ASM as shown in Figure 1, and then perform
reachability analysis and in each state check that Flag = 1.

The algorithm to check a property in the form of
G(Flag = 1) is as follows:

(1) Check_G(M, C)

/* C is the DF Flag = 1. */
/*η’ is the function that maps each state variable of M to
the corresponding next-state variables. */
(2) begin
(3) R := GI ; Q := GI ; K := 0;
(4) loop
(5) P := PbyS(Q, C);
(6) if P �= F then return failure; /* if the property is

not satisfied, report failure */
(7) K := K + 1;
(8) I := Fresh(Xm, K); /*generate input values */
(9) N := RelP({I, Q, GT }, Xm ∪ Ym, η′); /*

compute next states */
(10) Q := PbyS(N, R); /* compute frontier set of

states */
(11) if Q = F then return success; /* if fixpoint

reached, report success */
(12) R := Disj(R, Q); /* compute all states reached

so far */
(13) end loop;
(14) end;
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FIGURE 1. The composite machine of ASM D and ASM Dp .

If the set of initial states represented by GI does not satisfy
the property we report failure. Otherwise, we compute the
next new states and add them to those already visited until a
fixpoint is reached. At each iteration, we verify the property
on the newly generated states.

To check a property in the form of Next_let_formula, we
construct a composite ASM in the same way as in the case of
G(Next_let_formula), and then we verify that Flag = 1 on
the states reached in n + 1 transitions from the initial states,
where n is the maximum nesting depth of the X operators in
the property, and the 1 cycle delay is caused by the register
associated with Flag.

4.2. Verification of (Next_let_formula)U(Next_let_
formula)

We use additional ASMs to represent the Next_let_formulas
and then transfer the problem to checking (FlagP = 1)

U(FlagQ = 1) on the composite machine.

(1) Check_U(M, Cp, Cq)

/*M is the composite machine */
/*GI is the set of initial states of M */
/* GT is the transition relation of M */
/* Cp is the DF containing FlagP = 1. Cq is the DF
containing FlagQ = 1 */
(2) begin
(3) 	 := �; /* 	 is a set containing DFs with each DF

representing the set of states satisfying FlagP = 1 but
not FlagQ = 1 at each transition step */

(4) P := GI ;
(5) K := 0;
(6) loop
(7) Q := PbyS (P , Cq ); /*remove from P states with

FlagQ = 1*/
(8) if Q := F return success;
(9) if ∃T ∈ 	, PbyS(T , Q) = F return failure; /*This

step checks if DF Q covers any one of the DFs in 	,
i.e. for each DF T in 	, PbyS(T , Q) = F is checked
to detect a cycle in which FlagP = 1 is true but

FlagQ = 1 never becomes true. If there is a cycle,
then failure is reported*/

(10) R = PbyS(Q, Cp); /*remove from Q states with
FlagP = 1*/

(11) if R �= F return failure;
(12) 	 := 	 ∪ {Q}; /*add DF Q as an element into 	 */
(13) K := K + 1;
(14) I := Fresh(Xm, K); /* generate input values */
(15) P := RelP({I, Q, GT }, Xm ∪ Ym, η′); /* compute

next states */
(16) end loop;
(17) end;

The above algorithm removes from the reached set of states
those states satisfying FlagQ = 1. If the leftover Set(Q)
is empty, then the algorithm stops by reporting success.
Otherwise, if there is at least one cycle where states keep
satisfying FlagP = 1, i.e. FlagQ = 1 never becomes
true, then there is at least one path starting from the initial
state where pUq does not hold, it stops and reports failure.
Otherwise, it checks whether all the states in Set(Q) satisfy
FlagP = 1. If there are some states where FlagP = 1
does not hold, which means that there are some path(s) on
which FlagP = 1 does not hold in every state before a state
satisfying FlagQ = 1 is reached, then it also stops and reports
failure. Otherwise, it computes the next states reachable from
Set(Q) and repeats the process.

To check a property in the form G(c ⇒ pUq) where
c, p and q are Next_let_formulas on machine D, we
need to build a composite machine M from D, an ASM
representing c, an ASM representing p and an ASM
representing q, and transfer to checking the property
G((FlagC= 1) ⇒ ((FlagP= 1)U(FlagQ= 1))) on M. We
then do reachability analysis to obtain all the reachable
states of M (represented by W ), collect from W the states
satisfying ‘FlagC = 1’ (V := Conj(W, Cc) where Cc is a
DF containing FlagC = 1), and finally apply the algorithm
Check_U with the set V as the set of initial states.

A property in the form of F(Next_let_formula) can
be verified by checking TU(Next_let_formula) using the
Check_U algorithm.
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5. VERIFICATION OF LIVENESS PROPERTIES
WITH FAIRNESS CONSTRAINTS

5.1. Fairness constraints

When verifying liveness properties, one is usually interested
only in the so-called fair infinite computation paths. A fair
pathis a computation path along which the states satisfy each
fairness condition infinitely often.

In the literature, different methods for specifying fairness
constraints have been developed for CTL model checking
[21] and for language containment using L-automata [22, 23].

In our method, we impose fairness constraints using a
subset of the criteria employed in the method based on
language containment, namely, by specifying cycle sets.
Let Hi, i = 1, . . . , n, be n ‘exception’ conditions, and Sω

the set of infinitely repeating states along a computation
path. If at least one Hi holds on all states in Sω, then the
computation path is not fair and need not satisfy the property
under investigation. That is, only those computation paths
along which the states satisfy every !(Hi) infinitely often are
considered. Therefore, !(Hi) (1 ≤ i ≤ n) can be viewed
as the fairness constraints. We call the formula representing
the exception condition Hi an H_formula. The syntax of an
H_Formula is as follows:

(i) the equation x = y is an H_Formula, where x is
an ASM_variable and y either an ASM_variable or a
constant.

(ii) if p, q are H_Formulas, then so are: !p (not p), p&q

(p and q), p|q (p or q), p → q (p implies q), Xp

(next-time p).

5.2. Verification of pUq with fairness constraints

To verify that pUq (where p and q are Next_let_formulas)
holds for the initial states of an ASM D under the fairness
constraints !H1, !H2, . . . , !Hn , we build additional ASMs
to represent p, q and Hi(1 ≤ i ≤ n), and then transfer
the problem to checking (FlagP = 1)U(FlagQ = 1) on
the initial states of the composite machine derived from
D and the additional ASMs. The algorithm for verifying
(FlagP = 1)U(FlagQ = 1) under fairness constraints
!(FlagHi = 1) (1 ≤ i ≤ n) is as follows:

(1) Check_U_fair(M, Cp, Cq, H1, . . . , Hn)

/* M is the composite machine, */
/* GI is the set of initial states of M , */
/* GT is the transition relation of M , */
/* Cp is the DF containing FlagP = 1, */
/* Cq is the DF containing FlagQ = 1, */
/* Hi (1 ≤ i ≤ n) is the DF representing formula
FlagHi = 1. */
(2) begin
(3) 	 := �; /* 	 is a set containing DFs with each DF

representing the set of states satisfying FlagP = 1 but
not FlagQ = 1 at each transition step */

(4) P := GI ;
(5) K := 0;

(6) loop1
(7) Snotq := PbyS (P , Cq ); /* remove from P states

with FlagQ = 1 */
(8) if Snotq = F then return success;
(9) if ∃ T ∈ 	, PbyS(T , Snotq) = F then return failure;

/* This step checks if DF, Snotq covers any one of the
DFs in 	 i.e. for each DF T in 	, PbyS(T , Snotq)=F
is checked to detect a cycle. If there is a cycle, then
failure is reported */

(10) R = PbyS (Snotq , Cp); /* remove from Snotq states
with FlagP = 1 */

(11) if R �= F then return failure;
(12) 	 := 	 ∪ {Snotq}; /* add DF Snotq as an element

into 	 */
(13) S1 := Snotq ;
(14) for i = 1 to n do
(15) SnotH := PbyS(S1, Hi); /* remove from S1 states

with FlagHi = 1*/
(16) S2 := Conj(S1, Hi); /* S2 represents the states in S1

with FlagHi = 1 */
(17) if S2 = F then S4notq = F;
(18) if S2 �= F then begin
(19) S3 := S2; Sf := S2; L := 0;
(20) loop2 /* to compute all the states reachable from S2

with FlagHi = 1 */
(21) L := L + 1;
(22) I2 := Fresh(Xm, L); /* generate new input

values */
(23) N1 := RelP({I2, Sf , GT }, Xm ∪ Ym, η′); /* com-

pute next states */
(24) N2 := PbyS(N1, Cq); /* remove from N1 the

states with FlagQ = 1 */
(25) N3 := Conj(N2, Hi); /* pick from N2 the states

with FlagHi = 1 */
(26) if PbyS(N3, Cp) �= F then return failure; /* if the

states in N3 do not satisfy FlagP = 1, report failure
*/

(27) Sf := PbyS(N3, S3); /* compute the frontier set
of states */

(28) if Sf = F then exit loop2; /* if all the states
reachable from S2 have been visited, exit loop 2 */

(29) S3 := PbyS(S3, Sf );
(30) S3 := Disj(S3, Sf ); /* add the states of Sf to S3

*/
(31) end loop2;
(32) I3 := Fresh(Xm, L); /* generate new input

values */
(33) S41 := RelP({I3, S3, GT }, Xm ∪ Ym, η′); /*

compute the next states of S3 */
(34) S4 := PbyS(S41, Hi); /* remove from S41 the states

with FlagHi = 1 */
(35) S4notq := PbyS(S4, Cq);
(36) if PbyS(S4notq , Cp) �= F then return failure;
(37) end_if
(38) S1 := Disj(S4notq , SnotH );
(39) end_for
(40) K := K + 1;
(41) I1 := Fresh(Xm, K); /* generate input values */
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(42) S := RelP({I1, S1, GT }, Xm ∪ Ym, η′); /* compute
next states */

(43) end loop1
(44) end

In this algorithm, 	 is a set containing the DFs representing
each a set of states not satisfying FlagQ = 1 on the fair
computation paths after a transition step, P represents the
frontier set of states to be explored further, and n is the number
of fairness constraints.

In loop1, Lines (7–12), Snotq represents the set of states
in P not satisfying FlagQ = 1. If Snotq is empty, then the
computation stops by reporting success; otherwise, if Snotq

covers any set in P , which means there is at least one cycle
that is not one of the cycle sets, and the states in the cycle do
not satisfy FlagQ = 1, then the algorithm stops and reports
failure. If no cycle is detected, then we check whether the
states in Snotq satisfy FlagP = 1. If not then report failure; if
yes, then Snotq is added to 	 and the computation continues
(Lines 10–12).

Lines (13–39) form a loop which is executed n times.
This loop deals with each exception condition. At every
i-th (1 ≤ i ≤ n) iteration, S2 represents the set of states
in S1 that satisfy the excepting condition FlagHi = 1, and
SnotH represents the set of states in S1 that does not satisfy
FlagHi = 1. If S2 is not empty, the algorithm computes
S3 (loop 20–31). This set represents all states that are
reachable from S2 by any number of transition steps and that
all states satisfy FlagHi = 1 and FlagP = 1, but do not
satisfy FlagQ = 1. In other words, S3 could contain cycles
which are formed by the states satisfying FlagHi = 1 and
FlagP = 1 but not FlagQ = 1. (The way to compute S3 is the
same as the reachability analysis.) Then, one more transition
is done to compute the set of states reachable by one transition
step from the states of S3, but not satisfying FlagHi = 1, and
these states are stored in S4. S4notq represents the set of states
in S4 that do not satisfy FlagQ = 1. If this set contains at least
one state that does not satisfy FlagP = 1, then report failure
(Line 36). S1 is the union of the set of states represented by
S4notq and SnotH at each iteration of the loop.

In Lines (40–42), P is computed to represent the states
reachable in one transition step from the states in S1. The
computation continues in loop 1 with P being the new frontier
set of states to be checked.

In Figure 2, we show an example that illustrates how this
algorithm works. Suppose we wish to verify (FlagP= 1)U
(FlagQ= 1) under the fairness constraint !(FlagH1 = 1) on
the state transition graph given in Figure 2. We also indicate
the values of FlagP, FlagQ and FlagH1 in each state. We
shall see that the algorithm stops and reports success at
the 3rd iteration in loop1. However, checking (FlagP= 1)

U(FlagQ= 1) without the fairness constraint would fail on
the path s1 → s2 → s3 → s2 → s3 → s2 → s3 · · · .

The Check_U_fair algorithm is conservative, i.e. it
requires that for every path, FlagP = 1 is satisfied on all
the states along the path before a state satisfying FlagQ = 1
is reached. Along some paths, if the states repeating forever
are covered by a cycle set and there is no other state reached by

s1

s2

s3

s4

FlagQ = 0
FlagH1 = 0

FlagQ = 0
FlagH1 = 1

FlagQ = 0
FlagH1 = 1

FlagQ = 1
FlagH1 = 0

initial: Σ = ∅ ;
Set(S) = {s1};

the 1st time in loop1:
Set( Snotq) = {s1};
Σ = {{s1}};
Set (S1) = {s1};
Set (S2) = ∅ ;
Set (S) = { s2 };

the 2nd time in loop1:
Set(Snotq) = {s2};
Σ = {{s1}, {s2}};
Set (S1) = { s2} ;
Set (S2) = {s2};
Set (S3) = {s2, s3};
Set (S4) = {s4};
Set (S) = {s4};

the 3rd time in loop1:
Set(Snotq) = ∅ , return sucess.

FlagP = 1

FlagP = 1

FlagP = 1

FlagP = 1

FIGURE 2. Example of checking (FlagP = 1)U(FlagQ = 1)

under fairness constraint !(FlagH1 = 1).

s0

s2 s1

FlagP = 1

FlagP≠ 1, FlagQ≠ 1, FlagH = 1

FlagQ = 1

FIGURE 3. Example of a false negative answer when verifying
(FlagP = 1)U(FlagQ = 1) under the fairness constraint
! (FlagH = 1).

those states as shown in Figure 3, Check_U_fair will report
failure. However, it is not necessary that FlagP = 1 holds on
these states, since this path should not even be considered.
Thus Check_U_fair may give a false negative answer. In
real systems, this situation happens rarely.

To check G(c ⇒ pUq) where c, p, q are Next_let_
formulas under the fairness constraints !H1, !H2, . . . , !Hn

on an ASM D, we build a composite machine M from D and
ASMs representing c, p, q, Hi(1 ≤ i ≤ n), and then transfer
the problem to checking G((FlagC = 1) ⇒ ((FlagP =
1)U(FlagQ = 1))) on M under the fairness constraints
!(FlagHi = 1) (1 ≤ i ≤ n). We then do reachability
analysis to get all the reachable states of M (represented by
W ), collect from W the states satisfying ‘FlagC = 1’ (V :=
Conj(W, Cc) where Cc is a DF containing FlagC = 1), and
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finally apply the algorithm Check_U_fair with the set V as
the set of initial states.

To verify that Fp (where p is a Next_let_formula) under
fairness constraints, we verify (TUq). The method will not
produce any false negative answer since T is satisfied by any
state in this case.

6. EXPERIMENTAL RESULTS

To show how to express properties in LMDG, and how to use
our model checker, we use the Island Tunnel Controller (ITC)
[24] and the Abstract Counter [12] as examples. Although
the two examples are small and do not represent the scale of
designs that the MDG-based model checker can verify, they
are ideal for illustration purposes. From the two examples,
we can see how the ASMs are used to describe design models,
and how the properties can be stated using LMDG. We also
carried out the same verification using the ROBDD-based
verification tool VIS [25]. Both tools showed the same
verification result. However, using the MDG-based method,
we were able to use abstract variables that describe the
datapath and the first-order temporal logic to state properties,
hence, the performance of the MDG-based model checker is
much better than that of VIS.

6.1. Checking properties of the ITC

The ITC was originally introduced by Fisler and Johnson
[24] to illustrate the notation of a heterogeneous logic
system supporting diagrams as logic entities, however, no
verification experiments were performed.

6.1.1. The ITC
Generally speaking, the ITC controls the traffic lights at both
ends of a tunnel based on the information collected by sensors
installed at both ends of the tunnel: there is one lane tunnel
connecting the mainland to an island, as shown in Figure 4.
At each end of the tunnel, there is a traffic light. There are
four sensors for detecting the presence of vehicles: one at the
tunnel entrance (ie) and one at the tunnel exit on the island side
(ix), and one at the tunnel entrance (me) and one at the tunnel
exit on the mainland side (mx). It is assumed that all cars are
finite in length, that no car gets stuck in the tunnel, that cars
do not exit the tunnel before entering the tunnel, that cars do
not leave the tunnel entrance without travelling through the
tunnel, and that there is sufficient distance between two cars
such that the sensors can distinguish the cars.

In [24], one more constraint is imposed: ‘at most 16 cars
may be on the island at any time’. The number ‘16’ can be
taken as a parameter and it can be any natural number. The
constraint can thus be read as follows: ‘at most n (n ≥ 0) cars
may be on the island at any time’. In our ASM approach, we
have the luxury to model an abstract datapath, hence, we used
an abstract variable to describe the counter n. For ROBDD-
based verification methods, like VIS, a particular instance of
n has to be given.

Fisler and Johnson proposed a specification of ITC using
three communicating controllers and two counters as shown
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FIGURE 4. The ITC.
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FIGURE 5. The specification of the ITC.

in Figure 5. The island light controller (ILC) has four
states: green, entering, red and exiting. The outputs igl
and irl control the green and red lights on the island side,
respectively; iu indicates that the cars from the island side
are currently occupying the tunnel, and ir indicates that ILC
is requesting the tunnel. The input iy requests the ILC to
release control of the tunnel, and ig grants control of the
tunnel from the island side. A similar set of signals is defined
for the mainland light controller (MLC). The tunnel controller
(TC) processes the requests for access issued by the ILC and
MLC. The island counter and the tunnel counter keep track
of the numbers of cars currently on the island and in the
tunnel, respectively. For the TC, at each clock cycle, the
counter tc is increased by 1 depending on tc+ or decremented
by 1 depending on tc− unless it is already 0. The island
counter operates in a similar way, except that the increment
and decrement signals are ic+ and ic−, respectively.

In [24], Fisler and Johnson proposed a set of properties
that the ITC design should satisfy. In the next section, we
will show how those properties are specified in LMDG, and
the CPU time and memory used for verifying the properties
using the MDG package.

6.1.2. Property checking using the MDG package
We first create an ASM model representing the ITC design
which could be read by the MDG verification system. We
created modules representing ILC, MLC, TC and the counters
as specified. All the signals are described using concrete
variables, except that two state variables of abstract sort
WORDN for n-bit word are used to describe the island
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counter (ic) and the tunnel counter (tc). The uninterpreted
function inc of type WORDN → WORDN is used to
describe the operation of incrementation by 1, and dec of
the same type to describe the decrementation by 1. The
environment (ENV) is built in such a way that it allows a
non-deterministic choice of values on the primary inputs ie,
me, ixand mx.

The following properties were verified on the ITC design:

Property 1. The lights at both entrances of the tunnel do
not show green at the same time.

This is a typical safety property that a traffic light controller
should satisfy. This property is described in the specification
language LMDG as follows:

G(! ((igl = 1 ) & (mgl = 1)));
Property 2. The island counter is never ordered to

increment and decrement simultaneously:

G(! ((ic− = 1) & (ic+ = 1)));
Property 3. The tunnel counter behaves properly if

ordered to increment and decrement simultaneously.

G( ((tc+ = 1) & (tc− = 1))

→ (LET (v = tc) IN X (tc = v)));
We used an ordinary variable v to remember the value of

tc at the current state, and compare the value of tc at the next
state with v. The property states that if both the signals tc+
and tc− are set, then the value of tcshould not change from the
current state to the next state. Rewrite rules which interpret
dec(inc(v)) and inc(dec(v)) as v are used in the verification
of this property.

Property 4. The tunnel counter is never ordered to
increment simultaneously by both the ILC and the MLC.

G ( !((itc+ = 1) & (mtc− = 1)));
Table 1 shows the CPU time and the memory used in

building the composite machine and checking the simplified
property regarding the signal Flagon the composite machine.
The experiment was carried out on a SPARC Station 20 with
128 MB of memory.

6.1.3. Property checking using VIS
Besides the ASM-based verification experiments, we also
verified the same set of properties using VIS [25]. The same
ITC behaviour model was recoded in a subset of Verilog
HDL, accepted by VIS. However, since VIS is based on
finite state machines, the counters tc and ic are now assigned
concrete values which indicate the maximum number of cars
that are allowed in the tunnel and on the island. We developed
models according to the number of register bits used for the
counters. For example, if 4 bits are used to describe ic (tc),
then the maximum of 16 cars are allowed on the island (in
the tunnel). It takes 65 transition steps to compute all the
reachable states when 4 bit counters are used. From Table 2,

TABLE 1. Statistics for the ITC property verification in MDG.

Building the
composite machine

Checking the
simplified property

Verification
CPU

time (s)
Memory

(MB)
CPU

time (s)
Memory

(MB)

Property 1 0.25 0.95 0.94 3.66
Property 2 0.32 0.98 0.61 3.53
Property 3 0.38 1.02 1.47 5.69
Property 4 0.27 1.03 0.68 4.04

we can see that the number of transition steps increases when
the counter width increases. The properties were described
in CTL as follows:

Property 1. G(!((igl = 1∗mgl = 1)));

Property 2. G(!((ic_minus = 1∗ic_plus = 1)));

Property 3. In CTL, this property could be expressed
as the conjunction of the following formulas. We have to
enumerate all the possible values that tc could take, i.e. from
0 to 15.

G( ((tc+ = 1)∗(tc− = 1)∗(tc<0> = 0∗tc<1> = 0∗tc<2> = 0∗tc<3> = 0))

→ (AX(tc<0> = 0∗tc<1> = 0∗tc<2> = 0∗tc<3> = 0)));
G(((tc+ = 1)∗(tc− = 1)∗(tc<0> = 1∗tc<1> = 0∗tc<2> = 0∗tc<3> = 0))

→ (AX(tc<0> = 1∗tc<1> = 0∗tc<2> = 0∗tc<3> = 0)));
. . . . . . . . . ..

G(((tc+ = 1)∗(tc− = 1)∗(tc<0> = 1∗tc<1> = 1∗tc<2> = 1∗tc<3> = 1))

→ (AX(tc<0> = 0∗tc<1> = 0∗tc<2> = 0∗tc<3> = 0)));

Property 4. G( !((itc+ = 1) ∗ (mtc− = 1)) );

Table 2 shows the CPU time and the memory used for
verifying all the four properties on models with different
counter widths. We also indicate the number of transition
steps needed for the state exploration and the number of
reachable states for the different models. The experiment
was also carried out on a SPARC Station 20 with 128 MB of
memory.

6.1.4. Discussion
From the experimental results shown in Tables 1 and 2, we
can see that the MDG-based model checking can verify a
parameterized implementation having n bits, and it does so
very efficiently and independently of the datapath width.
That is exactly the purpose behind the development of the
ASM-based model checking methods. On the other hand,
using the ROBDD-based tool VIS, the number of transition
steps needed for state exploration and the number of states
get doubled, and the resource usage (CPU time and memory)
for the property verification increases exponentially with the
counter width.

6.2. Verification of properties of an abstract counter

In this section, we use the MDG-based model checker
to verify both safety and liveness properties on a small
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TABLE 2. Statistics for the ITC property verification using VIS.

Counter width (bits) CPU time (s) Memory (MB) Number of reachable states
Number of transition steps
needed for state exploration

4 4 5.67 59808 65
5 15 6.01 234400 129
6 46 6.70 927648 257
7 205 (3:25) 8.35 3.69 × 1006 513
8 875 (14:35) 11 1.47 × 1007 1025
9 3097 (51:37) 22 5.88 × 1007 2049

10 12697 (211:3 8) 50 2.35 × 1008 4097
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pc := pc +1

c_Load

pc := loadin

c_Inc2
pc := pc +1

c_No_op
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c_Inc1
or c_Inc2

double = true

double = false

FIGURE 6. An abstract counter.

design: an abstract counter which was introduced in [12].
The abstract counter was used in [12] as an example to show
how formulas in GTL can be used to describe state transitions
and to specify design properties. Figure 6 shows the state
transition graph of the counter. There are four control states:
c_Fetch, c_Load, c_Inc1 and c_Inc2. Depending on the
input, the counter pc will get a new value, or increase by
one, or keep the previous value.

6.2.1. Property checking using the MDG package
To use our model checker, we first describe the behaviour of
the counter using the MDG–HDL language. The counter pc
is of abstract sort. The control state is initialized to c_Fetch,
the initial value of pc is a free variable called init_pc (i.e.
the initial state is generalized to any value). As the counter
variable pc is of abstract sort and implicit enumeration is
applied, a set of states represented by DF pc = init_pc and
its next states represented by DF pc′ = finc(init_pc) are
viewed as equivalent sets of states by the PbyS algorithm, all
the reachable states are computed in three transition steps.
The following properties were verified:

Property 1. From state c_Fetch, if the input isc_Inc2,
then the machine goes to the nextstate c_Inc1. This property

TABLE 3. Statistics for the abstract counter verification in
MDG.

Building the
composite machine

Checking the
simplified property

Verification
CPU

time (s)
Memory

(MB)
CPU

time (s)
Memory

(MB)

Property 1 0.17 0.80 0.04 0.14
Property 2 0.21 0.89 0.04 0.15
Property 3 0.31 0.90 0.12 1.75
Property 4 0.37 1.65 0.06 0.51

is expressed in LMDG as follows:

G( (state = c_Fetch & input = c_Inc2)

→ (X(state = c_Inc1)) );
Property 2. From state c_Fetch, if the input isc_Inc2,

then the machine always reachesstate c_Inc2 in two
transition steps. This property is expressed inLMDG as
follows:

G( (state = c_Fetch & input = c_Inc2)

→ (XX(state = c_Inc2)) );
Property 3. From state c_Fetch, if the input isc_Inc2,

then the machine reachesstate c_Fetch in three transition
steps and the counter pc has been increased by 2. This
property is expressed in LMDG as follows:

G( (state = c_Fetch & input = c_Inc2)

→ (LET(v1 = pc) IN (XXX(state = c_Fetch& pc

= finc(finc(v1)))) ) );
Property 4. From state c_Fetch, the machine will

eventually reachstate c_Load if the input is notc_No_op
or c_Inc1 or c_Inc2 forever. The property is expressed in
LMDG as:

G( (state = c_Fetch) ⇒ (F(state = c_Load)));
under the following fairness constraint:

!( (state = c_Fetch)

→ ((input = c_Inc1)|(input = c_No_op)

|(input = c_Inc2)) );
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TABLE 4. Statistics for the abstract counter verification using VIS.

Counter width (bits) CPU time (s) Memory (MB) Number of reachable states
Number of transition steps
needed for state exploration

4 0.56 2.84 448 6
8 3 3.72 7168 6

16 7 4.80 1.83501 × 106 6
32 12 6.12 1.20259 × 1011 6

These properties were verified by our model checker using
less than one second. Table 3 shows the CPU time in
seconds used in building the composite machine and checking
the simplified property regarding Flag on the composite
machine. The experiment was carried out on a SPARC
Station 20 with 128 MB of memory.

6.2.2. Property checking using VIS
To compare the performance of the MDG-based model
checker to that of an FSM-based verification tool, and to
verify partially the verification results, we carried out the
same property verification using VIS. Again, for the counter
pc, we have to give its upper bound. We modelled the abstract
counter in a subset of Verilog using registers with different
width for the counter pc, i.e. registers consisting of 4 bits,
8 bits, 16 bits and 32 bits. On each model, we verified the
same set of properties as in Section 6.2.1. The properties for
the model with 4 bit pc register are stated in CTL as follows:

Property 1. G( ((state = c_fetch)∗(input_instruction =
c_inc2)) → (AX(state = c_inc1)));

Property 2. G( ((state = c_fetch)∗(input_instruction =
c_inc2)) → (AX(AX(state = c_inc2))));

Property 3. G(((state = c_fetch)∗(input_instruction =
c_inc2) ∗ (pc<3> = 0 ∗ pc<2> = 0 ∗ pc<1> =
0 ∗ pc<0> = 0)) → (AX(AX(AX((state = c_fetch) ∗
(pc<3> = 0 ∗ pc<2> = 0 ∗ pc<1> = 1 ∗ pc<0> =
0))))) ); with (pc<3>pc<2>pc<1>pc<0>) ranging over
from 0000 to 1111;

Property 4. G((state = c_fetch) → (AF(state =
c_load)));

under the following fairness constraint:
!( (state = c_Fetch) → ((input = c_Inc1)|

(input = c_No_op)|(input = c_Inc2)) ).

Table 4 shows the number of transitions it takes for each
model to compute all the reachable states, the number of the
reachable states, the CPU time and the memory needed to
verify Properties 1–4.

6.2.3. Discussion
The statistics shown in Tables 3 and 4 again demonstrate
that the MDG-based model checking can verify both safety
and liveness properties on a parameterized implementation

independent of the datapath width very efficiently. However,
from Table 4, we can see that with the counter width
increasing, the number of reachable states increases
exponentially, but the number of transition steps needed for
state exploration stays the same and the usage of CPU time
and memory only increases slightly, which was not the case
in the ITC. The reason is that in this particular example, the
counter pcis independent of the state transitions, i.e. the state
transitions are not gated by the value of pc. Every time when
loading in a new value of pc it can take any value within
its range, hence, the node pc will not appear in the BDD
expression of the sets of states. Therefore, no matter how
large the width of pc is, the time and memory usage will
not grow significantly. Nevertheless, the MDG-based model
checking still outperforms the ROBDD-based model checker
in the sense that one ASM model of the Abstract Counter
and one set of properties automatically cover all the possible
pc widths. Using VIS on the other hand, we have to build
separate models and to develop separate sets of properties for
pc instances of different widths.

6.3. Implementation issues

To check properties expressed in LMDG automatically, we
developed programs that

(i) check if the signals in a property (except the ordinary
variables) are declared in the original circuit description;
report any errors;

(ii) check the syntax of the property; report any errors;
(iii) build additional circuits to represent the

Next_let_formulas in the property and the excep-
tion conditions if fairness constraints are imposed;

(iv) merge the description of the additional circuits with the
description of the original circuit, which means adding
declarations of components and signals of the additional
circuits to the original circuit description file and the
variable order file.

The above programs were implemented in C with Yacc
& Lex. The model checking algorithms were developed
upon the existing MDGs package implemented in Quintus
Prolog V3.2.

7. CONCLUDING REMARKS

We studied model checking for a first-order linear-time
temporal logic based on the ASMs. Since a data value
is represented by a single variable of abstract type, rather
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by a vector of Boolean variables, and a data operation is
represented by an uninterpreted function symbol, the width of
a datapath of a design has no effect on the description model of
the design. We can then alleviate the state explosion problem
in symbolic model checking caused by a large datapath.

We defined LMDG as the property specification language
and developed property checking algorithms for LMDG.
Using LMDG, both safety and liveness properties can be
expressed with or without fairness constraints. To check a
property of LMDG on an ASM M , we first build additional
ASMs for all the Next_let_formulas (which contain the
temporal operator X) that appear in the property. We then
compose the additional ASMs with M , and finally verify a
simpler property on the composite machine. We use MDGs to
encode sets of states and the transition relations. The property
checking procedures are based on implicit state enumeration
and are carried out fully automatically. We illustrated the
application of our model checker on the ITC and the Abstract
Counter benchmarks. The experimental results demonstrate
that the MDG-based model checking can verify both safety
and liveness properties on parameterized implementations
independent of the datapath width very efficiently. Due
to space limit, the proof of the correctness of the property
checking procedures are not presented in this paper, while it
can be found in [20].

Since we use first-order logic, the reachability analysis
may not terminate [26], thus the property checking may not
terminate either. We are currently exploring techniques that
can mitigate this problem [27, 28]. We are also applying
the MDG-based model checker to verify some industrial
scale designs with large data path (most telecommunication
circuits happen to fall into this category).
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