
STE Based Verification of the Look-Aside Interface

Donglin Li
Department of Electrical and

Computer Engineering,
Concordia University

1455 de Maisonneuve, West
Montreal, Québec, H3G 1M8,

Canada
e-mail: li don@ece.concordia.ca

Asif Iqbal Ahmed
Department of Electrical and

Computer Engineering,
Concordia University

1455 de Maisonneuve, West
Montreal, Québec, H3G 1M8,

Canada
e-mail: a ahmed@ece.concordia.ca

Otmane Ait Mohamed
Department of Electrical and

Computer Engineering,
Concordia University

1455 de Maisonneuve, West
Montreal, Québec, H3G 1M8,

Canada
e-mail: ait@ece.concordia.ca

Abstract
In this paper we investigate the model checking of the Look-Aside In-
terface (LA-1 Standard) using STE, a model checking technique based
on a form of quaternary symbolic simulation. The Look Aside inter-
face is intended for devices located adjacent to a network processing
device (NPE) that off load certain tasks from the network processor.
For our verification purpose, we first extracted some safety proper-
ties of the LA-1 Interface based on its design specification. Then,
we developed a synthesizable RTL model of the LA-1 Interface us-
ing Verilog, which was then translated to Exlif format in order to
be accepted by the STE tool. Afterwards, we described those safety
properties as STE assertions and performed the verification. Finally,
to evaluate our approach, we verified the same properties using the
RuleBase model checker from IBM.

Keywords— Model checking, STE, Look-Aside Interface,
Forte, RuleBase.

1 Introduction

As the modern designs past one-million and move to-
wards 10-million gates, the design-verification engineer re-
quire state-of-the art tools and methodology to verify these
devices. Most of the case studies have shown that func-
tional verification consumes more than 60 percent of the
design-cycle time. In order to confront this issue, a num-
ber of innovative ideas have emerged. For instance, the
use of model checking in order to verify designers assump-
tions i.e. safety properties and check for functional errors
in RTL code is one such idea. Nowadays, the practice of
model checking is gaining interest in the industry. In this
paper, we address the application of a novel model checking
technique, named Symbolic Trajectory Evaluation (STE) in
order to verify the Look-Aside Interface (LA-1) [7].

The work on the LA-1 specification, the Look Aside Inter-
face (Fig.1), started at the beginning of 2001 and became an
approved Network Processing Forum (NPF) specification in
April 2004 [2]. Basically, the LA-1 interface standardizes
the movement of data between network processing elements
and co-processors. Due to increasing demand of detailed
lookups on packets and flows for the new IPv6 systems and
carriers, there is a need of a faster memory mapped in-
terface between network processors and other components,
such as external co-processors and memory devices. Cur-
rently, the Look-Aside Interface [7] is the de-facto standard
interface for linking these components [2]. It is being the
key to several networking-specific applications, including
packet forwarding, packet classification, admission control,

and security. The LA-1 interface was first verified A.Habibi
et al. [5] at a behavioral level. In our knowledge that work
consisted the full RTL design verification of LA-1 Interface.

STE offers an alternative to classical symbolic model
checking technology and it has shown its excellence in ver-
ifying medium to large scale industrial hardware designs,
with a high degree of automation at both the gate level
and the transistor level. It’s widely used at Intel, Compaq,
IBM, and Motorola. In Motorola, it has been used to verify
several memory units, some with millions of transistors [11].
Also in [8] [9] STE has been used to verify CAMs (Content
Addressable Memories) and PowerPC microprocessors.

Figure 1: Look-Aside Interface

Our goal, was two fold: First we wanted to validate our
verification flow and second, we wanted to compare the
efficiency of the STE verification versus traditional model
checking using a commercial model checking tool from IBM
(RuleBase) [6] by verifying the same properties.

The rest of the paper is organized as follows: Section 2
explains Symbolic Trajectory Evaluation. Section 3 illus-
trates the design specification of the Look-Aside Interface
(LA-1 Standard). Section 4 and 5 describe Model Checking
using STE and RuleBase respectively. Section 6 contains
the experimental results. Finally, we conclude in Section 7.

2 Symbolic Trajectory Evaluation

STE is a symbolic simulation combined with quaternary
abstraction, a model checking technique first introduced by
Seger and Bryant [10].

STE is used to verify behaviors of a system over bounded,
finite time intervals. In STE, properties of the circuit are
specified by trajectory assertions expressed in a restricted
temporal logic. This temporal logic is so restricted that it

0-7803-8886-0/05/$20.00 ©2005 IEEE
CCECE/CCGEI, Saskatoon, May 2005

669

2

allows us to express properties over trajectories: bounded-
length sequences of circuit states, saving the efforts of rep-
resenting a systems transition relation and calculating its
reachable state set, two very expensive operations, and thus
makes STE suitable for the verification of large, data inten-
sive systems, such as memory arrays, which is an important
part of our LA-1 design.

STE offers an effective alternative to classical symbolic
model checking [3] which often suffers from the state explo-
sion problem. The strength of STE comes largely from the
property that the complexity of an STE run depends only
on the complexity of the STE assertion itself rather than of
the circuit being checked.

A normalized form of basic STE assertions is

A1&N(A2)&...&Nk−1(Ak) → C1&N(C2)&...&Nk−1(Ck)

where Ai and Ci are simple predicates or conjunctions of
these, and N is the next time operator. For example, A1

can be D = d, a simple predicate which states that node D
of a circuit has the value of the variable d at the present
time. The left side of the STE implication → is called the
antecedent of the assertion, and the right side specifies the
consequent. The antecedent instructs the initialization of
signals for the symbolic simulation in STE and the conse-
quent defines the expected response of the circuit which is
then checked against the simulation result. Each signal may
have one of the four values 0, 1, X and T, where X denotes
an unknown and T denotes an over-constrained value, and
a signal is initialized to X at all times if not specified.

A model-checking algorithm is applied in STE for proving
such assertions valid, in that a system is checked whether
it is a model of an assertion.

3 Look-Aside Interface

The LA-1 standard is the look-aside interface to network-
processing elements (NPEs). It targets look-up-tables and
memory-based coprocessors and emphasizes as much as
possible on the use of the existing technology. It is based on
Quad Data Rate (QDR) technologies. Although modeled
on an SRAM interface, the LA-1 specification aims to ac-
commodate other devices as well, such as CAMs, classifiers
and encryption co-processors.
The LA-1 interface major features include:
• Concurrent read and write operation
• Unidirectional read and write interfaces
• Single address bus
• 18 pin DDR data output path transfers 32 + 4 bits of
even byte parity per read.
• 18 pin DDR data input path transfers 32 + 4 bits of even
byte parity per write
• Byte write control for writes

The LA-1 interface requires a master-clock pair. The
master clocks (K and K#) are ideally 180 degrees out of
phase with each other, and they are outputs for the host
device and inputs for the slave device. A write cycle is

Figure 2: Look-Aside Interface single bank

initiated by asserting WRITE SEL (W#) low at rising edge
of K (K clock). The address of the Write cycle is provided
at the following edge of K (K# clock which 180 degrees out
phase from clock K). A read cycle is initiated by asserting
READ SEL (R#) low at rising edge of K (K clock) and the
read address is presented on the same rising edge.

A synthesizable RTL implemented in Verilog is derived
from the design specification of LA-1 Interface. All verifi-
cations were performed on the original unpruned gate-level
RTL models. Based on the design specification we chalked
out the following properties:

Property 1
The first property is based on the operation of Write

Port (Fig.3). The control pin BW1# and BW0# are used
to enable or block write of a specific byte in a write cycle
initiated with W# low at the rising edge of the master-
clock.

Based on the above fact, Property 1 states that by assert-
ing W# low at the rising edge of CLK K and with control
bus inputs BW0# and BW1# set to active low the full
input data will be written at the rising edge of CLK K
and CLK K1. Note that CLK K and CLK K1 are 180 de-
gree out of phase. This above scenario is known to be the
passthrough mode of the Write Port.

Property 2
This Property verifies the operation of the read port of

the design. According to the specification a read cycle is
initiated by asserting R# low at CLK K rising edge. Data
is delivered after the next rising edge of CLK K.

4 Using STE for Model Checking

In this section, we present how we verified the LA-1 in-
terface using the STE model checking technique mentioned
above. The STE tool we used here is Forte. Forte is In-
tel’s custom-built verification environment, evolved from
Seger’s Voss system. Forte integrates model-checking en-
gines (STE), BDDs, circuit manipulation functions, theo-
rem proving, and a functional programming language called

670

3

Figure 3. Timing diagram of the Write Port of
LA-1 Interface

FL. Forte compiles standard HDL source code into formal
circuit models, and includes tightly integrated graphical
interfaces for the display of circuit structures and wave-
forms [4].

The model to be verified in Forte is written in Exlif for-
mat, where the RTL design is flattened to the gate level
netlist. It is necessary to write a translator from the Ver-
ilog RTL to Exlif format. The high level description of the
translation is given in Fig.4. The Verilog code is translated
to Blif-mv using the VIS tool, then we developed a Perl
script which converts the Blif-mv to Exlif. The converter
is straight forward since the two formats Exlif and Blif-mv
are similar modulo certain syntactic differences. The cor-
rectness of our translation is guaranteed, then by the VIS
tool.

With the design translated to Exlif and its properties
expressed by STE assertions of the form Antecedent →
Consequent, both the design and it’s properties were
loaded into Forte system and then the STE simulation was
invocated which ended up with a value T/F to indicate the
success/fail of the simulation.

Figure 4: Verification in Forte

The STE formulations of the two properties which were
described earlier in section 3 are given below:

Property 1

A1&N(A2)&N2(A3)&N3(A4)&N4(A5)&N5(A6) → N5(C6),

where
A1 = ¬CLK K ∧CLK K1∧¬W#∧¬BW0#∧¬BW1#,

A2 = CLK K ∧ ¬CLK K1 ∧ D[15 : 0] = d1[15 : 0],
A3 = ¬CLK K ∧ CLK K1 ∧ D[15 : 0] = d2[15 : 0],
A4 = CLK K ∧ ¬CLK K1,

A5 = ¬CLK K ∧ CLK K1,

A6 = CLK K ∧ ¬CLK K1,

C6 = Memory Data[31 : 16] = d1[15 : 0]∧
Memory Data[15 : 0] = d2[15 : 0].
Note that the d1[15 : 0] and d2[15 : 0] here are vectors of
boolean variable which will cover all the 216 cases of the
input nodes.

Property 2

A1&N(A2)&N2(A3)&N3(A4)&N4(A5)&N5(A6)&N6(A7)
&N7(A8)&N8(A9)&N9(A10)&N10(A11)&N11(A12)
→ N10(C11)&N11(C12), where
A1 = ¬CLK K ∧ CLK K1 ∧ ¬W# ∧ R# ∧
A[5 : 0] = a0[5 : 0] ∧ ¬BW0# ∧ ¬BW1#,
A2 = CLK K ∧ ¬CLK K1 ∧ D[15 : 0] = d1[15 : 0],
A3 = ¬CLK K ∧ CLK K1 ∧ D[15 : 0] = d2[15 : 0],
A4 = A6 = A8 = A10 = A12 = CLK K ∧ ¬CLK K1,
A5 = A7 = A9 = A11 = ¬CLK K ∧ CLK K1,
C11 = DATA OUT [15 : 0] = d1[15 : 0],
C12 = DATA OUT [15 : 0] = d2[15 : 0].

5 Using RuleBase for Model Checking

RuleBase is a model checking tool [6] that supports
PSL [1] as its property specification language. Rulebase
engine takes a RTL model of the design usually writ-
ten in Hardware Description Language (Verilog in our
case)composed with an EDL (Environment Description
Language) which is the target environment in which the
design is expected to run.

PSL is an implementation independent language to de-
fine properties. It does not replace, but complements exist-
ing verification methodologies like VHDL and Verilog test
benches. The syntax of PSL is very declarative and struc-
tural which leads to sustainable verification environments.
PSL consists of four layers based on the functionality of
interest [1]:
The modeling layer is used to model behavior of design
inputs for formal verification tools, and to model auxiliary
parts of the design that are needed for verification.
The verification layer is used to tell the verification tool
what to do with the properties described by the temporal
layer.
The temporal layer is used to describe properties of the
design, as well as simple general properties. This layer
can describe properties that involve complex temporal re-
lations. Temporal expressions are evaluated over a series of
evaluation cycles.
The Boolean layer is used to build expressions for the

671

4

TABLE I

Model Checking Using STE.

Address Width Memory Number of

SRAM Memory (in MB) BDD nodes

4 15 6294

6 23 17448

8 55 62682

TABLE II

Model Checking Using Rulebase.

Address Width Memory Number of

SRAM Memory (in MB) BDD nodes

4 18 8785

6 29 22584

8 65 27695

other layers, specifically the temporal layer. Boolean ex-
pressions are evaluated in a single evaluation cycle.

PSL is a hierarchical language, where every layer is built
on top of the layer below. This approach allows the ex-
pressing of complex properties from simple primitives. A
property (also called assertion) is built from three types
of building blocks: Boolean expressions, sequences, which
are themselves built from Boolean expressions, and finally
subordinate properties. Sequences, referred to as SEREs
(Sequential Extended Regular Expressions), are used to de-
scribe a single– or multi–cycle behavior built from Boolean
expressions.

6 Experimental Results

In following, we describe our results on the verification of
the LA-1 Interface using the STE based verification tech-
nique. The STE and PSL properties were verified on 2 X
UltraSPARC-III+ machine with 2 900Mhz processors and
4096M of RAM.

Table I shows the statistics in order to verify all the prop-
erties for 4 bits, 6 bits, and 8 bits address width using
FORTE. Table II gives a summary of the model checking
results using RuleBase for the same properties.

We notice that even though RULEBASE succeeds to ver-
ify the property the required memory is relatively big. The
result proves that STE offers an alternative to classical sym-
bolic model checking that, within its domain of applicabil-
ity, often is much easier to use and much less sensitive to
state explosion.

Another notable issue which needs to be mentioned is
that all the properties which were verified using RuleBase
needed important effort in order to define the environment

and writing the behavioral model including all the design
levels of hierarchy. On the contrary, in Forte, all the ini-
tial settings and stimulus patterns for the circuit nodes are
defined in the STE antecedent part.

7 Conclusion

In this paper, we addressed a formal verification approach
using STE. By proving the writing and reading modes prop-
erties using model checking, we also proved the functional
sanity of our RTL implementation (for one bank). Besides,
experimental results hinted that using partial model check-
ing i.e. STE based technique is more memory efficient when
performed at the RTL design phases.

As future work, we consider proving the correctness of
the complete RTL implementation of Four Banks of LA-1
Interface. This will allow re-using the verification results
that can be proved at any level for the other lower levels;
thus, reduce the complexity of verifying RTL.

References

[1] Accellerab Organization. Accellera Property Specifica-
tion Language reference manual, Version 1.01., 2004.

[2] H. Bhugra. La-1b: Moving the look-aside interface
forward. CommsDesign, August 2002.

[3] E.M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

[4] Intel Corporation. www.intel.com/research/scl/fortefl.htm,
2003.

[5] A. Habibi, A. I. Ahmed, O. Ait Mohamed, and S.
Tahar. On the Design and Verification of the Look-
Aside Interface. In Proc. IEEE/ACM Design Automa-
tion and Test in Europe (DATE’05), pages 649–654,
Munich, Germany, March 2005.

[6] IBM Haifa Research Laboratories. RuleBase Formal
Verification Tool (Version 1.5). Users Guide. May
2003.

[7] Network Processing Forum. Look-Aside (LA-1) Inter-
face, Implementation Agreement, Revision 1.1. Kluwer
Academic Publishers, April 15, 2004.

[8] M. Pandey, R. Raimi, R. E. Bryant, and M. S. Abadir.
Formal verification of content addressable memories
using symbolic trajectory evaluation. In Annual ACM
IEEE Design Automation Conference, pages 649–654,
Las Vegas, Nevada, United States, 1996.

[9] M. Pandey, R. Raimi, R. E. Bryant, and M. S. Abadir.
Formal verification of content addressable memories
using symbolic trajectory evaluation. In Annual ACM
IEEE Design Automation Conference, pages 167–172,
Anaheim, California, United States, 1997.

[10] C.-J. Seger and R. Bryant. Formal verification by sym-
bolic evaluation of partially-ordered trajectories. For-
mal Methods in System Design, 6(2):147–190, March
1995.

[11] J. Yang and A. Goel. Gste through a case study. In
International Conference on Computer-Aided Design,
pages 534–541, San Jose, California, 2002.

672

