
ON THE FORMAL VERIFICATION OF A SYSTEMC PACKET SWITCH
MODEL

Ali Habibi and Sofìene Tahar

Concordia University
Department of Electrical and Computer Engineering

1455 De Maisonneuve West
Montreal, Quebec, H3G 1M8, Canada

Email:{habibi,tahar}@ece.concordia.ca

ABSTRACT

In this paper, we present an approach to formally verify
SystemC intellectual properties (IPs). We considered as il-
lustrative case a Packet Switch model part of the SystemC
library. We propose a verification methodology composed
of two steps: (1) static code analysis using abstract inter-
pretation; and (2) model checking. This latter is performed
thanks to an integration of both the Property Specification
Language (PSL) and the SystemC semantics in the Ab-
stract States Machines (ASMs). We propose a technique
based on a reachability algorithm part of the AsmL tool
that translates the ASM code combining both the design
and the properties into a finite state machine (FSM) repre-
sentation. We use the generated FSM to run model check-
ing on an external tool, here SMV. Our approach takes ad-
vantage from the ASM language capabilities to model de-
signs at the system level as well as from the power of the
AsmL tool in generating both a C# code and an FSM rep-
resentation from an ASM model. The experimental results
illustrate, in particular, a corner-case bug that we were able
to detect in the design under verification.

1. INTRODUCTION

In order for system level language to model complex yet
real System-on-Chip (SoC), it must be equipped with a
library of Intellectual Properties (IP) including in particu-
lar bus structures, which will be used to interconnect de-
vices such as processors, memories, etc. In this paper, we
present a methodology to formally verify a Packet Switch
model part of the SystemC library [13]. SystemC [12] is a
system level language introduced to overcome the problem
of the growth in complexity and size of systems combining
different types of components, including microprocessors,
DSPs, memories, embedded software, etc. SystemC meets
the needs for a system level language that can fill the gap
between hardware description languages (HDLs) and tra-
ditional software programming languages. SystemC com-
prises C++ class libraries and a simulation kernel used for
creating behavioral and register transfer level (RTL) de-
signs.

The Abstract State Machines (ASM) formalism [2] is
used as a modeling language in a variety of domains both
in academic and industry contexts. In ASM, large sys-
tems modeled on a high level of abstraction can be fit into
the validation and verification process. There are many
languages that have been developed for ASMs, the recent
one is AsmL [11] which was developed at Microsoft Re-
search. We choose this language, as a common level of ab-
straction, to define an abstract simulator, and then model
designs and properties. The AsmL tester [11] can also be
used to generate finite state machines (FSMs) or test cases.

The Accellera Property Specification Language (PSL)
[1] was developed to address the lack of information about
properties and design characteristics in RTL modeling. It
provides means of specifying design properties using a
concise syntax with clearly defined formal semantics. PSL
permits specifying a large class of real design properties
that range from simple to complex ones. PSL is formed
from four layers: Boolean, temporal, verification and mod-
eling layers.

The verification of SystemC designs is a serious bot-
tleneck in the system design flow. Classical simulation
does not guarantee the absence of errors. On the other
hand, formal techniques, in particular model checking can-
not handle neither the object-oriented (OO) nature of the
library nor the complexity of its simulator. In order to
overcome these two problems, we propose a bottom–up
approach, where the design, which is originally given in
SystemC, is reduced to an abstract form calledhypergraph
[14] based on abstract interpretation [3]. The generated
hypergrapghs, which represent a reduced model of the de-
sign, are then used to construct an abstract model in ASM.
Using our PSL modeling in AsmL [8] we are able to rea-
son about the behavior of the design, and its correctness
against its specification. We use the AsmL tool in order
to generate an FSM for the reduced model (including the
properties). This enables the verification of PSL properties
for SystemC designs of a reasonable size using classical
model checking tools. For this, we translate the generated
FSM into the input language of the SMV model checking
tool [10].

State machine representations were used in the verifi-

cation of SystemC designs either by applying model check-
ing or guiding functional simulation. For instance, Drech-
sleret al. [4] proposed to use reachability analysis to ver-
ify certain properties of a SystemC design. Nevertheless,
they restricted SystemC to a Verilog like language. Fer-
randiet al. [5] proposed to use state machines to perform
efficient functional verification of SystemC designs. They
constructed an FSM directly from the code then used it to
guide the test generation. In that work, the FSM gener-
ation was briefly described and does not consider the se-
mantics of the SystemC simulator.

The rest of the paper is organized as follows: Section
2 describes the packet switch model. Section 3 describes
the used verification methodology. Section 4 presents the
experimental results. Finally, Section 5 concludes the pa-
per.

2. PACKET SWITCH MODEL IN SYSTEMC

Figure 1 provides a general structure of a 4x4 multi-cast
packet switch. The switch uses a self routing ring of shift
registers to transfer cells from one port to another in a
pipelined fashion, resolving output contention and efficiently
handling multi-cast cells. Input and output ports have FIFO
buffers of depth four each. Input and output signals are 16-
bit packets. Each input port is connected to a sender pro-
cess. Each output port is connected to a receiver process.
The sender and receiver processes are given distinguished
id numbers during instantiations. A sender process sends
random data to one or more of the four receivers. Sender
processes send packets at random intervals, varying from
1 to 4 units of its clock. A receiver process is activated
whenever a packet arrives. Then, it displays the content of
the packet and the receiverid. The switch operates on an
external clock,CLK, and an internal clock,SWCLK,
which is four times faster. Input and output signals are
16-bit packets with the structure given in Figure 2.

fifo

fifo

fifo

fifo

R0 R3

R1 R2

Shift Reg.

Ring

fifo

fifo

fifo

fifo

In0

In1

In3

Out0 Out3

In2

Out1 Out2

Figure 1. Switch Structure.

DateSenderDestination

← data(8) →← id(4) →← ad(4) →

Figure 2. Packet Structure.

3. VERIFICATION METHODOLOGY

For the verification of the packet switch, we use the method-
ology given in Figure 31, where we start by a SystemC de-
sign, apply abstract interpretation and generate its hyper-
graphs. We then translate the events and processes based
hypergraphs into ASM using an embedding for SystemC
in ASM. We then compile the ASM model, including both
the design and the PSL properties, using the AsmL tool
and generate its FSM. This FSM is translated into the in-
put language of the model checker, which will evaluate the
correctness of the model. Similarly, the AsmL compiler
can generate test scenarios, or C# models for verification
by simulation.

The generation of the FSM from ASM is performed
using the algorithm given in [6]. Since, the AsmL tool
is provided as a black–box, we embed the state of ev-
ery property (as Boolean) in every system’s state. Once
the FSM is generated, it will include, by construction, a
Boolean state variable for evaluating the property. The last
step in the verification process is to translate the FSM to
the model checker input language, here SMV. Note that
there is no restriction on the model checker as the final
FSM is concrete and includes only Boolean variables to
represent the state of the PSL properties.

Assertion Parser

PSL

Property

ASM/PSL Property

Generator

SystemC

Design

C++ Compiler

Hypergraph

Generator
Hypergraph to ASM

Translator

SystemC Simulator

Semantics (ASM)

SystemC Semanttics

(ASM)

PSL Semantics

(ASM)

AsmL Tool

(AsmL Compiler)

Design Modeled

in ASM
PSL Property

Modeled in ASM

System’s FSM Test ScenariosModel and PSL

Property in C#

FSM to Model Checker

Input Language Translator

Model Checker

Figure 3. Methodology for Verifying PSL Properties for
SystemC Designs.

Abstract syntax domains allow the syntactical manip-
ulation of expressions in order to perform the analysis of
the program. In order to allow both the interaction with the
user and abstract debugging, we selected thehypergraph
structure first introduced by [14] to represent the abstract
environment. The hypergraph structure can be seen as a
general automata connecting its states by branches. These
branches can be considered as an extension to Binary De-
cision Diagrams (BDDs) more adapted to programs repre-
sentation. In other terms, they offer a higher level of ab-
straction and flexibility by introducing the notion of con-
fined hypergraph. Hypergraphs define a logical language

1A detailed description of the methodology can be found in [7].

and a control language for both simulation and program
proofs. They offer a good solution to control the state ex-
plosion problem of model checking. In this paper, we use
this hypergraph structure to generate the ASM code that
will represent the abstracted version of the SystemC code.

The ASM model preserves the behavior of the original
model with respect to the execution of the processes and
the activation of the events. The abstraction of SystemC,
Figure 3, includes two steps: (1) Hypergraph Generator,
and (2) reduced SystemC to ASM Translator. We proved
in [9] the soundness of this transformation.

Abstraction can be applied to the memory, the environ-
ment and the code itself. Since the environment is known
statically at each program point, we can use the concrete
program environment, which is generated during the com-
pilation phase. It is hence seen as a function that associates
with every variable a list of abstracted pointers referringto
some locations in the stack.

PSL properties are embedded in ASM as assertions,
the assertion here means the validity of the property. It
provides a unique view of the property in every system’s
state. It also simulates the design with the property as a
monitor. We build the assertion starting from basic Boolean
components, sequences, and then verification units. We
encapsulate sequences in the verification unit as an as-
sertion which is embedded in the design. Given a set of
Boolean itemsx1, x2, . . . , xn, andy1, y2, . . . , ym belong-
ing to the Boolean layer, and the sequences,S1 and S2

belonging to the temporal layer, we can define:S1 =
{x1, x2, . . . , xn}, andS2 = {y1, y2, . . . , ym} and then
use assertions to check any PSL operation betweenS1 and
S2 such asS1 OP S2, whereOP is a PSL operator (e.g.,
implication (⇒), or equivalence (⇔)).

4. EXPERIMENTAL RESULTS

4.1. Static Code Analysis

The direct hypergraph representing the switch includes twe-
lve processes: four senders, four receivers, two clock pro-
cesses (first clock used for input and output operation and
second clock used as internal switch clock), a process for
the internal clock of the switch and process for the switch
core itself. Only the clocksclock1 andclock2 are active
when the switch starts. The other processes are activated
on the reception of a packet or after sending a packet. In
parallel with the program environment, the events environ-
ment includes the list of all the system processes and their
status. The simulation manager is connected to the entries
of the program hypergraph. It can be seen as a procedure
that determines the structure of the system according to the
list of active processes. For example, if the senders 1 and
3 are active, then, only their relative code is analyzed.

The analysis phase relates the elements of the initial
hypergraph to a list of general iterators representing the
simulation cycle. In other terms, we replace the whole
SystemC simulator by a number of loops and iterators that
define statically the order of execution of the processes.

1

pkt_count += in0.event();

pkt_count += in1.event();

pkt_count += in2.event();

pkt_count += in3.event();

2

q0_in.full == true

3

drop_count++

4

iter++;

false

true

q1_in.full == true

5

drop_count++

6

false

true

q2_in.full == true

7

drop_count++

8

false

true

q3_in.full == true

9

drop_count++

10

false

true

!q0_in.empty && R0.free

11

R0.val = q0_in.pkt_out();

R0.free = false;

12

false

true

!q1_in.empty && R1.free

13

R1.val = q1_in.pkt_out();

R1.free = false;

14

false

true

!q2_in.empty && R2.free

15

R2.val = q2_in.pkt_out();

R2.free = false;

16

false

true

!q3_in.empty && R3.free

17

R3.val = q3_in.pkt_out();

R3.free = false;

18

false

true

(bool)switch_cntrl &&

switch_cntrl.event()

19
false

true

temp = R0; R0 = R1; R1 = R2;

R2 = R3; R3 = temp;

R0.val.dest0 && R0.free

21

q0_out.pkt_in(R0.val);

R0.val.dest0 = false;

22

false

true

R1.val.dest1 && R1.free

23

q1_out.pkt_in(R1.val);

R1.val.dest1 = false;

24

false

true

R2.val.dest2 && R2.free

25

q2_out.pkt_in(R2.val);

R2.val.dest2 = false;

26

false

true

R3.val.dest3 && R3.free

27

q3_out.pkt_in(R3.val);

R3.val.dest3 = false;

28

false

true

20

Figure 4. Reduced Hypergraph of the Switch’s Main
Method.

By applying our reduction techniques on the basic hyper-
graph of the switch core, we obtained the reduced hyper-
graph structure given in Figure 4, where the SystemC sim-
ulator is reduced to a while loop and that most of the inter-
nal variables of the switch are defined as functions of the
loop iterators.

From the reduced hypergraph structure a number of
properties can be deduced. For example, the total num-
ber of received packetspkt count and the total number
of dropped packets at the input FIFOsdrop count are de-
fined by:

• pkt count =
∑

itr

i=0
{in0.event()i + in1.event()i+

in2.event()i + in3.event()i}

• drop count =
∑

itr

i=0
{q0 in.full()i + q1 in.full()i +

q2 in.full()i + q3 in.full()i}

where:qX in.full()i andinX.event()i are Boolean flags
set to 1 when the input FIFOX is full and a packet is re-
ceived from the senderX, respectively.

Although the previous properties may seem to be gen-
eral, they can offer very precious information about the
internal way the switch is working. At the same time, they
allow the detection of behavioral errors. For example, the
second property states that “the count of dropped packets
is equal to the number of times the input queue (FIFO) is
full”, which is not correct. In fact, the correct property
should state that “the count of dropped packets is the num-
ber of received packet at the entry of the FIFO when the
input queue (FIFO) is full”. In other words, we have to re-
ceive a packet when the FIFO is full to say that the packet
was dropped. So, the condition to count the dropped pack-
ets must be changed from: “if((q0 in.full == true)” to “if((
q0 in.full == true) && in0.event())”.

Note also that the properties obtained from the analy-
sis phase can be used to validate the switch’s specification
(e.g., maximum number of dropped packets). According
to the reduced hypergraph, the switch core only uses the

packet’s header to process the packet. Therefore, we can
reduce the packet to its header (4 bits destination and 4 bits
identifier), which would ease the use of model checking to
verify some behavioral properties of the switch.

4.2. Model Checking

Using the above abstract mode, we verified a set PSL prop-
erties on the packet switch. For illustration purpose, two
properties are given below:

The first property,P1, is intended to verify that if there
is only one recipient for the packet, and the output queue
is not full, then the register that holds the packet should
be free in the next internal clock, and the packet should be
received at the output queue.

PropertyP1 :

forall send in {0, 1, 2, 3}

if Reg[send].free == true and

Packet.dest0 and not OutQueue[send].full and

not Packet.dest1 or Packet.dest2 or Packet.d3

then at next SWCLK :

Reg[send].free = true

OutQueue[0] = Reg[send]

The second property,P2, is intended to check the short-
est path when sending from senderi to receiveri, where
the input queue is not full. This operation should be per-
formed in four internal clocks (SWCLK) or equivalently
one external clock (CLK).

PropertyP2 :

forall send in {0, 1, 2, 3}, forall rec in {0, 1, 2, 3}

if send == rec and not InQueue[send].full and

Reg[send].free == true and

OutQueue[rec].empty == true then

OutQueue[rec] = Reg[send] in 4 SWCLK

and OutQueue[rec] = Reg[send] in 1 CLK

The AsmL tool is used in order to generate automati-
cally the FSM of the packet switch and having the eval-
uation of the properties as a state variable. The model
checking resulted in successfully verifying the correctness
of P2. P1, however, was violated, indicating a bug in
the SystemC packet switch model. This bug showed, after
further inspection of the code, that the switch will free any
packet coming from senders 0, 2 and 3 and having at least
two destinations including port 1 before routing it to out-
put port (different from port 1). The erroneous code is the
following:

if (R1.val.dest1‖R1.val.dest1‖R1.val.dest2‖

R1.val.dest3) R1.free = true;

where the condition to free the register does not check if
the packet is having as destination the port 0 and uses a
double copy of the check about the port 1 (R1.val.dest1).
The correct condition should be:

if (R1.val.dest0‖R1.val.dest1‖R1.val.dest2‖

R1.val.dest3).

5. CONCLUSION

In this paper, we presented an approach for formally veri-
fying a SystemC packet switch model using a cascade of:
(1) reduction techniques based on abstract interpretation;
and (2) transformation to AsmL. We used a previously de-
fined embedding of the semantics of SystemC components
library and simulator in order to provide an abstract Sys-
temC simulator in ASM. The SystemC design model is
reduced based on abstract interpretation in terms of hyper-
graphs. An ASM model combining both the reduced hy-
pergraph and the PSL property is input to the AsmL tool,
as an FSM of the system including the properties. The
verification of PSL properties is performed using the SMV
model checker after translating the FSM model (given in
dot format) into the input language of SMV. We have been
able to verify a set of PSL sample properties and to detect
a bug until today not found using simulation.

6. REFERENCES

[1] Accellera Organization. Accellera property spec-
ification language reference manual, version 1.01.
www.accellera.org, 2004.

[2] ASM. website: www.eecs.umich.edu/gasm, 2005.

[3] P. Cousot. Constructive design of a hierarchy of seman-
tics of a transition system by abstract interpretation.Theo.
Comp. Sc., 277(1-2):47–103, 2002.

[4] R. Drechsler and D. Große. Reachability analysis for for-
mal verification of SystemC. InProc. Symposium on Dig-
ital System Design, pages 337–340, Dortmund, Germany,
2002.

[5] F. Ferrandi, M. Rendine, and D. Sciuto. Functional verifi-
cation for SystemC descriptions using constraint solving.
In Proc. Design, Automation and Test in Europe, pages
744–751, Paris, France, March 2002.

[6] Y. Gurevich, B. Rossman, and W. Schulte. Semantic
Essence of AsmL. Technical report, Microsoft Research
Tech. Report MSR-TR-2004-27, March 2004.

[7] A. Habibi. A Framework for System Level Verification:
The SystemC Case. PhD thesis, Concordia University,
Montréal, Quebec, Canada, 2005.

[8] A. Habibi and S. Tahar. An Approach for the Verification of
SystemC Designs using AsmL. InAutomated Technology
for Verification and Analysis, LNCS 3707, pages 69–83.
Springer Verlag, 2005.

[9] A. Habibi and S. Tahar. On the Transformation of SystemC
to AsmL using Abstract Interpretation.Electronic Notes in
Theoretical Computer Science, 131:39–49, May 2005.

[10] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[11] Microsoft Corp. AsmL for Microsoft .NET Framework.
research.microsoft.com, 2004.

[12] Open SystemC Initiative. www.systemc.org, 2005.

[13] OSI. SystemC 2.0.1 language reference manual. 2005.

[14] F. Vederine.Analyses totales de programmes par interpre-
tation abstraite. PhD thesis, Ecole Polytechnique, Paris,
France, 2000.

