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Abstract

SystemC is a system level language proposed to raise the

abstraction level for embedded systems design and verifica-

tion. In this paper, we propose to generate Finite State Ma-

chines (FSM) from SystemC designs using two algorithms

originally proposed for the generation of FSM from Ab-

stract State Machines (ASM). This proposal enables the in-

tegration of SystemC with existing tools for test case gen-

eration from FSM. Hence, enabling two important appli-

cations: (1) using the FSM graph structure to produce test

suites allowing functional testing of SystemC designs; and

(2) performing conformance testing, where the FSM serves

as a precise model of the observable behavior of the sys-

tem used to validate lower abstraction levels of the design

(e.g., Register Transfer Level (RTL)).

1. Introduction

The modeling abstraction in the design flow has been

raised to the system level because of the increasing com-

plexity of today’s System-on-Chip (SoC). Until recently,

modeling architectures required pin-level hardware descrip-

tions, typically Register Transfer Level (RTL). Besides, de-

signing and verifying the models, and simulation at RTL are

tediously slow. The system level is eventually the best so-

lution to overcome these issues [5]. In this regard, several

system level languages have been proposed to raise the ab-

straction level of modeling and verification of today’s SoC.

Among them, SystemC [11] is expected to make an adverse

effect in the arenas of architecture, co-design and integra-

tion of hardware and software. The SystemC library [10] of

classes and simulation kernel extend C++ to provide sup-

port for concurrent behavior, a notion of time sequential op-

erations, data types for describing hardware, structure hier-

archy and simulation.

The verification of SystemC is a bottleneck due to the

object-oriented (OO) nature of the language. Two verifi-

cation techniques could be used: formal verification and

simulation. Model checking, as a formal technique, per-

forms a state exploration of the system to verify the

implementation of the system against the system proper-

ties. In contrast, the second technique, simulation, needs

test suites to validate the design functionalities. In order to

have efficient test suites for simulation, a finite state ma-

chine (FSM) model of the design could be used.

In this paper, we propose to generate FSM from Sys-

temC designs using two algorithms originally proposed

for the generation of FSM from Abstract State Ma-

chines (ASM) [4] [2]. This FSM generation for SystemC

enables several applications such as conformance check-

ing [1] between two design levels. The generated FSM

could be also used to define a better coverage evalua-

tion criteria.

We propose two algorithms (called direct and group-

ing algorithms). Figure 1 describes our methodology of

generating FSM from SystemC and the potential applica-

tions. The original SystemC code is used to feed the direct

algorithm with the entities required for the FSM genera-

tion. These entities include: the list of methods, the list of

state variables and the list of trigger events. From the al-

gorithm side, these entities correspond, respectively, to ac-

tions (A), state variables (V ) and action’s pre-conditions

(Apre). In addition to these entities, the grouping al-

gorithm requires as input a set of grouping conditions

(GC). Both algorithms perform a state exploration proce-

dure in order to discover all possible system’s states start-

ing from a set of initial states.

The rest of this paper is organized as follows: Section

2 discusses some related work to ours. Section 3 describes

the algorithm to generate FSM from SystemC. Section 4
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Figure 1. Methodology and Motivation.

presents an application to the PCI bus standard verification

to substantiate our approach. Finally, Section 5 concludes

the paper.

2. Related Work

In [4], Grieskamp et al. proposed an FSM-generating al-

gorithm from ASM. In [4], given a model in the Abstract

State Machine Language (AsmL) [6], the algorithm gener-

ates an FSM. The state transitions of the ASM are used to

generate a link between hyperstates which is based on sin-

gle state groupings. The limitation of this algorithm

is the use of single state grouping, which is not ade-

quate to solve the state space explosion problem. Camp-

bell et al. [2] extended the work of [4] to reduce the number

of states in the generated FSM. The FSM generation algo-

rithm from AsmL (or Spec# [9]) in [2] is based on multiple

state groupings which is an extension of the concept of hy-

perstates. The main advantage of this algorithm is the

reduction of state space, of the final FSM, using the no-

tion of multiple state groupings.

Other related work concerns generating FSM from hard-

ware description languages (HDL). For instance, in [3], a

translation procedure from Verilog into timed FSM model

was proposed. The resulting timed FSM was used to ver-

ify the system being modeled using model checkers. Lohse

et al. presented in [7] an approach to generate BDD-based

FSM from VHDL code. This is performed in two phases:

(1) declarations are annotated with BDDs and processes are

compiled into control graphs; and (2) the control graphs are

then compiled into an FSM and optimization of the FSM

was performed. The generated FSM was mainly used as an

input for a model checking tool called SMV [8]. However,

the approach in both [3] and [7] is restricted to synthesiz-

able subset of Verilog and VHDL constructs repectively.

The work of Vikram et al [12] was more specific to Sys-

temC, where the design (in SystemC) is first translated to

C, then, the FSM is generated from the C code. This ap-

proach is problematic in the sense that translating SystemC

to C is not always feasible. All the previously mentioned

techniques could not be applied to SystemC considering the

OO nature of the library and that not all SystemC is synthe-

sizable.

3. FSM Generation Algorithms

In this section, we present two algorithms that generate

FSM from SystemC code. The two algorithms have been

originally proposed for ASM based languages in [2] and

[4]. The FSM generation algorithms need the following en-

tities:

• State Variables (V)

• State Space (S)

• Initial States (Sinit)

• Actions (A)

• Transition Relation (R)

V is a set of state variables and for each vi in V, there is a

corresponding domain dvi in D, where D is a set of domains

for every type of state variables. S = {s1, s2, s3...sn} is a

total state space of the design being modelled where each

state si in S is an instantaneous description of the system

that captures the value of state variables (V) at particular in-

stant of time. Sinit ⊆ S is a set of initial states from where

the state exploration starts. A = {a1, a2, a3...an} is a set of

actions in the model defined as follows.

Definition 3.1 Action (a)

a is a four-tuple 〈a M, a Pre, a Post, a Cst〉 where,

• a M is a method

• a Pre is a set of pre-conditions

• a Post is a set of post-conditions

• a Cst is a set of constraints

a Pre is a set of Boolean propositions that have to

be true in the beginning of an action ai ∈ A execu-

tion, in a state s. a Post is also a set of Boolean propositions

that must be true at the end of an action ai ∈ A exe-

cution and a Cst is a set of Boolean propositions that

must to be true at certain part of an action ai ∈ A execu-

tion.

Next, we define the transition, R, from one state to another

during the action execution and it is defined as follows:
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Definition 3.2 Transition Relation (R)

Let S be a set of states and A be a set of actions then R is

defined as

R : S × A → S
(scurrent, a) 7→ snext

During the exploration phase of the algorithm, relevant

states are stored in SFSM . Starting from Sinit, new discov-

ered states are added to SFSM together with the new tran-

sition T . T = {t1, t2, t3...tn} is a set of transitions included

in the FSM where ti is a three-tuple, 〈scurrent, a, snext〉.

3.1. Helper Functions

Some helper functions are needed for the FSM genera-

tion algorithms. They include enabled() and nonExp().

enabled() is used to know for a specific state s if an ac-

tion a ∈ A is enabled and nonExp() is used to know if a

state s is fully explored.

Definition 3.3 enabled()
Let S be a set of states and A be a set of actions, then

S × A → {true, false}
(s, a) 7→ enabled(s, a)
where:

enabled(s, a) =

{

True, (a Pre = True);
False, (a Pre = False)

Definition 3.4 nonExp()
Let S be a set of states and T be a set of transitions

nonExp(s):S → T × T × ... × T
s 7→ { (t1, t2, ... tn) | ((ti = 〈 s, a,R(s, a) 〉 ) ∧
(enabled(s, a) = true))}

Definition 3.5 Frontier (F)

Let S be a set of states and A be a set of actions, then the

Frontier F = {s | s ∈ S | ∃a enabled(s, a) = true} is a

set of states that have not yet been fully explored during the

FSM generation process. The exploration of the state space

stops, if F is empty. Initially, F contains Sinit.

3.2. Direct FSM Generation Algorithm

In the algorithm presented in Figure 2, the states

that are discovered and are going to be part of the gener-

ated FSM are stored in SFSM . The transition from a current

state to a new state is stored in T . The algorithm starts ex-

ploring the states if the Frontier (F ) is not empty (line 4). In

the beginning, F contains Sinit. For each action ai ∈ A, the

algorithm checks if an ai is enabled in the current state (cur-

rent) using a helper function enabled() (line 7). Thereafter,

the new state (next) is discovered using the transition re-

lation R (line 8). If the new discovered state (next) is not

in SFSM , it is added to SFSM and the transition t (cur-

rent,a,next) is added to T (lines 10 & 11). The new

state next is also added to F if there exists an action en-

abled in this new state. If next is already in SFSM , t is

still added to T if it does not exist in it. The algorithm ter-

minates once F becomes empty. The output of the algo-

rithm is an FSM which is a tuple 〈 SFSM , T 〉.

1: SFSM = {Sinit}
2: F = {Sinit}
3: T = {∅}
4: while(F 6= ∅) {
5: current := F.Head
6: foreach a ∈ A{
7: if(enabled(current, a)) {
8: next := R(current, a)
9: if (next /∈ SFSM ) {
10: SFSM := SFSM ∪ {next}
11: T := T ∪ {(current, a, next)}
12: if (exists a in A where enabled(next,a)

13: = true) { F := F ∪ {next}
14: }
15: }
16: elseif ((current,a,next) /∈ T ) {
17: T := T ∪ {(current, a, next)}
18: }
19: }}
20: F := F.Tail

21: }

Figure 2. Direct FSM Generation Algorithm.

3.3. Grouping FSM Generation Algorithm

State groupings [2] is a technique for controlling sce-

narios by selecting representative states with respect to an

equivalent classes. Generally, the state space is very large

and it is indispensable to prune it as much as possible. In

Figure 3, we present the algorithm that we adapted for Sys-

temC from [2] to generate a grouped FSM. Figure 3 shares

some parts of the direct FSM algorithm but the vital differ-

ence is the incorporation of multiple state groupings. It uses

a state-based grouping condition to group the states. The

grouping condition GC is a Boolean proposition that uses

state variables(V) and functions defined in the design. It is

defined as follows.

Definition 3.6 Grouping Condition (GC)

GC = f (v1, v2, v3 ... vn) | vi ∈ V
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Having defined GC , we need to define the grouped state sg

which is a set of states that are equivalent under one group-

ing condition GCi, formally defined as follows.

Definition 3.7 Grouped State (sg)

sg = {s | s ∈ S | GCi = true}

Let SG be a grouped states, i.e., a set of grouped states sg .

In order to group the states, we need to have a way to map

the states s to grouped state sg . This is achieved by a group-

ing function g. g maps states of the model to concrete val-

ues defined by a state-dependent grouping condition (GC).

The value g(s) is called the g-label of s. Two states are g-

equivalent if they have the same g-label. g is defined as fol-

lows.

Definition 3.8 Grouping Function (g)

g : S → SG

s 7→ sg

Now, we define a new transition relation Rg that provides

the transition of one grouped state to another during the ac-

tion execution. Unlike R where it deals with individual state

s, Rg deals with grouped state sg and is defined as follows.

Definition 3.9 Transition Relation in Grouped FSM (Rg)

Rg : SG × A → SG

(scurrent
g , a) 7→ snext

g

We have defined all the needed components for the group-

ing FSM generation algorithm. The output of the grouping

algorithm will be FSMG that has two entities viz., SG
FSM

and TG. SG
FSM is a set of grouped states that have been dis-

covered and TG is a set of transitions among the grouped

states in the generated FSM. They are formally defined be-

low.

Definition 3.10 Grouped FSM States (SG
FSM )

SG
FSM = {s | s ∈ SFSM ∧ ∃ gi ∈ g | gi(s) =

true}

Definition 3.11 Grouped FSM Transitions (TG)

T = {(scurrent
g , a, snext

g )} = {(scurrent
g , a, Rg(sg, a))}

The grouping algorithm in Figure 3 starts with F contain-

ing Sinit and then explores all the possible actions in A that

can be enabled in the current state (current) (line 8). Then,

the new state (next) is discovered using the transition rela-

tion R (line 9). The new discovered state is mapped to a

grouped state based on the grouping function g. If the new

grouped state (g(next)) is not in SG
FSM , it is added to it and

the transition (current,a,g(next)) is added to TG. The new

state next is also added to F for further exploration. Finally,

the algorithm terminates once F becomes empty.

1: SG
FSM = {∅}

2: F = {Sinit}
3: TG = {∅}
4: g = {g1, g2...gk}
5: while(F 6= ∅) {
6: current := F.Head

7: foreach a ∈ A {
8: if (enabled (a, current)) {
9: next := R(current,a)

10: if (g(next) /∈ SG
FSM ) {

11: SG
FSM := SG

FSM ∪ {g(next)}
12: TG := TG ∪ {(current, a, g(next))}
13: if (exists a in A where enabled(next,a)

14: = true) { F := F ∪ {next}
15: }
16: }
17: elseif ((current,a,next) /∈ T ) {
18: TG := TG ∪ {(current, a, g(next)}
29: }
20: }}
21: F := F.Tail

22: }

Figure 3. Grouping FSM Generation Algo-

rithm.

4. Application: PCI Bus Standard Verifica-

tion

The PCI [13] bus standard boasts a 32-bit data

path, 33MHz clock speed and a maximum data trans-

fer rate of 132MB/sec. A 64-bit specification exists

for future PCI designs, which will double data trans-

fer performance to 264MB/sec. In Figure 4, we show

a generic structure of the PCI bus with a single mas-

ter and a slave. We added also an external monitor module

that will be used to track the signals at the input and out-

put ports of the bus in order to validate the good functioning

of the bus. Each PCI master has a pair of arbitration lines

that connect it directly to the PCI bus arbiter. When a mas-

ter requires the use of the PCI bus, it asserts its device

specific REQ# line to the arbiter. When the arbiter has de-

termined that the requesting master should be granted con-

trol of the PCI bus, it asserts the GNT# (grant) line specific

to the requesting master. In the PCI environment, bus arbi-

tration can take place while another master is still in con-

trol of the bus.

In the PCI terminology, data is transferred between an

initiator, which is the bus master, and a target, which is the

bus slave. The initiator, drives the C/BE[3:0]# signals (Fig-

ure 4) during the address phase to signal the type of trans-
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fer (memory read, memory write, I/O read, I/O write, etc.).

During the data phases, the C/BE[3:0]# signals serve as

byte enable to indicate which data bytes are valid. Both

the initiator and target may insert wait states into the

data transfer by de-asserting the IRDY# and TRDY# sig-

nals. Valid data transfers occur on each clock edge in which

both IRDY# and TRDY# are asserted. A target may termi-

nate a bus transfer by asserting STOP#. When the initiator

detects an active STOP# signal, it must terminate the cur-

rent bus transfer and re-arbitrate for the bus before contin-

uing. If STOP# is asserted without any data phases com-

pleting, the target has issued a retry. If STOP# is asserted

after one or more data phases have successfully com-

pleted, the target has issued a disconnect.

To evaluate the performances of both algorithms we

consider as criteria: the CPU time needed for generat-

ing the FSM and the number of its states and transitions1.

The grouping condition (see Figure 5) is a conjunc-

tion of the destination slave and the final status of the trans-

mission (completed or stopped). The procedure Group-

ingCondition() returns an integer value in {0, 1, 2, 3} or

-1 when an error happens. Each of these values identi-

fies a grouped state. Therefore, considering the defini-

tion of GroupingCondition(), the maximum number of

grouped states is four. The variable MASTERS in Fig-

ure 5 refers to the set of the masters connected to the

PCI bus. The integer data member m dest identifies for

the owner’s object (master) the target slave for the cur-

rent transaction. Finally, the Boolean data member m stop

specifies if the transaction can be stopped by the slave be-

1 Simulation platform: Pentium IV/1GB memory/WinXP-SP2.

fore it is fully completed.

Number of CPU Number of FSM

Masters Slaves Time (s) Nodes Transitions

1 1 0.34 20 25

1 3 0.80 58 85

3 1 4.44 236 341

2 2 4.31 293 449

3 2 108.03 1881 3153

3 3 727.01 3880 7542

Table 1. FSM Generation: Direct Algorithm.

Tables 1 and 2 show the experimental results for multi-

ple numbers of masters and slaves in the cases of the direct

and grouping algorithms, respectively. For both, the num-

bers of states and transitions increase exponentially as

a function of the number of masters and slaves con-

nected to the bus. However, we can note that the CPU time

required for the FSM generation using the direct algo-

rithm is shorter than the one required for the grouping al-

gorithm. Finally, as expected the grouped FSM is smaller

than the general FSM in terms of number of states and tran-

sitions.

Number of CPU Number of FSM

Masters Slaves Time (s) Nodes Transitions

1 1 0.36 2 4

1 3 0.86 6 23

3 1 4.56 2 4

2 2 4.61 4 14

3 2 148.47 4 14

3 3 772.60 6 23

Table 2. FSM Generation: Grouping Algo-

rithm.

Figure 6 gives a snapshot of the grouped FSM for the

case of two masters and two slaves for the grouped con-

dition is the one described in Figure 5. For example,

the group 0 (the initial state G0 in Figure 6) corre-

sponds to the case when the destination slave is Slave1
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(m dest = 1) and the transaction succeeds (m stop = 1).

GroupingCondition()=

if ((exists x in MASTERS

where x.m dest = 1 and

x.m stop = true)= true)

then Return 0

else

if ((exists x in MASTERS

where x.m dest = 1 and

x.m stop = false) = true)

then Return 1

else

if ((exists x in MASTERS

where x.m dest = 2 and

x.m stop = true)= true)

then Return 2

else

if ((exists x in MASTERS

where x.m dest = 2 and

x.m stop = false) =true)

then Return 3

else Return -1

Figure 5. Grouping Condition.

Figure 6. Generated FSM using the Grouping

Algorithm: 2 Masters / 2 Slaves.

5. Conclusion

We presented, in this paper, two algorithms for the gen-

eration of FSM from SystemC. In the first algorithm

(called direct algorithm) the state exploration proce-

dure searches for all relevant states. In the second al-

gorithm (called grouping algorithm), in addition to the

default state exploration performed by the direct algo-

rithm, we add a set of grouping conditions to help reducing

the final FSM size. Grouping conditions act like condi-

tions to classify states into groups. The generated FSM

can be of great importance for several applications such as

model checking, guided test generation, coverage evalua-

tion and conformance testing.

We illustrated the feasibility of our approach on a PCI

bus standard of the SystemC model. We showed that the

FSM generation time for both algorithms (direct and group-

ing) is relatively short. The grouping algorithm requires

more CPU time but outputs smaller FSM than the direct al-

gorithm. Our future work includes using the generated

FSM in generating guided test sequences and perform-

ing conformance checking of low abstraction level Sys-

temC designs.
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