
Efficient Assertion Based Verification using TLM

Ali Habibi, Sofiène Tahar, Amer Samarah, Donglin Li and O. Ait Mohamed

Department of Electrical and Computer Engineering

Concordia University

1455 de Maisonneuve West

Montreal, Quebec, Canada H3G 1M8

Email:{habibi,tahar,amer sam,li don,ait}@ece.concordia.ca

Abstract

Recent advancement in hardware design urged using a transac-

tion based model as a new intermediate design level. Supporters for

the Transaction Level Modeling (TLM) trend claim its efficiency in

terms of rapid prototyping and fast simulation in comparison to the

classical RTL-based approach. Intuitively, from a verification point

of view, faster simulation induces better coverage results. This is

driven by two factors: coverage measurement and simulation guid-

ance. In this paper, we propose to use an abstract model of the de-

sign, written in the Abstract State Machines Language (AsmL), in

order to provide an adequate way for measuring the functional cov-

erage. Then, we use this metric in defining the fitness function of a

genetic algorithm proposed to improve the simulation efficiency. Fi-

nally, we compare our coverage and simulation results to: (1) ran-

dom simulation at TLM; and (2) the Specman tool of Verisity at

RTL.

1. Introduction

Transaction Level Modeling (TLM) emerged from the need for

fast and efficient system architecture exploration, where both hard-

ware and software components are tight together in an abstract and

shallow way. The notion of the clock, inherently used at the Regis-

ter Transfer Level (RTL), is replaced by direct function calls, which

immediately results in faster simulation execution. For faster pro-

totyping, object-oriented system level languages have been of great

impact. Consequently, one of the C++ based proposals, SystemC

[9], is in its way to become a standard for TLM [9].

Guiding the simulation towards a set of specific objectives is es-

sential for ensuring good coverage. Simulation objectives are com-

monly defined as assertions. Then, coverage is measured in differ-

ent ways [6]: code coverage, condition coverage, etc. For efficient

verification, it is imperative to consider functional coverage. Rais-

ing the abstraction level abstracts the implementation details while

preserving the system’s behavioral aspects. Such an operation con-

tributes to the reduction of the system’s state space. In this paper, we

use AsmL (Abstract State Machines Language) [7] to model the de-

sign at the transaction level. This choice is firmly linked to the fea-

sible and practical generation of the system’s finite state machine

(FSM) from AsmL models. The generated FSM plays the role of a

golden model to evaluate the functional coverage.

We propose to take advantage of TLM to guarantee higher RTL

functional coverage. Optimizing tests at TLM and reusing them at

RTL is a quite trivial and straightforward tactic for enhancing sim-

ulation results. To bring into play such an idea, two main questions

must be answered at the transaction level: (1) how to measure the

coverage? and (2) how to improve it?

As a solution to the coverage measurement question, we propose

a layered design-for-verification approach involving both TLM and

RTL. At TLM, the design is modeled in AsmL, where communica-

tion between system’s components relies on direct functional calls.

This simplified model is more suitable for the generation of the sys-

tem’s FSM. Raising the level of abstraction tackles the problem of

state explosion, usually faced with RTL designs. Once the FSM is

generated, we define a functional coverage in terms of state space

coverage.

In order to improve the coverage, we propose to use a genetic al-

gorithm (GA) aiming to optimize the random test generation. The

basic concept is to find a good random distribution of the inputs’

ranges offering a higher level of coverage. The final output of this

operation is a test vector generator with a high coverage rate (at least

in comparison to blind random simulation) w.r.t. a predefined objec-

tive. The test generator produced using the GA optimization tech-

nique at TLM is reused to validate the RTL design. We propose, in

this paper, to compare the coverage results for RTL using our GA

and using the random simulation provided by the commercial tool

Specman of Verisity [12].

The rest of this paper is organized as follows: Section 2 describes

related work. Section 3 presents our proposed methodology to im-

prove the assertion coverage. Section 4 propose metrics to evaluate

the coverage. Section 5 depicts the used genetic algorithm to en-

hance the coverage at TLM. Section 6 illustrates our methodology

using the Look-Aside interface standard including experimental re-

sults. Finally, Section 7 concludes the paper.

2. Related Work

Genetic algorithms have already been used for a broad range of

applications. Godefroid et al. [1] addressed the exploration of large

state spaces. This work, based on BDDs, was restricted to simple

Boolean assertions which is not suitable for high level languages

like SystemC. Habibi et al. proposed in [3] to use GA for improv-

ing assertion coverage for SystemC RTL models. However, neither a

coverage metric nor a precise fitness function has been provided. In

3-9810801-0-6/DATE06 © 2006 EDAA

106

this work, we propose to: (1) use AsmL for transaction level models;

(2) define the coverage as function of the system’s FSM (at TLM);

(3) initialize the GA using the information gathered from the asser-

tion and the system’s FSM; and (4) employ TLM designs to identify

efficient test generator for RTL implementations.

A variety of EDA tools provide test generation with assertion

coverage, e.g., Specman Elite [12] of Verisity. They offer a user-

defined constrained random simulation, for RTL designs, where the

coverage is a function of the number of times the assertion was ex-

ecuted. In this work, we first define the coverage metrics for TLM

as a function of the portion of the assertion’s state space that has

been covered. Then, we compare the coverage results obtained us-

ing our approach to the output of Specman Elite tool for the same

RTL model.

3. Proposed Methodology

Performing a full coverage of a system’s state space using sim-

ulation is not feasible. Consequently, more focus was given to de-

velop smart verification approaches. In the methodology we pro-

pose, we aim to make use of two features: transaction models and

genetic algorithms.

Transaction models run faster than timed models [4]. Avoiding

clocks and raising up the level of abstraction by using channels

and direct functional calls accelerates the simulation. These mod-

els are conceptually closer to the system’s specification, which is,

generally, a collection of properties that could be verified by simu-

lation (as assertion monitors). In order for faster simulation to guar-

antee better verification, a precise measurement for the coverage is

needed. Classical ways to measure the coverage at RTL (code, con-

dition, etc.) are not directly linked to system’s specification. We pro-

pose to take advantage of transaction models to define assertions

that could be used to verify the final RTL product.

Generating FSM from transaction models provides a way to de-

fine assertion as sequence of states. In the methodology described

in Figure 1, we use AsmL as TLM modeling language. Two main

reasons influenced our choice: the language features and the FSM

generation algorithm available for models written in this language.

For instance, AsmL is an object-oriented language rich with sev-

eral mathematical constructs and data abstraction. A number of al-

gorithms have been developed around this language, collected un-

der the AsmL tool (Asmlt) [7]. In this work, we make use of the al-

gorithm generating FSMs from AsmL models in order to define the

functional coverage as function of the system’s states.

We use the FSM generated from the system’s TLM model as a

guidance for relevant variables and input values for testing a specific

operation. Optimizing the coverage becomes an issue of guiding the

simulation to feed the system with particular values. Unfortunately,

it is not always possible to find a direct relation between the vari-

ables involved in the assertion and the system’s inputs. Hence, what

we can extract from the FSM is an over-approximation of this rela-

tion. It follows that we cannot define precisely the complete set of

tests to validate a specific functionality. A solution to enhance the

test generation process is to use genetic algorithms. We use the ini-

tial knowledge gathered from the generated FSM as an initializa-

tion for a genetic algorithm aiming to enhance the assertions’ cov-

erage. The input of the algorithm is a set (population) of test vector

generators. After applying a number of tests, the generators are up-

1. Dependency
2. Inputs ranges

TLM

AsmL Tool

Model in AsmL

RTL

SystemC TLM model

Translation

Assertions Definition

Model’s FSM

Initial DNA generationTest program generator

DNA evaluation

DNA update

Final generator’s DNA

SystemC RTL model

Instantiation

Comparison

Coverage
Evaluation

Verilog model

Translation
Guided Simulation

Specman Tool Comparison

Coverage

Evaluation

Random Simulation

Figure 1. Proposed Methodology.

dated to form a new community. The fitness is a function of the as-

sertion coverage.

Once a satisfactory coverage is achieved at TLM, we compare

the achieved coverage using the best generation of test generators

output of the previous phase to the coverage obtained using: (1)

random simulation; and (2) Specman. The first comparison aims to

show that improvement of the coverage is preserved when lower-

ing the abstraction level from TLM to RTL, while the second illus-

trates the efficiency of our proposed approach when compared to

commercial tools.

3.1. Transaction Level Model in AsmL

The system’s TLM model in AsmL includes a light description

of the system’s functionalities. All the components are communi-

cating using transactions involving direct functional calls. The sim-

ulation environment includes the notion of updates, i.e., a variable

value is not changed until an update is requested. For this reason, we

embedded in AsmL a light simulation environment in order to man-

age events and processes. The system components are objects in-

stantiations of classes (also called ModuleA
TLM) defined as follows:

Definition 3.1. (AsmL TLM Module: ModuleA
TLM)

An AsmL TLM module is a set 〈ASDMem, ASMth, ASCtr〉,
where ASDMem is a set of the module data members, ASMth is a

set of methods (functions) definition and ASCtr is the module con-

structor.

For every method in ASDMem corresponds a Boolean pre-

condition enabling its execution. This is a critical issue in construct-

ing the actual AsmL TLM design because a wrong definition of

the pre-condition may totally change the behavior of the system

and consequently modify the verification results. The pre-condition

107

rules define the way of communication between the design’s com-

ponents. The design is defined as a collection of modules and an

initialization method according to following:

Definition 3.2. (AsmL TLM Design: DesignA
TLM)

An AsmL TLM design is a set 〈LModuleA
TLM , INIT〉, where

LModuleA
TLM is a set of AsmL TLM modules and INIT is the ini-

tialization function of the model.

In order to perform adequate partial and total updates, we make

use of a light simulation manager (in AsmL). This simulator in-

cludes an initialization function that is executed after all design’s

modules have been initialized. The same method includes a second

pre-condition setting that the method is only executed at the initial-

ization phase. This illustrates how the pre-condition constructor is

used to manage the exploration algorithm performing the reachabil-

ity analysis.

3.2. FSM Generation

We use an FSM generation algorithm defined by Gurevich et al.

in [2]. It requires the following inputs: domains, methods, actions

and variables. The transitions in the FSM are the method calls (in-

cluding argument values) in the test sequences. The methods in the

model program that appear in the transitions are called actions. The

states in the FSM are determined by the values of selected variables

in the model program, called state variables. The algorithm keeps

track of the actions while recording the states it visits (exploration

process). The FSM generation process requires a set of Boolean

guards in order to reflect the state distinction that the model designer

cared enough about to make explicit. The algorithm takes a distin-

guishing sequence as an additional input to produce corresponding

equivalence classes, called hyperstates. The required items for the

FSM generation algorithm [2] are:

• data types and static functions

• declarations of state variables v1, v2, . . . vs (s is the total num-

ber of states) that characterize the state space of the considered

system.

• rules that describe the transition relation of the sys-

tem: c1, c2, . . . cv (c refers to a Boolean condition (rule), v is

the total number of rules).

The classical problem challenging FSM based approaches is

state explosion. For this reason, the notion of states indistinguisha-

bility represents the main key feature of the algorithm in [2] in com-

parison to other techniques. Furthermore, this notion fits well to the

conceptual structure of TLM where states can be combined accord-

ing to their affiliation to a specific transaction.

Definition 3.3. (States Indistinguishability)

Let C = {ci(v1, v2, . . . vs), i ∈ {1 . . . n}} be a set of Boolean

conditions on state variables. Two states sa = {a1, a2, . . . as} and

sb = {b1, b2, . . . bs} are indistinguishable if: ∀c ∈ C, c(sa) =
c(sb).

Defining the conditions in C is an additional effort required in

building the TLM models in AsmL. A good tactic to surmount this

problem is to define a specific condition c in C for each transac-

tion. Hence, a natural link will be defined between transactions and

hyperstates.

3.3. Assertion Scope

Considering a generated FSM, the assertion could be represented

as a collection of hyperstates and transitions. Classical FSM cover-

age, used at RTL, always deals with the full system’s FSM (state or

transition coverage) [6]. In contrast, our target is not to go for all

possible combinations raising from the system’s FSM. We aim to

cover a set of hyperstates (for the sake of simplicity, we will use the

word state to refer to hyperstates in the rest of this paper) and tran-

sitions in the generated FSM. In following, we define an assertion

as a collection of state variables and Boolean conditions involving

at least one of the assertion’s state variables.

Definition 3.4. (Assertion Definition: A)

Let DesignA
TLM be an AsmL model, V = {v1, v2, . . . vs} its state

variables and C = {ci(v1, v2, . . . vs), i ∈ {1 . . . n}} be a set of

Boolean conditions on state variables. An assertion A is the set

〈Av, Ac〉 where Av is a subset of V and Ac is a subset of C in-

volving at least one variable vi ∈ V .

The states that we are interested in are those where one of the

assertion’s guards (conditions) is evaluated to true. This subset is

called Assertion Scope Asco.

Definition 3.5. (Assertion Scope: Asco)

Let DesignA
TLM be an AsmL model, F its generated FSM, V =

{v1, v2, . . . vs} its state variables, C = {ci(v1, v2, . . . vs), i ∈
{1 . . . n}} be a set of Boolean conditions on state variables and

A = 〈Av, Ac〉 be an assertion. Then, the assertion scope Asco =

{s ∈ F , where ∃c ∈ Ac | c(s) = true}.

The assertion scope Asco collects all the states that are of inter-

est for the assertion A. Definition 3.5 does not guarantee that the as-

sertion’s scope will be an automata [11] (the commonly used math-

ematical model to represent system properties). Nevertheless, since

we are interested in verifying the assertion using simulation, defin-

ing the assertion scope Asco as a set of states is sufficient.

4. Coverage Evaluation

Considering the assertion’s definition and scope, we propose two

coverage metrics: sate coverage and transition coverage. In contrast

to the classical RTL coverage, we are dealing with hyperstates. A

trivial way to define the FSM state coverage is to count the number

of states visited by the test vectors over the total number of states.

This kind of coverage cannot be used when the FSM is formed from

hyperstates. Visiting a hyperstate does not only depend on the state

itself but also on the guards elements of the set of Boolean condi-

tions on state variables, C. It is possible for a guard to be true for

different combinations of the state variables. Therefore, counting all

possible combinations leading to a hyperstate is mandatory for ob-

taining a true evaluation of the state’s coverage.

4.1. State Coverage

Before giving the state coverage’s definition, we first introduce

the notion of assertion state space, Asp. This latter refers to all the

possible state space combinations involved in the assertion as fol-

lows:

Definition 4.1. (Assertion State Space: Asp)

Let A = 〈Av, Ac〉 be an assertion. The assertion state space is:

108

Asp = {(vc1, vc2, . . . vcs) instance of (v1, v2, . . . vs)
∈ Av | ∃c ∈ Ac | c(v1, v2, . . . vs) = true}

where (vc1, vc2, . . . vcs) is a concrete instance of (v1, v2, . . . vs).

Considering concrete instances of variables in Definition 4.1 is

important because it is possible to use abstract variables in AsmL.

The number and the nature of the concrete elements depend on the

variable’s domain.

Next, we use the assertion’s state space definition, in order to

evaluate the assertion coverage.

Definition 4.2. (State Coverage: Scov)

Let A be an assertion, Asco its scope and Asp its state space. Let

Tsp = {(vtc1, vtc2, . . . vtcs) concrete instance of (vt1, vt2, . . . vts)
| vti ∈ Asp} be a set of test vectors. The state coverage ob-

tained by executing Tsp is:

Scov =
Card(Tsp)

Card(Asp)
, where Card is the set’s cardinality.

The state coverage, Scov , computes the fraction of states (ele-

ment of the assertion’s state space) visited during the execution of

the test vectors’ set. An optimal testing case will provide a state cov-

erage equal to one. For a general graph structure, we cannot guar-

antee the existence of an optimal test sequence. However, when the

FSM is a connected graph, We can guarantee that such an optimal

case exists (Theorem 4.1). The theorem’s proof provides a construc-

tion of such a sequence.

Theorem 4.1 (Optimal Test Sequence for Scov)

Let DesignA
TLM be an AsmL model and F its generated FSM. If

F is a connected graph, then, there exists a test sequence Tsp such

that Scov = 1.

Proof If F is a connected graph, then for any two states a and

b in F , there exists a path from a to b. In this case, the proof of

the theorem can be done by constructing a test sequence satisfying

Card(Tsp) = Card(Asp). Such a test sequence is formed from a

set of test vectors each starting from the initial state and getting to a

state in the assertion’s state space Asp. By defining at least a path for

every element in Asp, we ensure that Card(Tsp) = Card(Asp).

4.2. Transition Coverage

We define transition coverage, Tcov , by identifying all the states

involved in a transition from or to a state element of the assertion’s

space. In the following, we first introduce the assertion transition

space, Atp. Then, we will define the transition coverage.

Definition 4.3. (Assertion Transition Space: Atp)

Let DesignA
TLM be an AsmL model, F its generated FSM, V =

{v1, v2, . . . vs} its state variables, C = {ci(v1, v2, . . . vs), i ∈
{1 . . . n}} be a set of Boolean conditions on state variables and

A = 〈Av, Ac〉 an assertion. The assertion transition space is:

Atp = { (vc1, vc2, . . . vcs) instance of v ∈ V |
∃va ∈ Av and tr ∈ T |
(tr(v, va) = true) ∨ (tr(va, v) = true)}

where T = {tr1, . . . trm} is the set of the transition in F .

Similarly to the assertion state coverage (see Definition 4.2), we

can define the assertion’s transition coverage, Tcov , using the asser-

tion transition space, Atp.

Definition 4.4. (Transition Coverage: Tcov)

Let A be an assertion, Asco its scope and Asp its state space. Let

Ttp = {(vtc1, vtc2, . . . vtcs) concrete instance of (vt1, vt2, . . . vts)
| vti ∈ Atp} be a set of the test set. The state coverage obtained

after executing Ttp is: Tcov =
Card(Ttp)

Card(Atp)
.

The transition coverage, Tcov , computes the fraction of states

(element of the assertion’s transition space) visited by a test vec-

tor. The optimal test case will provide an assertion transition cover-

age equal to one. When the FSM is a clique graph, following theo-

rem guarantees that such an optimal case exists. The proof provides

a construction of such a sequence.

Theorem 4.2 (Optimal Test Sequence for Tcov)

Let DesignA
TLM be an AsmL model and F its generated FSM. If F

is a clique graph (complete graph), then there exists a test sequence

Tsp such that Tcov = 1.

Proof If F is a clique graph, then for any two states a and b in

F , there exists a transition from a to b. In this case, the proof of

the theorem can be done by constructing a test sequence satisfy-

ing Card(Ttp) = Card(Atp). Such a test sequence is formed from

a set of all test vectors each starting from the initial state and get-

ting to a state in the assertion’s state space (Asp). By covering all

the elements in Atp, we ensure that Card(Ttp) = Card(Atp).

5. Coverage Enhancing

Theorems 4.1 and 4.2 guarantee the existence of optimal test se-

quence (with coverage equal to one) for the particular cases of con-

nected and clique graphs, respectively. However, in the general case,

finding or even proving the existence of an optimal test sequence is

not trivial. Furthermore, even when an optimal sequence exists, its

size could be very large. Hence, in this section, we propose a ge-

netic algorithm based technique aiming to optimize the coverage

using a randomly generated test sequences.

5.1. Genetic Algorithm

Genetic algorithms belong to a family of computational models

inspired by evolution [5]. They encode a potential solution to a spe-

cific problem on a simple chromosomes like data structure and ap-

ply recombination operators to these structures to preserve critical

information. Since their introduction by Holland [5], genetic algo-

rithms have been applied to a broad range of learning and optimiza-

tion problems [10]. Typically, a GA starts with a random population

of encoded candidate solutions (test generators for our case), called

chromosomes. The objective is to maximize the likelihood of gener-

ating an optimal solution. This can be guaranteed by: (1) evaluating

the fitness of each candidate solution in the current population; (2)

selecting the fittest candidate solutions; and (3) recombining candi-

dates and mutating them to generate offsprings.

The state variables of the system are classified into three groups:

inputs, outputs and internal variables. This step is required in order

to define the connection between the system and test vectors gener-

ator.

Definition 5.1. (System Variables Classification)

Let DesignA
TLM be an AsmL model and V = {v1, v2, . . . vs} a set

of its state variables. We classify V into three subsets:

109

Vin = {v ∈ V | v is an input variable}
Vout = {v ∈ V | v is an output variable}
Vint = {v ∈ V | v is an internal variable}

In our context, the search space to be explored is the assertion’s

state space Asp (see Definition 4.1). Candidate solutions are finite

sequences of input ranges and probability weights. Each candidate

solution is identified by a unique chromosome (a finite string of

bits). The information encoded in the chromosomes is composed

of: (1) a list of input variables; (2) their domains Definition (5.2),

and (3) a probability distribution of the domain (Definition 5.3).

Definition 5.2. (Variable Domain)

Let DesignA
TLM be an AsmL model and Vin its input variables set.

To each variable v ∈ Vin, there is a corresponding domain d.

Definition 5.3. (Variable Domain Distribution: p)

Let DesignA
TLM be an AsmL model and Vin its input variables set.

Then, for every variable v ∈ Vin corresponds a function p provid-

ing the variable’s values distribution over its domain.

Definition 5.4. (Chromosome Encoding)

Let DesignA
TLM be an AsmL model and Vin its input variables set.

Then, the test generator’s chromosome is the set Chrom = 〈Vin,

Di, Pi〉.
where:

• Di = {d1, d2, . . . ds}: set of variables domains.

• Pi = {p1, p2, . . . ps}: set of variables distributions.

The chromosome encoding is the most important aspect of our

algorithm. The variable values generation is controlled by their do-

mains distributions. For example, for a variable of type Integer, we

can use the following chromosome encoding:

• Variable Domain d = [−216,216 − 1]

• Variable Domain Distribution: p([−216, 0[) = 0.3 and p([0,

216 − 1]) = 0.7

5.2. Fitness Criteria

The proposed fitness criteria serves to guide the genetic search

towards covering the whole assertion’s state space. The intuitive

idea relies on modifying the shape of the variable’s domain distri-

bution, p. For the sake of improving the efficiency of the search, we

keep track of the best and worst chromosome fitness in each gen-

eration; if both fitness values become equal, we increase the muta-

tion rate, in order to help the genetic evolution get out of local max-

ima. Once there is an improvement in the overall fitness, we restore

the original mutation rate to continue the evolution normally.

Definition 5.5. (Test Vector Generator: TGen)

Let DesignA
TLM be an AsmL model and Vin its input variables set.

Then, a test vector generator is defined by a unique chromosome en-

coding Chrom.

For every coverage, there is a corresponding fitness function.

For state coverage, Scov (see Definition 4.2), the fitness function

is given in following, where the fitness identifies the best test gen-

erator by checking for the one having a maximum state coverage.

Definition 5.6. (Fitness Criteria for State Coverage: FScov)

Let DesignA
TLM be an AsmL model, Vin its input vari-

ables set, A be an assertion, Asp its space state and

T = {T 1
Gen, T 2

Gen, . . . T n
Gen} a set of n-test generators.

Then, the fitness criteria corresponding to state space cover-

age is:

FScov = max
T i

Gen
∈T

(Scov) = max
T i

Gen
∈T

(
Card(T i

sp)

Card(Asp)
)

where T i
sp is a sequence of test vectors generated by T i

Gen.

The fitness criteria corresponding to the transition state coverage

is as follows:

Definition 5.7. (Fitness Criteria for Transition Coverage)

Let DesignA
TLM be an AsmL model, Vin its input vari-

ables set, A be an assertion, Asp its space state and

T = {T 1
Gen, T 2

Gen, . . . T n
Gen} be a set of n-test generators.

The fitness criteria corresponding to the transition state space cov-

erage is:

FTcov = max
T i

Gen
∈T

(Tcov) = max
T i

Gen
∈T

(
Card(T i

tp)

Card(Atp)
)

where T i
sp is a sequence of test vectors generated by T i

Gen.

The genetic mutation operation updates the set of test genera-

tors, T = {T 1
Gen, T 2

Gen, . . . T n
Gen}, according to the coverage re-

sults. We propose to deduce the new population of generators us-

ing the following operations: inheritance, mutation and recombina-

tion. We keep track of all the populations using a unique sequence

SeqTGen.

Definition 5.8. (Generations of Test Generators: SeqTGen)

Let Ti be a set of test generators. Then, the sequence of generations

of test generators is:

SeqTGen = {T1, T2, . . . , Ti, . . . , Tm}
where:

• T1 is the initial generation.

• ∀i | 1 < i ≤ m, Ti is the updated generation obtained from

Ti−1 by applying inheritance, mutation and recombination op-

erations.

The convergence of the algorithm to the optimal solution w.r.t.

the fitness criteria is granted if the sequence SeqTGen is increas-

ing w.r.t. to an order based on the coverage. This could not be de-

rived for a general case. It requires defining: (1) the variables do-

mains; (2) the variables domains distributions; and (3) the inheri-

tance, mutation and recombination operations. In general though,

using a simple uniform distribution and preserving the best gener-

ator from the previous generation grants that the sequence will not

be increasing.

6. Experimental Results

In this section, we illustrate our proposed methodology on the

case of a Look-Aside interface standard (LA-1) [8]. This interface

is used to interconnect network-processing units (NPUs). Its major

features include: (1) concurrent read and write; (2) unidirectional

read and write interfaces; (3) single address bus; (4) 18 pin DDR

data output path; (5) 18 pin DDR data input path; and (6) Byte write

control for writes.

6.1. Coverage Results

In order to evaluate the methodology proposed in this paper, we

considered a set of five assertions, Table 1 (Table 2) compares the

assertion state coverage (assertion transition coverage) results ob-

tained with:

110

Assertion A1 A2 A3 A4 A5

Rand. TLM (%) 10 8 4 12 14

GA TLM (%) 64 72 66 82 55

Guided SystemC RTL (%) 61 71 75 81 56

Rand. SystemC RTL (%) 5 3 6 7 4

Rand. RTL (Specman) (%) 12 11 14 17 9

Table 1. State Space Assertions’ Coverage.

Assertion A1 A2 A3 A4 A5

Rand. TLM (%) 15 17 13 12 15

GA TLM (%) 51 55 52 48 47

Guided SystemC RTL (%) 45 44 42 31 33

Rand. SystemC RTL (%) 4 3 5 6 4

Rand. RTL (Specman) (%) 12 11 8 7 13

Table 2. Transitions Space Assertions’ Coverage.

• Blind random test generation of the TLM SystemC code.

• Guided simulation using a test generator obtained after 30 it-

erations of the GA.

• Guided random test generation of the RTL SystemC code.

• Blind random test generation of the RTL SystemC code.

• Testing the RTL Verilog code using Speman Elite.

We used 109 functional calls and 109 simulation cycles for the

TLM and RTL models, respectively. We iterated the genetic algo-

rithm for 30 generations (each with 109 tests). We used a uniform

distributions over the variables domains.

6.2. Discussion

A the transaction level, our proposed GA provided an enhanced

coverage in comparison to the blind random simulation by a fac-

tor of five to seven. The value of the coverage vary according to

the assertion. When applying the GA, we noticed that it takes rela-

tively quick progress in the beginning stages of evolution. We noted

that there exists some phases, where the algorithm hits local max-

ima before mutating further, which improves its performance. We

even noticed that the coverage sometimes decreases slowly from

generation to generation due to the fact that the evaluation of the as-

sertion is based on weighted random generation.

We used the final test generator obtained from the GA procedure

at TLM to verify the same assertion at RTL. Coverage results were

comparable. Random simulation at RTL provided very low cover-

age results due to a larger system state space at this level. By defin-

ing a suitable environment using the e-language [12], we succeeded

to improve the coverage results in comparison to the blind random

simulation. Nevertheless, the coverage remained low in compari-

son to our GA algorithm by a factor of four to five for all the asser-

tions. We also noticed that the execution time using TLM SystemC

was very fast (a factor of 50 to 100) in comparison to the simula-

tion of the Verilog implementation with Specman Elite.

7. Conclusion

In this paper, we presented a methodology to enhance assertion

coverage using transaction level models as intermediate step in the

design process. We used AsmL as a TLM language for the sake of

automatically generating an FSM of the system. We defined asser-

tions as a set of states (part of the system’s FSM). We introduced

two assertion coverage metrics: state and transition coverage. For

connected FSM, we provided a construction technique for an op-

timal test sequence that covers the whole assertion’s state space

(Theorem 4.1); and for clique FSM, we generate an optimal test se-

quence that covers the whole assertion’s transition space (Theorem

4.2). In the second part of the paper, we proposed a genetic algo-

rithm to enhance the coverage. An application on the Look-Aside

Interface standard, showed an improvement of the assertions cov-

erage by a factor of seven in comparison to blind random simula-

tion and a factor of four in comparison to a guided simulation using

Specman Elite of Verisity. As future work, we target to: (1) optimize

the genetic algorithm by finding optimal variables domains and dis-

tributions over theses domains; and (2) establish a formal link be-

tween both the TLM and RTL coverage.

References

[1] P. Godefroid and S. Khurshid. Exploring Very Large State

Spaces using Genetic Algorithms. In Joost-Pieter Katoen

and Perdita Stevens, editors, TACAS, volume 2280 of Lecture

Notes in Computer Science, pages 266–280. Springer, 2002.

[2] Y. Gurevich, B. Rossman, and W. Schulte. Semantic Essence

of AsmL. Technical report, Microsoft Research Tech. Report

MSR-TR-2004-27, March 2004.

[3] A. Habibi and S. Tahar. Towards an efficient assertion based

verification of SystemC designs. In Proc. High Level Design

Validation and Test Workshop, pages 19–22, Sonoma Valley,

CA, USA, November 2004.

[4] A. Habibi and S. Tahar. Design for verification of SystemC

transaction level models. In Proc. Design Automation and Test

in Europe, pages 560–565, Munich, Germany, March 2005.

[5] J. Holland. Adaptation in Natural and Artificial Systems. The

University of Michigan Press, 1975.

[6] J. Y. Jou and C. N. Liu. Coverage analysis techniques for

hdl design validation. In Proc. Asia Pacific CHip Design Lan-

guages, pages 48–55, Fukuoka, Japan, October 1999.

[7] Microsoft Corp. AsmL for Microsoft .NET Framework. re-

search.microsoft.com, 2005.

[8] Network Processing Forum. Look-Aside (LA-1) Interface,

Implementation Agreement, Revision 1.1. Kluwer Academic

Publishers, 2004.

[9] Open SystemC Initiative. www.systemc.org, 2005.

[10] H. Rudin. Protocol development success stories: Part i.

In Proc. International Symposium on Protocol Specification,

Testing, and Verification, pages 149–160, Lake Buena Vista,

Florida, USA, June 1992.

[11] C. D. Turner and D. J. Robson. The state-based testing of

object-oriented programs. In Proc. Conference on Software

Maintenance, pages 302–310, Montréal, Québec, Canada,

September 1993.

[12] Verisity Ltd. Website: http://www.verisity.com/, 2005.

111

