
On the Numerical Verification of Probabilistic Rewriting Systems

Jounaidi Ben Hassen and Sofiène Tahar
Department of Electrical and Computer Engineering

Concordia University
Montreal, Quebec, Canada

{jounaidi,tahar}@ece.concordia.ca

Abstract

We present in this paper a technique for the formal ver-
ification of probabilistic systems described in PMAUDE, a
probabilistic extension of the rewriting system Maude. Our
methodology is based on a numerical verification using the
probabilistic symbolic model checking tool PRISM. In par-
ticular, we show how we can construct an abstract system
from the runs of a model that preserve all the probabilistic
properties of the latter. Then we deduce the probabilistic
matrix that will be used for the verification in PRISM.

1. Introduction

The usefulness of rewrite systems is proved by the large
range of their application to distributed real-time systems
[6]. Since the natural behavior of such processes is inher-
ently stochastic, rewriting techniques have been extended to
represent this probabilistic behavior [4]. Due to the increas-
ing complexity of those systems, probabilistic formal ver-
ification methods [5] are now being deployed. Ironically,
even if probabilistic rewriting techniques can offer a uni-
fying logic for stochastic systems, there are very limited
approaches that allow the verification of systems described
using these techniques. To the best of our knowledge, the
only proposed method is the one introduced in [8] where
a tool called VESTA [8] is introduced. This tool supports
statistical model-checking algorithms for the transient part
of probabilistic computation tree logic (PCTL) [3] and con-
tinuous stochastic logic (CSL) [2]. When we consider sta-
tistical approaches, we generally have to tolerate that any
test procedure we use accepts a false hypothesis. Hence,
results can be inaccurate and highly dependent on the sam-
ples simulated. Thus, the work that we present in this paper
will be the first of its kind to describe a technique for the
formal verification of a probabilistic rewriting system using
a numerical approach.

Informally, probabilistic rewriting systems are rewriting

systems where a probability information is added to the
rules that describe the system. In this paper, we will make
use of the probabilistic rewriting tool PMAUDE [1], which
is an extension of Maude [7]. Kumar et al. [4] proposed
probabilistic rules of the form:

� : α(�x) −→ α
′
(�x; �y) if C(�x) with probability π(�x).

C(�x) is called the condition of � and π(�x) is the probabil-
ity associated to �. The rule will match a state fragment if
there is a substitution θ for the variables �x that makes θ(α)
equal to that state fragment and satisfies θ(C(�x)). Kumar et
al. [4] proposed the probabilistic rewriting temporal logics
PRTL and PRTL∗, where properties of probabilistic rewrite
theories can be expressed.

In probabilistic model checking, the model constructed
for analysis is probabilistic. This is usually achieved by
labelling transitions between states with information about
the likelihood that they will occur. By introducing the prob-
abilistic verification, we can verify probabilistic properties
such as: “the message will be delivered with probability
0.98”. One of the most performing tools in probabilistic
model checking is PRISM [5]. It allows the verification of
systems which exhibit probabilistic behavior. Properties to
be checked against the constructed model are specified us-
ing the PCTL [3] or the CSL [2] temporal logics.

2. Proposed Verification Technique

We consider a PMAUDE module M = (Σ, E ∪
A,L,R, π) describing a probabilistic system. Σ is a ranked
alphabet of function symbols. E is a confluent, terminat-
ing and sort-decreasing modulo A. A is a set of equational
axioms. L is a set of distinctive labels. R is a set of rules
coherent with E modulo A. π is a set of probabilities as-
sociated to each rule. For verification purposes, we sup-
pose that the number of system’s states is finite and that
execution paths can be generated through rewriting deriva-
tion steps. Execution paths will be sequences of the form

3-9810801-0-6/DATE06 © 2006 EDAA

1223

Π = s0
p0,1−→ s1

p1,2−→ s2 . . ., where each si is a state given
by θ([αi]E/A). [αi]E/A is the canonical form of a term αi.
θ is a substitution on [αi]E/A. To avoid nondeterminism,
we suppose also that at most, only one θ can be applied to a
term [αi]E/A at one time for a given rule r ∈ R. The proba-
bility pi,i+1 ∈ [0, 1] is the probability to move from the state
si to si+1. Therefore, we suppose that a probability space
can be defined on the execution paths of the model in such
a way that the paths satisfying any path formula in our con-
cerned logic (PRTL) is measurable. Our technique is based
on three steps: definition of an abstract model, translation
of the PRTL formula and the verification using PRISM.

Model Abstraction: R can be considered as the union
of two disjoint sets Rl and Rg . Rl is the set of rules that
have a local transformation on the system and Rg is the set
of rules that when executed transform the global state of the
system. This set should include all the probabilistic rules.
If a rule rg ∈ Rg is non probabilistic, we assume that its
associated probability equals 1. A step derivation is said to
be local (respectively global) if it is obtained from the exe-
cution of a rule r ∈ Rl (respectively r ∈ Rg). We should
emphasize that by definition, a rule r : α −→ α

′
is inter-

preted as a transition in a concurrent system.
We reduce in M a ground term t0. This term represents the
initial state of M. We construct an abstract state-transition
system from the runs of the initial model by hiding all the
local step derivations of Rl and all the simplifications and
reductions of E/A. The obtained runs describe a state-
transition system M̂ = (Ŝ, T̂ , P̂). A state ŝi ∈ Ŝ rep-
resents a global state in M. It describes one or more lo-
cal derivations and simplifications over a term αi. Thus,
ŝi ≡ [αi]E/A

∗−→(Rl)E/A
[̂αi]E/A. Every transition t̂i,j

represents an evolution of the system from a state ŝi to a
state ŝi+1. In M, this can be viewed as an application

of a probabilistic rule rgi
∈ Rg over the term [̂αi]E/A

with a probability π(θ([̂αi]E/A)). Therefore, the proba-

bility p̂i,j ∈ P̂ associated to the transition t̂i,j is equal to
the probability associated to rgi

when applied on the term

[̂αi]E/A, i.e, π(θ([̂αi]E/A)). By distinguishing the local
derivations from the global ones, we were able to construct
an abstract system M̂ with only the states and transitions
that have an impact on the global behavior of our system.

Formula Transformation: Kumar et al. [4] showed
how to represent probabilistic temporal logics such as
PCTL and CSL under PRTL. Since in our case the verifi-
cation will be done on the abstract model M̂, an extra map-
ping should be performed over the variables in the initial
property PPRTL in order to obtain the corresponding prop-
erty P̂ . This translation replaces every αi in PPRTL by its
associated state ŝi (= ̂[αi]E/A) of the model M̂ in P̂ .

Verification with PRISM: From the probabilistic matrix
associated to M̂, we generate a PRISM model, then, we
introduce the property P̂ to be verified. PRISM performs
the numerical probabilistic model checking to ascertain
whether or not this property is satisfied by the model M̂.
If the property is verified by M̂ then it is verified by our
module M since M̂ preserves all the probabilistic proper-
ties of M.

3. Conclusion

We presented a technique for the formal verification of
probabilistic systems described as probabilistic rewriting
theories. Our methodology is based on the construction of
an abstract model that preserves all the global transitions
and the probabilistic properties of the initial model. This ab-
straction reduces the size of the system to be verified. Then,
PRISM can be used for the numerical verification of the
abstract model. Our methodology constitutes the first pro-
posal of its kind attempting to verify a probabilistic rewrit-
ing system using a numerical method. Further work should
be done especially to define the sublanguage of PMAUDE

that can be verified using this method, the implementation
of the proposed methodology and its application on several
real world case studies.

References

[1] G. Agha, J. Meseguer, and K. Sen. PMAUDE: Rewrite-based
specification language for probabilistic object systems. In
QAPL’05, Edinburgh, Scotland, April 2005.

[2] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-
checking continuous-time markov chains. ACM Transactions
in Computer Logic, 1(1):162–170, 2000.

[3] A. Bianco and L. de Alfaro. Model checking of probabilis-
tic and nondeterministic systems. In FST & TCS’95, volume
1026 of LNCS, pages 499–513, 1995.

[4] N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabilistic
rewrite theories: Unifying models, logics and tools. Techni-
cal Report UIUCDCS-R-2003-2347, Department of computer
science, University of Illinois at Urbana-Champaign, 2003.

[5] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 2.0:
A tool for probabilistic model checking. In QEST’04, pages
322–323, Enschede, The Netherlands, September 2004.

[6] N. Martı́-Oliet and J. Meseguer. Rewriting logic:
roadmap and bibliography. Theoretical Computer Science,
285(2):121–154, 2002.

[7] J. Meseguer. A logical theory of concurrent objects and its
realization in the maude language. In Research Directions in
Concurrent Object-Oriented Programming, pages 314–390.
MIT Press, 1993.

[8] K. Sen, M. Viswanathan, and G. Agha. VESTA: A statisti-
cal model checker and analyzer for probabilistic systems. In
QEST’05, Torino, Italy, September 2005.

1224

