Incorporating Formal Methods in the Design Flow of DSP Systems

Behzad Akbarpour and Sofiene Tahar

Dept. of Electrical and Computer Engineering, Concordia University

1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada

Email: {behzad,tahar}@ece.concordia.ca

Abstract

In this paper we propose a framework for the incorporation of formal methods in the design flow of DSP
(Digital Signal Processing) systems in a rigorous way. In the proposed approach we model and verify
DSP descriptions at different abstraction levels using higher-order logic based on the HOL (Higher Order
Logic) theorem prover. This framework enables the formal verification of DSP designs which in the
past could only be done partially using conventional simulation techniques. To this end, we provide a
shallow embedding of DSP descriptions in HOL at the floating-point, fixed-point, RTL (Register Transfer
Level), and netlist gate levels. We make use of existing formalization of floating-point theory in HOL
and introduce a parallel one for fixed-point arithmetic. The high ability of abstraction in HOL allows
a seamless hierarchical verification encompassing the whole DSP design path, starting from top level
floating- and fixed-point algorithmic descriptions down to RTL, and gate level implementations. We
illustrate the new verification framework using different case studies such as digital filters and FFT (Fast
Fourier Transform) algorithms.

1 Introduction

Digital system design is characterized by ever increasing system complexity that has to be implemented
within reduced time, resulting in minimum costs and short time-to-market. These characteristics call for a
seamless design flow that allows to perform the design steps on the highest suitable level of abstraction. For
most digital signal processing systems, the design has to result in a fixed-point implementation. This is due
to the fact that these systems are sensitive to power consumption, chip size and price per device. Fixed point
realizations outperform floating-point realizations by far with regard to these criteria. Figure 1 illustrates a
general DSP design flow as used nowadays in leading industry design projects.

Ideal Real
Specification

Floating-Point
Algorithm

Test Fixed-Point
Bench Algorithm

Hardware X
Architecture System Design

Using DSP Tool
IC Design Using
External Tools

Theoretical Design

‘ [RTL ‘ ‘ HDL Editors
Capture ‘ ‘

Datapath Logic
Compilers Synthesis

l l

Netlist ‘

Place and
Route

Figure 1: DSP design flow

The design of digital signal processing systems starts from an ideal real number specification. In theoreti-
cal analysis of digital systems, we generally assume that signal values and system coefficients are represented

in the real number system and expressed to infinite precision. This allows to ignore the effects of finite
wordlengths and fixed exponents and to abstract from all implementation details. When implemented in
special-purpose digital hardware or as a computer algorithm, we must represent signals and coefficients in
some digital number system that must always be of finite precision. In this case, attention must be paid to the
effects of using finite register lengths to represent all relevant design parameters [26]. Despite the advantages
offered by digital networks, there is an inherent accuracy problem associated with digital signal processing
systems, since the signals are represented by a finite number of bits and the arithmetic operations must be
carried out with an accuracy limited by the finite word length of the number representation. Depending on
the type of arithmetic used in the system algorithm, the type of quantization used to reduce the word length
to a desired size, and the exact system structure used, one can generally estimate how system performance is
affected by these finite precision effects. There are several types of arithmetics used in the implementation of
digital systems. Among the most common are floating-point and fixed-point. At the floating- and fixed-point
levels, all operands are represented by a special format or assigned a fixed word length and a fixed exponent,
while the control structure and the operations of the ideal program remain unchanged. The transformation
from real (numbers) to floating- and fixed-point is quite tedious and error-prone. On the implementation
side, the fixed-point model of the algorithm has to be transformed/synthesized into the best suited target
description, either using a hardware description language (HDL) or a programming language. Meeting the
above (sometimes conflicting) requirements is a great challenge in any DSP design project.

The above design process can be aided by a number of specialized CAD tools such as SPW (Cadence) [7],
CoCentric (Synopsys) [8], Matlab-Simulink (Mathworks) [24], and FRIDGE (Aachen UT) [22]. The confor-
mance of the fixed-point implementation with respect to the descriptions in floating-point or real algorithm
on one hand, and the RT (Register Transfer) and gate levels on the other hand is verified by simulation
techniques. Simulation, however, is known to provide partial verification as it cannot cover all design errors,
especially for large systems. On the other hand, adopting formal verification in system design generally
means using methods of mathematical proof rather than simulation to ensure the quality of the design, to
improve the robustness of a design and to speed up the development.

In this paper we propose a methodology for applying formal methods to the design flow of DSP systems
in a rigorous way. The corresponding commutating diagram is shown in Figure 2.

Shall
REAL — o (T_'%\LL) .
Embedding N NN EP Error
(Convert) AN “~_ Analysis
gp Shallow pp Valuation b peai value
Embedding (HOL) N (HAOL)
FXP Error®
(Convert) Analysis \\\ 1 FPto FXP Error
L : Analysis
pxp Shallow Fxp Valuation pyp Real value
Embedding (HOL) (HoL)
(Synthesize) Logical
Implication
Shall
RTL oW EIDLL
Embedding ()
(Synthesize) Logical
Implication
Shallow ;
. Netlist
Netlist ———— (HOL)

Embedding
Figure 2: Proposed DSP specification and verification approach

Thereafter, we model the ideal real specification of the DSP algorithms and the corresponding floating-
point (FP) and fixed-point (FXP) representations as well as the RT and gate level implementations as
predicates in higher-order logic. The overall methodology for the formal specification and verification of
DSP algorithms will be based on the idea of shallow embedding of languages [6] using the HOL theorem
proving environment[13]. In the proposed approach, we first focus on the transition from real to floating-
and fixed-point levels. For this, we make use of existing theories in HOL on the construction of real [14] and
complex [17] numbers, the formalization of IEEE-754 standard [18] based floating-point arithmetic [15, 16],
and the formalization of fixed-point arithmetic [4]. We use valuation functions to find the real values of the
floating- and fixed-point DSP outputs and define the error as the difference between these values and the

corresponding output of the ideal real specification. Then we establish fundamental lemmas on the error
analysis of floating- and fixed-point roundings and arithmetic operations against their abstract mathemat-
ical counterparts. Finally, based on these lemmas, we derive expressions for the accumulation of roundoff
error in floating- and fixed-point DSP algorithms using recursive definitions and initial conditions. While
theoretical work on computing the errors due to finite precision effects in the realization of DSP algorithms
with floating- and fixed-point arithmetics has been extensively studied since the late sixties [21], this paper
contains the first formalization and proof of this analysis using a mechanical theorem prover, here HOL. The
formal results are found to be in good agreement with the theoretical ones.

After handling the transition from real to floating- and fixed-point levels, we turn to the HDL representa-
tion. At this point, we use well known techniques to model the DSP design at the RTL level within the HOL
environment. The last step is to verify this level using a classical hierarchical proof approach in HOL [25].
In this way, we hierarchically prove that the DSP RTL implementation implies the high level fixed-point
algorithmic specification, which has already been related to the floating-point description and the ideal real
specification through the error analysis. The verification can be extended, following similar manner, down
to gate level netlist either in HOL or using other commercial verification tools as depicted in Figure 2.

The rest of the paper is organized as follows: Section 2 describes the fixed-point arithmetic and the details
of its formalization in higher-order-logic. Section 3 describes the error analysis of digital filters using HOL
theorem proving. Section 4 presents the verification of FFT algorithms in HOL from real specification to
gate level implementation. Finally, Section 5 concludes the paper and outlines the future research directions.

2 Formalization of Fixed-Point Arithmetic in HOL

In this section, the objective is to formalize the fixed-point arithmetic in higher-order logic as a basis for
checking the correctness of the implementation of DSP designs against higher level algorithmic descriptions
in floating-point and fixed-point representations.

2.1 Fixed-Point Numbers

We first describe the fixed-point arithmetic definitions on which we base our formalization. Unlike floating-
point arithmetic which is standardized in IEEE-754 [18] and IEEE-854 [19], current fixed-point arithmetic
does not follow any particular standard and depends on the tool and the language used to design the
DSP chip. While we tried to keep these definitions as general as possible, the fixed-point numbers format,
arithmetic operations, overflow and quantization modes, and exception handling adopted are to some extent
influenced by the fixed-point arithmetic defined by Cadence SPW [7] and Synopsys SystemC [27].

A fixed-point number has a fixed number of binary digits and a fixed position for the decimal point with
respect to that sequence of digits. Fixed-point numbers can be either unsigned (always positive) or signed
(in two’s complement representation). Fixed-point numbers are expressed as a pair consisting of a binary
string and a set of attributes. The attributes specify how the binary string is interpreted. Generally, the
attributes consists of three parameters to represent the total word length, the integer word length, and the
sign format. Operations performed on fixed-point data types are done using arbitrary and full precision.
After the operation is complete, the resulting operand is cast to fit the fixed-point data type object. The
casting operation applies the quantization behavior of the target object to the new value and assigns the new
value to the target object. Then, the appropriate overflow behavior is applied to the result of the process
which gives the final value. In addition to the parameters corresponding to the input operands and output
result, the arithmetic operations take specific parameters defining the overflow and quantization modes.
These parameters are the Quantization mode, Overflow mode, and Number of saturated bits. Quantization
effects are used to determine what happens to the LSBs of a fixed-point type when more bits of precision
are required than are available. The quantization modes are: Quantization to Plus Infinity, Quantization
to Zero, Quantization to Minus Infinity, Quantization to Infinity, Convergent Quantization, Truncation, and
Truncation to Zero. In addition to quantization modes, we can use overflow modes to approximate a higher
range for fixed-point operations. Usually, overflow occurs when the result of an operation is too large or
too small for the available bit range. Specific overflow modes can then be implemented to reduce the loss
of data. Overflow modes are: Saturation, Saturation to Zero, Symmetrical Saturation, Wrap-Around, and
Sign Magnitude Wrap-Around.

2.2 Fixed-point Formalization in HOL

In this section, we present formalization of the fixed-point arithmetic in higher-order logic, based on the
general purpose HOL theorem prover. HOL’s basic types include the natural numbers and booleans. It also
includes other specific extensions like John Harrison’s reals library [14] which proved to be essential for our
fixed-point arithmetic formalization.

Fixed point numbers are modeled in HOL as a pair of elements composed of a bit string and a set of
attributes. The bit string is represented by a boolean word and the set of attributes is itself a combination
of six elements representing the word length, integer word length, sign type, rounding mode, overflow mode,
and the number of saturation bits. The fixed-point numbers are then partitioned using special predicates
into signed and un-signed numbers. The validity of a fixed-point number and a set of attributes is defined
using special predicates. Then we defined the actual HOL type for the fixed-point numbers. The valuation
function is then defined to specify a real value to fixed-point numbers using separate formulas for signed
and unsigned numbers. The constants for the smallest and largest fixed-point numbers for a given format
together with their corresponding real values are also defined using specific functions. Then, we defined
enumerated data types for seven rounding modes and five overflow modes in fixed-point arithmetic. The
rounding function is then defined case by case on the rounding and overflow modes. Then, we defined the
operations on fixed-point numbers which are performed using the arbitrary precision in real domain and
then the result is casted to the output format.

2.3 Verification of Fixed-Point Operations

According to the discussion in the previous section, each fixed-point number has a corresponding real number
value. The correctness of a fixed-point operation can be specified by comparing its output with the true
mathematical result, using the valuation function wvalue that converts a fixed-point to an infinitely precise
number. For example, the correctness of a fixed-point adder frpAdd is specified by comparing it with its
ideal counterpart 4+. That is, for each pair of fixed-point numbers (a,b), we compare value (a)+ value (b)
and value (frpAdd (a,b)). In other words, we check if the diagram in Figure 3 commutes.

value (a) , value (b) ;» value (a) + value (b)
=?
value (fxpAdd (a,b))

value
value

a,b fxpAdd (a,b
fxpAdd P @b)

Figure 3: Correctness criteria for fixed-point addition

Therefore, the correctness of fixed-point operations can be specified by comparing the operation’s output
with the true mathematical result. Since the operations are defined as if they first performed using infinite
precision and then the result is rounded to fit in the destination format, the verification of operations is
closely related to bounding the error in rounding function. The steps in analysis of fixed-point rounding
error in HOL are as follows:

e Lemmas for Analyzing the Fixed-Point Rounding Operation: We first proved lemmas con-
cerning with the approximation of a real number with a fixed-point number. We proved that in a finite
nonempty set of fixed-point numbers we can find the best approximation to a real number based on
a given valuation function. Then, we proved that the chosen best approximation to a real number
satisfying a property p from a finite and non empty set of fixed-point numbers is unique and is itself
a member of the set. Finally, we proved that the chosen best approximation to a real number satisfy-
ing a property p from the set of all valid fixed-point numbers with a given attributes is itself a valid
fixed-point number.

¢ Rounding Error in Fixed-Point Arithmetic Operations: Then, we defined the error resulting
from rounding a real number to a fixed-point value. Then, we established the first main theorems on

the correctness of fixed-point arithmetic operations. According to these theorems, if the input fixed-
point operands and the output attributes are valid then the result of fixed-point operations is valid.
Also the result of the operations is related to the real result considering the error.

e General Fixed-Point Error Bound Theorem: In the next step, we established the second main
theorem on fixed-point rounding error analysis which concerns bounding the error. According to this
theorem, the error in rounding a real number which is in the range representable by a given set of
attributes X is less than the quantity 1/2f”“b“s(X), where fracbits is the number of bits that are to
the right of the binary point in the given fixed-point format X. To explain the theorem, we consider the
distribution of fixed-point number on the real axis as shown by Figure 4. Thereafter, the representable
range of fixed-point numbers is divided into 2V equispaced quantization steps with the distance between
two successive steps equal to 1/2°. Suppose that z € R is approximated by a fixed-point number a.
The position of these values are labeled in the figure. The error | — a | is hence less than the length
of one interval, or 1/2°, as mentioned in the second theorem. The details can be found in [4].

1\lIIN < a 1\lIAX
]] l R S, \] >
0 1/2" 2/2" p/2r (2¥-2)/2 (2V-1)/2"
a) Unsigned
MIN x a MAX
] Levennnn \] l I S \] >
—2N=t/ob (2N /2t o 1/20 2/2" p/2" (V' -2)/20 (V' -1)/2°
b) Signed

Figure 4: Fixed-Point Values on the Real Axis

3 Error Analysis of Digital Filters

Digital filters are a particularly important class of DSP (Digital Signal Processing) systems. A digital filter
is a discrete time system that transforms a sequence of input numbers into another sequence of output,
by means of a computational algorithm [20]. Digital filters are used in a wide variety of signal processing
applications, such as spectrum analysis, digital image and speech processing, and pattern recognition. Due to
their well-known advantages, digital filters are often replacing classical analog filters. The three distinct and
most outstanding advantages of the digital filters are their flexibility, reliability, and modularity. Excellent
methods have been developed to design these filters with desired characteristics. The design of a filter is
the process of determination of a transfer function from a set of specifications given either in the frequency
domain, or in the time domain, or for some applications, in both. When a digital filter is realized with
floating-point or fixed-point arithmetics, errors and constraints due to finite word length are unavoidable.
In this section, as the first case study for our verification methodology, we show how these errors can be
mechanically analyzed using the HOL theorem prover. We first model the ideal real filter specification and
the corresponding floating-point and fixed-point implementations as predicates in higher-order logic. We
use valuation functions to find the real values of the floating-point and fixed-point filter outputs and define
the error as the difference between these values and the corresponding output of the ideal real specification.
Fundamental analysis lemmas have been established to derive expressions for the accumulation of roundoff
error in parametric Lth-order digital filters, for each of the three basic forms of realization: direct, parallel,
and cascade. The HOL formalization and proofs are found to be in a good agreement with existing theoretical
paper-and-pencil counterparts.

3.1 Error Analysis Models

In this section we introduce the fundamental error analysis theorems [28, 11], and the corresponding lemmas
in HOL for the floating-point [15, 16] and fixed-point arithmetics [4]. These theorems are then used in the
next sections as a model for the analysis of the roundoff error in digital filters.

In analyzing the effect of floating-point roundoff, the effect of rounding will be represented multiplicatively.
Letting * denote any of the arithmetic operations +, -, x , /, it is known [11, 28] that, if p represents the

precision of the floating-point format, then
fl(x xy) = (¢ x y)(1 + §), where [0] < 27P. (1)

The notation fI (.) is used to denote that the operation is performed using floating-point arithmetic.
The theorem relates the floating-point arithmetic operations such as addition, subtraction, multiplication,
and division to their abstract mathematical counterparts according to the corresponding errors.

While the rounding error for floating-point arithmetic enters into the system multiplicatively, it is an
additive component for fixed-point arithmetic. In this case the fundamental error analysis theorem for
fixed-point arithmetic operations against their abstract mathematical counterparts can be stated as

frp (z * y) = (z * y) + €, where |¢|] < 2 fracbits (X), (2)

The notation fxp (.) is used to denote that the operation is performed using fixed-point arithmetic. We
have proved equations (1) and (2) as theorems in higher-order logic within HOL. The theorems are proved
under the assumption that there is no overflow or underflow in the operation result. This means that the
input values are scaled so that the real value of the result is located in the ranges defined by the maximum
and minimum representable values of the given floating-point and fixed-point formats.

3.2 Error Analysis of Digital Filters in HOL

In this section, the principal results for the roundoff accumulation in digital filters using the mechanized
theorem proving are derived and summarized. We shall employ the models for the floating-point and fixed-
point roundoff errors in HOL presented in the previous section.

The class of digital filters considered in this paper is that of linear constant coefficient filters specified by
the difference equation:

M L
W, = Zbi Ty — Zai Wn g (3)
i—0 i1

where {z,} is the input sequence and {wy} is the output sequence. L is the order of the filter, and M can be
any positive number less than L. There are three basic forms of realizing a digital filter, namely the direct,
parallel, and cascade forms. If the output sequence is calculated by using the equation (3), the digital filter is
said to be realized in the direct form. In parallel form, the entire filter is visualized as the parallel connection
of the simpler filters of a lower order. In cascade form, the filter is visualized as a cascade of lower filters.

There are three common sources of errors associated with the filter of the equation (3), namely [23]:
input quantization, coefficient inaccuracy, and round-off accumulation. Therefore, for the digital filter of the
equation (3) the actual computed output reference is in general different from {w, }. We denote the actual
floating-point and fixed-point outputs by {y,} and {v,}, respectively. Then, we define the corresponding
errors at the nth output sample as ey, e/, and e!’, where e, and e/, are defined as the errors between the
actual floating-point and fixed-point implementations and the ideal real specification, respectively. e!! is the
error in the transition from the floating-point to fixed-point levels.

The corresponding flowgraph showing the effect of roundoff error using the fundamental error analysis
theorems according to the equations (1) and (2), is given by Figure 5, which also indicates the order of
the calculation. The quantities d, €5, k, (o i, Mok, and &, in Figure 5 are errors caused by the floating-point
roundoff at each arithmetic step. The corresponding error quantities for the fixed-point roundoff (shown in
parentheses) are d;, ., €, 1, (), 1> My, x> and &

For the error analysis, we need to calculate the y,, and v, sequences, and compare them with the ideal
output sequence w, specified by the equation (3) to obtain the corresponding errors e,,, e/, , and e!'. Therefore,
we derived the difference equations for the errors between the different levels showing the accumulation of
the roundoff error in HOL. Similar analysis is performed for the parallel and cascade forms of realization
based on the corresponding error flowgraphs. The details can be found in [3].

4 Verification of FFT algorithm

The fast Fourier transform (FFT) [5, 9] is an algorithm to compute the discrete Fourier transform with a
substantial time saving over conventional methods. FFT algorithms are based on the fundamental principle

ot a1Yn 1
1+e€ (@10n—1)

1+, n.1 1Un—1

G N o)

DoTp_1 146, 1+ €np _—
(J7.1)) } (€h2) (azvn 2)

(Co)Y 1+ Con Lo Y (1,2) 2Un 2

boZn—_2 (;I+)§u.z 1 ?f"‘; s

2 s ’
" (Cha)Y14+Cuo 1+m03 Y (0h3) " (agvy, 3)
> L«
1 :

barTn—nmr aLyn-1

(arvn—r)

1+ m,L

1+¢&n

Yn

(vn)

Figure 5: Error flowgraph for Lth-order filter (Direct form)

of decomposing the computation of the discrete Fourier transform of a sequence of length N into successively
smaller discrete Fourier transforms. The manner in which this principle is implemented leads to a variety of
different, algorithms, all with comparable improvements in computational speed. Two basic classes of FFT
algorithms are the decimation-in-time (DIT) [10] and decimation-in-frequency (DIF) [12]. As the second case
study in this project, we considered the formal verification of FFT algorithms. We used our methodology
to derive expressions for the accumulation of roundoff error in floating- and fixed-point FFT algorithms
by recursive definitions and initial conditions, considering the effects of input quantization and inaccuracy
in the coefficients. Based on the extensively studied theoretical work on computing the errors due to finite
precision effects in the realization of FFT algorithms with floating- and fixed-point arithmetics, we performed
a similar analysis using the HOL theorem proving environment. The formal results are found to be in good
agreement with the theoretical ones.

4.1 Error Analysis of FFT Algorithms in HOL

In this section, the principal results for roundoff accumulation in FFT algorithms using HOL theorem
proving are derived and summarized. For the most part, the following discussion is phrased in terms of the
decimation-in-frequency form of radix-2 algorithm. The results, however, are applicable with only minor
modification to the decimation-in-time form. Furthermore, most of the ideas employed in the error analysis
of the radix-2 algorithms can be utilized in the analysis of other algorithms.

Let {Ak(p)}évgol denote the N complex numbers calculated at the kth step. Then the decimation in
frequency (DIF) FFT algorithm can be expressed as [21]

A(p) + Ar(p+2m~17F)
[Ar(p — 2m717F) — Ay (p)] wi(p)

where wy(p) is a power of the principle roots of unity, and N = 2™, where m is an integer value. Equation
(4) is carried out for k = 0,1,2,...,m —1, with A¢(p) = z(p), where {z(n) nN;01 is the set of input sequence.
It can be shown [12] that at the last step {zélm(p)}ﬁf:_o1 are the discrete Fourier coefficients in rearranged
order.

There are three common sources of errors associated with the FFT algorithms, namely: input quanti-
zation, coefficient inaccuracy, and round-off accumulation. Therefore, the actual array computed by using
equation (4) is in general different from {Ax(p) i)vz})l. We denote the actual floating- and fixed-point com-
puted arrays by {A}(p) ﬁ)v:_ol and {A}(p) ;)V:_Ol, respectively. Then, we define the corresponding errors of the
pth element at step k as eg(p), e}, (p), and e} (p), where e;(p) and e} (p) are defined as the error between the
actual floating- and fixed-point implementations and the ideal real specification, respectively. e} (p) is the
error in transition from floating- to fixed-point levels.

In equation (4) the {Ax(p)} are complex numbers, so their real and imaginary parts are calculated sepa-
rately. We define the real and imaginary of Ag(p) and wy(p) as Bi(p), Cx(p) and U (p), Vi (p), respectively.
Similarly, we express the real and imaginary parts of A} (p), B'(p) and C}(p), and A} (p), By (p) and C}/(p),

if kaO
if pkzl

Apy1(p) = { (4)

By(p) Bila) Ci(p) Ci(a)

Bi(p) Bi(a) Ci(p) Cil(a)
pr=0
Yep ¥ L+ %y Wyt L%,
Bi.1(p) Craa(p)
Bi.(p) Cia(p)

MepY L+, Ay LAY,
pr=1
By, (p) C{-,H(p)
Bl () Cilnlp)

Figure 6: Error flowgraph for decimation-in-frequency FFT

using the floating- and fixed-point operations, respectively. The corresponding error flowgraph showing the
effect of roundoff error using the fundamental floating- and fixed-point error analysis theorems according to
the equations (1) and (2), respectively, is given in Figure 6, which also indicates the order of the calculation.

The quantities v, v, §', 6", €, €', ', ¢",n', 0", N, and A" in Figure 6 are errors caused by floating-point
roundoff at each arithmetic step. The corresponding error quantities for fixed-point roundoff are v, 4", 4,
6111, 6, 6”’, C’ CIII, n’ ,',’III’ A, and AIII‘

Therefore, we derived in HOL, expressions for the accumulation of roundoff error for FFT algorithm by
recursive equations and initial conditions. The details can be found in [2].

4.2 FFT Design Implementation Verification

In this section, we describe the application of the proposed approach for the verification in HOL of the
transition from real, floating- and fixed-point specifications to RTL implementation of an FFT algorithm.
We have chosen the case study of a radix-4 pipelined 64-point complex FFT core available as VHDL RTL
model in the Xilinx Coregen library [29]. All proofs have been conducted in HOL, hence establishing
a correctness of the FFT design implementation with respect to its high level algorithmic specifications.
Figure 7 shows the overall block diagram of the Radix-4 64-point pipelined FFT design.

i STAGE 1 i STAGE 2 i STAGE 3

Input —{ Radix_4 Radix_4 Radix_4
INPUT o—— Buffer [.| pragonfly Dragonfly Dragonfly

Memory o

Cuefflment Coefflment Coefflmem l
NTROL NTROL NTROL NTROL
co o Memory co o Memory co o Mernory co o CONTROL

Figure 7: Radix-4 64-point pipelined FFT implementation

Output
Buffer | ——= OUTPUT
Bitreverse

The basic elements are memories, delays, multiplexers, and dragonflies. In general, the 64-point pipelined
FFT requires the calculation of three radix-4 dragonfly ranks. Each radix-4 dragonfly is a successive combi-
nation of a radix-4 butterfly with four twiddle factor multipliers. The FFT core accepts naturally ordered
data on the input buses in a continuous stream, performs a complex FFT, and streams out the DFT samples
on the output buses in a natural order. These buses are respectively the real and imaginary components of

the input and output sequences. An internal input data memory controller orders the data into blocks to
be presented to the FFT processor. The twiddle factors are stored in coefficient memories. The real and
imaginary components of complex input and output samples and the phase factors are represented as 16-bit
2’s complement numbers. The unscrambling operation is performed using the output bit-reversing buffer.

In HOL, we first modeled the RTL description of a radix-4 butterfly as a predicate in higher-order logic.
The block takes a vector of four complex input data and performs the operations, to generate a vector of
four complex output signals. The real and imaginary parts of the input and output signals are represented
as 16-bit Boolean words. We defined separate functions in HOL for arithmetic operations such as addition,
subtraction, and multiplication on complex two’s complement 16-bit Boolean words. Then, we built the
complete butterfly structure using a proper combination of these primitive operations.

Thereafter, we described a radix-4 dragonfly block as a conjunction of a radix-4 butterfly and four 16-bit
twiddle factor complex multipliers. Finally, we modeled the complete RTL description of the radix-4 64-point
structure in HOL. The FFT block is defined as a conjunction of 48 instantiations of radix-4 dragonfly blocks.
Proper time instances of the input and output signals are applied to each block.

Following similar steps, we described the radix-4 64-point FFT structures as fixed-point, floating-point,
and real domains in HOL using the corresponding complex data types and arithmetic operations.

The formal verification of the radix-4 decimation in frequency FFT algorithm case study was performed
based on the commutating diagram in Figure 2, in that we proved hierarchically that the FFT Netlist im-
plies the FFT RTL; and then proved that the FFT RTL description implies the corresponding fixed-point
model. The proof of the FFT block is then broken down into the corresponding proof of the dragonfly block,
which itself is broken down into the proofs of butterfly and primitive arithmetic operations. We used the
data abstraction functions to convert a complex vector of 16-bit two’s complement Boolean words into the
corresponding fixed-point vector.

Then, we proved three theorems encompassing the error analysis of the radix-4 decimation in frequency
FFT algorithm. The first lemma represents the error between the real number specification and the floating-
point specification. The second lemma represents the error between the real number and the fixed-point
specifications. The third lemma represents the error between floating-point and fixed-point specifications.
According to these lemmas, the floating-point and fixed-point implementations and the real specification of
a radix-4 decimation in frequency FFT algorithm are related to each other based on the corresponding data
abstraction, and error analysis functions.

Finally, using the obtained theorems, we easily deduced our ultimate theorem proving the correctness
of the real specification from the RTL implementation, taking into account the error analysis computed
beforehand. A complete list of the derived HOL definitions and theorems can be found in [1].

5 Conclusions

In this paper, we described a methodology for the formal specification and verification of DSP systems
designs at different abstraction levels. We proposed a shallow embedding of DSP descriptions at different
levels in HOL. For the verification of the transition from floating- to fixed-point levels, we proposed an
error analysis approach in which we consider the effects of finite precision in the implementation of DSP
systems. These include errors due to the quantization of input samples and system coefficients, and also
roundoff accumulation in arithmetic operations. The verification from fixed-point to RTL and netlist levels is
performed using traditional hierarchical verification in HOL. In this paper we demonstrated our methodology
using the case studies of digital filters and the fast Fourier transform algorithms. The approach covers three
basic forms (direct, parallel, and cascade) of realization of the digital filters, and the two canonical forms
(decimation-in-time, and decimation-in-frequency) of realization of the FFT algorithm using real, floating-,
and fixed-point arithmetic as well as their RT implementations, each entirely specified in HOL. We proved
lemmas to derive expressions for the accumulation of roundoff error in floating- and fixed-point designs
compared to the ideal real specification. Then we proved that the FFT RTL implementation implies the
corresponding specification at the fixed-point level using classical hierarchical verification in HOL, hence
bridging the gap between hardware implementation and high levels of mathematical specification. In this
work we also have contributed to the upgrade and application of established real, complex real, floating- and
fixed-point theories in HOL to the analysis of errors due to finite precision effects, and applied them on the
realization of the FFT algorithms. Error analyses using theoretical paper-and-pencil proofs did exist since
the late sixties while design verification is exclusively done by simulation techniques. We believe this is the

first time a complete formal framework has been proposed for the specification and verification of the DSP
algorithms at different levels of abstraction. The methodology presented in this paper opens new avenues
in using formal methods for the verification of digital signal processing (DSP) systems as complement to
traditional theoretical (analytical) and simulation techniques. We are currently investigating the verification
of complex wired and wireless communication systems, whose building blocks, heavily make use of several
instances of the FFT algorithms. As a future work, we also plan to extend the error analyses to cover
worst-case, average, and variance errors. Finally, we plan to link HOL with computer algebra systems to
create a sound, reliable, and powerful system for the verification of DSP systems.

References

[1] B. Akbarpour, “Modeling and Verification of DSP Designs in HOL,” Ph.D. Thesis, Concordia University,
Department of Electrical and Computer Engineering, Montreal, Canada, March 2005.

[2] B. Akbarpour and S. Tahar, “A Methodology for the Formal Verification of FFT Algorithms in HOL,”
In Formal Methods in Computer-Aided Design, LNCS 3312, pp. 37-51, Springer-Verlag, 2004.

[3] B. Akbarpour and S. Tahar, “Error Analysis of Digital Filters using Theorem Proving,” In Theorem
Proving in Higher Order Logics, LNCS 3223, pp. 1-16, Springer-Verlag, 2004.

[4] B. Akbarpour, S. Tahar, and A. Dekdouk, “Formalization of Fixed-Point Arithmetic in HOL,” Formal
Methods in Systems Design, 27: 173-200, 2005.

[5] E. O. Brigham, “The Fast Fourier Transform,” Prentice Hall, 1974.

[6] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van-Tassel, “Experience with Em-
bedding Hardware Description Languages in HOL,” In Theorem Provers in Circuit Design, pp. 129-156,
North-Holland, 1992.

[7] Cadence Design Systems, Inc., “Signal Processing WorkSystem (SPW) User’s Guide,” USA, July 1999.
[8] Synopsys, Inc., “CoCentric’™ System Studio User’s Guide,” USA, Aug. 2001.

[9] W. T. Cochran et. al., “What is the Fast Fourier Transform,” IEEE Transactions on Audio and Elec-
troacoustics, AU-15: 45-55, Jun. 1967.

[10] J. W. Cooley, J. W. Tukey, “An Algorithm for Machine Calculation of Complex Fourier Series,” Math-
ematics of Computation, 19: 297-301, Apr. 1965.

[11] G. Forsythe and C. B. Moler, “Computer Solution of Linear Algebraic Systems,” Prentice-Hall, 1967.

[12] W. M. Gentleman and G. Sande, “Fast Fourier Transforms - For Fun and Profit,” In AFIPS Fall Joint
Computer Conference, Vol. 29, pp. 563-578, Spartan Books, Washington, DC, 1966.

[13] M. J. C. Gordon and T. F. Melham, “Introduction to HOL: A Theorem Proving Environment for
Higher-Order Logic,” Cambridge University Press, 1993.

[14] J. R. Harrison, “Constructing the Real Numbers in HOL,” Formal Methods in System Design, 5 (1/2):
35-59, 1994.

[15] J. R. Harrison, “A Machine-Checked Theory of Floating-Point Arithmetic,” In Theorem Proving in
Higher Order Logics, LNCS 1690, pp. 113-130, Springer-Verlag, 1999.

[16] J. R. Harrison, “Floating-Point Verification in HOL Light: The Exponential Function,” Formal Methods
in System Design, 16 (3): 271-305, 2000.

[17] J. R. Harrison, “Complex Quantifier Elimination in HOL,” In Supplemental Proceedings of the Interna-
tional Conference on Theorem Proving in Higher Order Logics, pp. 159-174, Edinburgh, Scotland, UK,
Sep. 2001.

10

[18] IEEE, Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, The Institute
of Electrical and Electronic Engineers, Inc., 345 East 47th Street, New York, NY 10017, USA, 1985.

[19] The Institute of Electrical and Electronic Engineers, Inc., “IEEE, Standard for Radix-Independent
Floating-Point Arithmetic,” ANSI/TEEE Std 854, USA, 1987.

[20] J. F. Kaiser, “Digital Filters,” In System Analysis by Digital Computer, F. F. Kuo and J. F. Kaiser,
Eds., pp. 218-285, Wiley, 1966.

[21] T. Kaneko and B. Liu, “Accumulation of Round-Off Error in Fast Fourier Transforms,” Journal of
Association for Computing Machinery, 17 (4): 637-654, Oct. 1970.

[22] H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE: A Fixed-Point Design and Simulation
Environment,” In Proceedings Design Automation and Test in Europe Conference, pp. 429-435, Paris,
France, February 1998.

[23] B. Liu, and T. Kaneko, “Error Analysis of Digital Filters Realized with Floating-Point Arithmetic,”
Proceedings of the IEEE, 57: 1735-1747, October 19609.

[24] Mathworks, Inc., “Simulink Reference Manual,” USA, 1996.

[25] T. Melham, “Higher Order Logic and Hardware Verification,” Cambridge Tracts in Theoretical Com-
puter Science 31, Cambridge University Press, 1993.

[26] A. V. Oppenheim and C. J. Weinstein, “Effects of Finite Register Length in Digital Filtering and the
Fast Fourier Transform,” Proceedings of the IEEE, 60 (8): 957-976, August 1972.

[27] Open SystemC Initiative, “SystemC Language Reference Manual,” USA, 2004.
[28] J. H. Wilkinson, “Rounding Errors in Algebraic Processes,” Prentice-Hall, 1963.

[29] Xilinx, Inc., “High-Performance 64-Point Complex FFT/IFFT V2.0, Product Specification,” USA, Aug.
2000, http://xilinx.com/ipcenter.

11

