
Embedding and Verification of PSL using AsmL

Amjad Gawanmeh, Ali Habibi, and Sofiène Tahar

Concordia University, Montreal, Quebec, H3G 1M8 Canada
Email:{amjad,habibi,tahar}@ece.concordia.ca

Abstract. In this paper, we propose a methodology to integrate the
Property Specification Language (PSL) in the verification process of sys-
tems designed using Abstract States Machines (ASMs). We provide a
complete embedding of PSL in the ASM language AsmL, which allows
us to integrate PSL properties as part of the design. For the verification,
we propose a technique based on the AsmL tool that translates the code
containing both the design and the properties into a finite state machine
(FSM) representation. We use the generated FSM to run model check-
ing on an external tool, here SMV. Our approach takes advantage of the
AsmL language capabilities to model designs at the system level as well
as from the power of the AsmL tool in generating both a C# code and an
FSM representation from an AsmL model. We applied our approach on
SystemC designs, which are translated into AsmL models. Experimental
results on a bus structure case study provided in the SystemC library
showed a superiority of our approach to conventional verification.

1 Introduction and Motivation

Abstract State Machines (ASM) [2, 10] is a formal specification method for soft-
ware and hardware systems that has become successful for specifying and veri-
fying complex systems. The ASM formalism is used as a modeling language in
a variety of domains both in academic and industry contexts [12]. The ASM
methodology is mathematically precise, yet general enough to be applicable to a
wide variety of problem areas. The ASM thesis asserts that any computing sys-
tem can be described at its natural level of abstraction by an appropriate ASM.
ASMs provide features to capture the behavioral semantics of programming and
modeling languages, as a wide range of these languages were defined with this
notion [12]. There are many languages that have been developed for ASMs, the
recent one is AsmL [16], which was developed at Microsoft. We chose this lan-
guage, as a common level of abstraction, to define an abstract simulator, and
then model designs and properties. AsmL [6, 16] is integrated with Microsoft’s
software development environment including Visual Studio, MS Word, and Com-
ponent Object Model (COM), where it can be compiled and connected to the
.NET framework. AsmL effectively supports specification and rapid prototyping
of different kinds of models. The AsmL tester can also be used to generate finite
state machines (FSM) or test cases.

The Accellera Property Specification Language (PSL) [18] was developed
to address the lack of information about properties and design characteristics

of register transfer level (RTL) models. It provides means of specifying design
properties using a concise syntax with clearly defined formal semantics. PSL
permits the specification of a large class of design properties at four layers:
Boolean, temporal, verification and modeling layers. It is intended to be used for
functional specification to capture requirements regarding the overall behavior
of a design in one hand, and as an input to verification tools using simulation or
formal verification on the other hand.

In this work we propose an embedding of PSL in AsmL with an approach to
verify properties on design implementations. We embed PSL properties in AsmL,
to be able to reason about the behavior of the design, and its correctness against
its specification. We use the AsmL tool in order to generate an FSM of the
design model (including the properties). This approach enabled the verification
of PSL properties on designs using classical model checking tools, for example
SMV [15]. For this, we translate the generated FSM into the input language of
the SMV tool.

Figure 1 shows a sketch of our methodology for the embedding and verifica-
tion of PSL in AsmL, where the contributions of this paper are indicated by a
dashed box. We applied our approach to designs modeled in SystemC [22], which
are translated into AsmL [4, 11]. We used the bus structure of the SystemC li-
brary to show the feasibility and performance of our approach. The experimental
results proved the practicality of our methodology as a solution to the verification
problem of SystemC designs.

The rest of the paper is organized as follows: Section 2 presents related work
to ours. Section 3 describes our embedding for PSL in AsmL. In Section 4 we
provide an application for our approach to SystemC verification with a case
study to illustrate our methodology. Finally, Section 5 concludes the paper and
points to a few future work directions.

2 Related Work

In [9], Gordon used the semi–formal semantics in the PSL/Sugar documenta-
tion [18] to create a deep embedding of the whole language in the HOL theorem
prover [8]. The author developed the formal definition of the full PSL language in
HOL. The combination of PSL/Sugar and higher–order logic is quite expressive
and provides temporal logic constructs as higher level syntactic sugar for higher
order–logic, thereby enabling properties to be formulated elegantly. Gordon et
al. [7] described how to ‘execute’ the formal semantics of PSL using HOL and
investigated the feasibility of implementing useful tools to conduct automatic
verification of PSL from the formal semantics. They implemented two exper-
imental tools: an interpreter that evaluates whether a finite trace, satisfies a
PSL formula, and a compiler that converts PSL formulas to checkers in an in-
termediate format suitable for translation to HDL to be included in simulation
test–benches. However, they did not provide any framework for the verification
of PSL for any implementation language.

202

PSL Property

ASM /PSL Property
Generator

Design under
Verification

Em bedded PSL
Sem antics
(Asm L)

Asm L Tool
(Asm L Com piler)

Design M odeled
in Asm L

PSL Property
M odeled in Asm L

System’s FSM Test ScenariosM odel and PSL
Property in C#

FSM to M odel Checker
Input Language Translator

M odel Checker

Assertion Parser

Fig. 1. Methodology for verification of PSL in AsmL.

In a similar work, Claessen and Martensson [3] defined an operational se-
mantics for a weak fragment of PSL, mainly the safety property subset of PSL,
and then proved the correctness of these semantics with respect to a denota-
tional semantics. They do not provide definitions for all PSL operators like clock
operators and sequential composition, and yet, there is no execution for these
semantics that provides verification solution.

There has been a potential work on ASM verification as discussed by Börger
and Stärk [2]. Applying model checking algorithms on ASM was introduced in
[24], where transformation algorithms are provided to transform ASM models
into different verification tools. Two approaches were adopted: the first provides
a transformation to the language of a symbolic model checker, SMV [24], and the
second to the MDG verification tool [5]. Spielmann [19] investigated the problem
of verifying a class of restricted abstract state machine programs automatically.
The work we present here, is different since it provides a solution for the verifi-
cation problem of system level design languages based on semantics definitions
and executions of PSL and SystemC.

203

Stärk et al. [20] used an ASM-based modularization technique to define a
structured sequence of mathematical models for the statics and dynamics of the
Java programming language and for the Java Virtual Machine (JVM), covering
the compilation of Java programs to JVM code and the JVM bytecode verifier.
They present proofs of correctness, completeness, and type safety for the lan-
guage and the Java machine. Börger et al. [1] used the method developed in
[20] to define the semantics of C# programs in ASM, which provided a sim-
ple way to reflect those run-time-related features encountered upon executing a
given C# program and allowed specifying the static and dynamic parts of the
semantics separately. The dynamic semantics of the language is captured oper-
ationally by ASM rules which describe the run-time effect of program execution
on the abstract state of the program, the static semantics comes as a declara-
tive description of the relevant syntactical and compile-time checked language
features. In a complementary work, Stärk and Börger [21] extended the modular
definition of the semantics of C# in [1] by a new module for multi-threaded C#
focusing on purely managed, fully portable threading features of C# and the
.NET common language runtime. Jula and Fruja [14] provided an executable
AsmL semantics for these C# semantics. In a later work, Jula [13] extended the
work in [1] to handle C# 2.0 specific features like generics, anonymous methods
and iterator blocks.

ASM has been used thoroughly to define the operational semantics of pro-
gramming languages like C++, Prolog, SDL, and Standard ML [12]. However,
these semantics definitions provide no execution of the language semantics itself
in order to give a solution to design problems like verification.

3 Embedding PSL in AsmL

PSL is an implementation independent language to define properties (also called
assertions). It does not replace, but complements existing verification method-
ologies like VHDL and Verilog test benches. PSL presents a different view of the
design and may imply FSMs in the implementation. The syntax of PSL is very
declarative and structural which leads to sustainable verification environments.
Both VHDL and Verilog flavors are provided. PSL consists of four layers based
on the functionality:
The Boolean layer to build expressions which are used in other layers, specifi-
cally the temporal layer. Boolean expressions are evaluated in a single evaluation
cycle.
The temporal layer is used to describe properties of the design, in addition
to simple properties, this layer can describe properties that involve complex
temporal relations. Temporal expressions are evaluated over a series of evaluation
cycles.
The verification layer is used to tell the verification tool what to do with the
properties described by the temporal layer.

204

The modeling layer is used to model behavior of design inputs for formal
verification tools, and to model auxiliary parts of the design that are needed for
verification.

This layered approach allows the expressing of complex properties from sim-
ple primitives. A property is built from three types of building blocks: Boolean
expressions, sequences, which are themselves built from Boolean expressions,
and finally subordinate properties. Sequences, referred to as SEREs (Sequential
Extended Regular Expressions), are used to describe a single– or multi–cycle
behavior built from Boolean expressions.

There are two ways to embed PSL properties into the design, either into the
design code itself or by adding them as external monitors. We adopted the first
approach, where all the parameters of PSL properties are defined as objects. The
objective of the embedding is to reuse PSL properties, as embedded in AsmL,
at lower design levels since the AsmL tool can automatically compile them into
a C# or .NET code. This latter code can be compiled and executed with the
concrete SystemC level.

3.1 Boolean Layer

This layer is the basic layer of PSL. Even though it is called Boolean layer, it
includes types other than Boolean such as integers and bit vectors. We embedded
this layer in AsmL by defining classes for all types and expressions including their
methods. Our embedding is based on the semi–formal semantics presented in the
reference manual [18], and the formal semantics definition in HOL [9].

The embedding of the PSL Boolean layer mainly includes:

1. Expression type class includes the basic 5 types: Boolean, PSLBit, PSLBitVec-
tor, Numeric and String. Both Boolean and String types are directly inher-
ited from the AsmL’s AsmL.Boolean and AsmL.String, respectively. The
PSLBit type is constructed using the enumerated structure One, Zero, X,
and Z. The PSLBitVect type extends the PSLBit type and offers additional
operations such as access to the bit vector contents. Finally, the PSLNu-
meric type extends the AsmL Integer type (AsmL.Integer) by adding some
conversion methods from PSLBitVector to integers and vice–versa.

2. PSL Expressions construct properties using the implication and equivalence
operators. Both operators are built using AsmL’s implies operator.

3. PSL Built Functions include all the functions defined by PSL to operate at
the Boolean layer. We distinguish here two methods: a method that provides
the previous values of a variable (e.g., prev()) and a method that provides
the future values of a variable (e.g., next()). For both methods, we define a
queue structure that extends the PrimitiveArray class of AsmL, to store the
values of the signals (PSL Bit Vector Queue for the PSLBitVector type). We
note that all the methods over the Boolean layer are overridable according
to the type of the input. This approach simplifies writing the properties in
AsmL syntax as they will look very close to the PSL structure.

205

Figure 2 shows the AsmL code for PSL Bit V ector class with the method
IsInitialized() that checks if a BitVector is initialized.

class PSL_BitVector

var m_size as Integer = 1

var m_sum as Integer = 0

var m_array as PrimitiveArray of PSL_Bit = null

public IsInitialized() as Boolean

non_initailized = (exists x in {1..m_size} where

(m_array(x).m_value = X or m_array(x).m_value = Z))

return not non_initailized

Fig. 2. AsmL Embedding of PSL BitVector.

3.2 Temporal Layer

The most important part of this layer is the Sequential Extended Regular Ex-
pressions (SERE) feature, which embedding mainly includes:

1. Sequential Expressions, where a SERE is defined as an AsmL sequence of
Boolean. It offers several operations to construct, manipulate and evaluate
the SERE expression. PSL Sequence extends the PSL SERE class. It adds
operations needed to create and update the SERE.

2. Properties in the form of operations necessary to create properties from
sequential expressions. It also controls when and how the sequence is to
be verified (i.e., the property “verify the sequence is true after n states” is
defined as PSL Property.EvaluateNext(n)).

Figure 3 shows the example of the PSL SERE.Evaluate(), which checks if
a sequence is true in a certain path. This method is activated according to an
INIT signal that must be set by the property.

3.3 Verification Layer

This layer is intended to tell the verification tool how to perform the verification
process. It allows the construction of assertions from properties and to specify
relations between them. The embedding mainly includes:

1. Verification Directives to specify how the property will be interpreted (as-
sertion, requirement, restriction or assumption). This class extends the tem-
poral layer class PSL Property defined above.

2. Verification Unit is a compact way to include several properties together.
The embedded class includes several operations to add/remove and update
the unit’s list of properties.

206

class PSL_SERE

var m_size as Integer = 0

var m_seq as Seq of Boolean

var m_actualState as Integer = 0

var m_evaluation as SERE_Evaluation = NOT_STARTED

var m_evaluationState as SERE_Evaluation = NOT_STARTED

public Evaluate() as SERE_Evaluation

require m_evaluationState = INIT

if(me.m_seq(m_actualState) = false)

m_evaluation := FAILED

return FAILED

else

if m_actualState = m_size

m_actualState := m_actualState + 1

return IN_PROGRESS

else

m_actualState := 0

return SUCCEEDED

Fig. 3. AsmL Embedding of PSL SERE.

Figure 4 shows the example of the PSL VerificationLayerUnit.CopyFrom()
and PSL VerificationLayerUnit.CopyTo() methods. These latter are usually used
to construct the unit by copying properties from or into other existent units,
respectively.

class PSL_VerificationLayerUnit

var m_name as String = ""

var m_size as Integer = 0

var S as Seq of PSL_FL_Property = null

CopyFrom(vunit as PSL_VerificationLayerUnit)

forall i in {1..m_size}

me.AddProperty(vunit.S(i))

CopyTo(vunit as PSL_VerificationLayerUnit)

forall i in {1..m_size}

vunit.AddProperty(me.S(i))

Fig. 4. Embedding PSL Verification layer in AsmL.

3.4 Modeling layer

This layer is not used in our verification approach since it is intended for VHDL
and Verilog flavors of PSL. So we did not consider it in our current embedding.

207

PSL properties are embedded in AsmL as assertions, the assertion here means
the validity of the property and provides a unique view of the property in every
system’s state. It also simulates the design with the property as a monitor. We
build the assertion starting from basic Boolean components, sequences, and then
verification units. We encapsulate sequences in the verification unit as an asser-
tion that is embedded in the design. Given a set of Boolean items x1, x2, . . . , xn,
and y1, y2, . . . , ym belonging to the Boolean layer, and the sequences, S1 and
S2 belonging to the temporal layer, we can define: S1 = {x1, x2, . . . , xn}, and
S2 = {y1, y2, . . . , ym} and then use assertions to check any PSL operation be-
tween S1 and S2 such as S1 OP S2, where OP is a PSL operator (e.g., implication
(⇒), or equivalence (⇔)). The assertion is built as follows:

1. Add all the Boolean items to the sequences:
∀ i in 1 to n : S1.AddElement(xi)
∀ j in 1 to m : S2.AddElement(yi)

2. Create the property: P := S1 OP S2

3. Define the verification unit as an assertion, say A, that includes the above
property: A.Add(P)
This assertion will be embedded in every state in the FSM generated by the
AsmL tool as a Boolean states variable, and therefore the FSM will include, by
construction, a Boolean state variable giving the state of the property. Model
checking tools, like SMV, can be used to check the correctness of the property on
the generated FSM. The fact that we embed the property in the generated FSM
provides a clear definition of the property, since its state variables are evaluated
in every state by the AsmL tool, and the model checker just needs to perform
reachability analysis on the model without the need to calculate the valuation
of the property in every state. The final generated FSM is concrete and includes
only Boolean variables to represent the state of the PSL properties. This will
significantly reduce the verification time as will be illustrated in the case study
in the next Section.

4 Application with SystemC

In this section, we show an application to SystemC verification based on the pro-
posed PSL embedding in AsmL. SystemC [22] was introduced as a new system
level language to overcome the problem of the growth in complexity and size
of systems combining different types of components, including microprocessors,
DSPs, memories, embedded software, etc. SystemC meets the need for a sys-
tem level language that can fill the gap between hardware description languages
(HDLs) and traditional software programming languages. SystemC comprises
C++ class libraries and a simulation kernel used for creating behavioral and
register transfer level (RTL) designs. It can provide the common development
environment needed to support software engineers working in C/C++ and hard-
ware engineers working in HDLs such as Verilog or VHDL.

In order to apply PSL property checking on a design language, here Sys-
temC, that language should also be embedded in AsmL. In fact, the semantics

208

of SystemC 2.0 using ASM were first defined by Müller et. al. [17]. However,
fundamental features of SystemC 2.0 were not defined, including some SystemC
primitive and hierarchical channels, design rules for SystemC channels, and most
importantly the semantics of the SystemC simulator. An extended semantics of
the SystemC simulator has been defined using ASM rules in [4] including a model
for the SystemC simulator, the primary classes that are necessary to model Sys-
temC designs and execute them, and the semantics of the main functions of
the following components: SystemC signal, SystemC FIFO, SystemC mutual ex-
clusive (MUTEX) channel, message queue, request–grant protocol, FIFO with
handshake protocol [4].

The above embedding allowed us to translate SystemC designs into AsmL
models. Together with the PSL embedding described in this paper, we can gen-
erate a single model combining both the properties and the design model in one
single formalism, namely AsmL. Details about the SystemC to AsmL and AsmL
to SystemC transformations can be found in [11].

In order to illustrate the proposed verification methodology, we consider an
extension of the Simple Bus Prototype Structure provided as part of the Sys-
temC distribution [22]. It includes several SystemC components and shows the
principles of using SystemC at the transactional level. Besides, some of the sam-
ple properties we checked, including liveness and safety, cannot be verified using
simulation. They require the usage of formal techniques such as model checking.

4.1 Bus Description

Figure 5 shows the bus structure with N masters and M slaves. Each master
is identified by a unique priority, that is represented by an unsigned integer
number. The lower this priority number is, the more important the master is.
Each master communicates with the bus via an interface, which describes the
communication between masters and the bus. The slave interface describes the
communication between the bus and the slaves. Multiple slaves can be connected
to the bus. The slave returns an acknowledgment immediately upon receiving
the data. The arbiter is responsible for choosing the appropriate master when
there is more than one connected to the bus. It performs the selection according
to the priority of the master. There are two possible modes for the bus: (1)
Blocking Mode, where data is moved through the bus in a burst–mode. Here,
the transaction cannot be interrupted by a request with a higher priority, (2)
Non-Blocking Mode, where the master reads or writes a single data word. Figure
6 shows the protocol used in both modes of operation.

4.2 Bus Properties

For illustration purposes, we considered two properties for the bus architecture:
one for the non–blocking master mode, and the other for the blocking master
mode.

209

Arbiter

Master1 Master N

Slave 1 Slave M

Bus
Clock

…

…

Fig. 5. Simple bus structure.

Property P1:

If ((MasterBlock.Request = true) & (BusStatus = OK) &
(MasterBlock.Priority is the highest)) then

(MasterBlock [3] = OKSend) &
(BusStatus [3] = Used) &
(MasterBlock.DestSlave[4] = Recev) &
(MasterBlock.DestSlave[5] = Ack) &
(MasterBlock [7] = Done) &
(Bus [8] = Ready)

meaning that when a blocking master generates a request while it has the highest
priority to use the bus and the bus is available, then at the third clock cycle,
the status of the master should be OKSend, and the bus should be in the Used
status. Then the status of the destination slave should be Recev at clock cycle 4,
and Ack at clock cycle 5. The status of the master should be Done at clock cycle
7, and finally the bus becomes ready to handle new requests (i.e., bus status set
to Ready) at clock cycle 8. This property is illustrated as a sequence diagram in
Figure 6(a).

Property P2:

If ((MasterNBlock.Request = true) & (BusStatus = OK)
& (MasterNBlock.Priority is the highest)) then

(MasterNBlock [3] = OKSend) &
(BusStatus [3] = Used) &
(MasterNBlock.DestSlave[4] = Recev) &
(MasterBlock [5] = Done) &
(Bus [5] = Ready)

This property can be interpreted in a similar way as property P1 and is illus-
trated in Figure 6(b).

210

Fig. 6. Simple bus modes: (a) Blocking mode (b) Non-blocking mode.

Both properties were defined in AsmL based on the embedding of PSL layers.
Figure 7 shows the definition of P1 as an example. The property is included in
a PSL unit as an implication of two sequences seq1 and seq2, which are formed
from basic Boolean items (Bi1() and Bi2() for seq1 and Bi3() through Bi7()
for seq2). The construction of the above unit includes four steps:

– Creating the basic Boolean items: Bi1() to Bi7().
– Creating the sequences: seq1 and seq2.
– Constructing the implication property (P1) from seq1 and seq2 using the

implication operator.
– Putting P1 into an embedded PSL unit.

4.3 Experimental Results

For experimental purposes, we generated the FSM for different combinations of
the number of masters and slaves in order to evaluate the generation algorithm
used inside the AsmL tool, and to illustrate the efficiency of our methodology1.
In every state, we include the evaluation of the property P1 that will be used
by the model checker. P1 can take any of these five states: NotStarted (the
required conditions to evaluate the property are not satisfied yet), Started (all
the required conditions to start evaluating the property are satisfied), Evaluating
(the evaluation of the property is in progress and no error is found), FALSE (the
property is found to be false in this state) and TRUE (the property is true at
this state). The property in SMV is defined as:
Property1 :

assert(not(P1 Status = FALSE) and (P1 Status = Started) ⇒
F (P1 Status = TRUE)).

The machine time (user time) needed for generating the state machine de-
pends on the complexity of the original model as well as the size of the generated

1 The SystemC code, AsmL code, AsmL configuration files, and the generated FSMs
for the case study are available at http://hvg.ece.concordia.ca/Research/SoC/ASM.

211

//Blocking Masters Instances

var masterB1 as C_MasterBlocking = new C_MasterBlocking

var masterB2 as C_MasterBlocking = new C_MasterBlocking

MASTERSB = {masterB1, masterB2}

Bi1() as Boolean Bi: Boolean Item

return exists master in MASTERSB where master.m_status = MasterReq

Bi2() as Boolean

return exists master in MASTERSB where

master.m_Priority = max y | y in {MasterReq.m_Priority}

Bi3() as Boolean

return master.m_status = MasterOKSend

Bi4() as Boolean

return exists slave in SLAVES where

slave.ID = master.m_Destination and

slave.m_Status = SlaveReceive

Bi5() as Boolean

return exists slave in SLAVES where

slave.ID = master.m_Destination and

slave.m_Status = SlaveAck

Bi6() as Boolean

return master.m_status = MasterReady

Bi7() as Boolean

return bus.m_status = BusOK

var seq1 as PSL_SERE = PSL_SERE(2)

seq1.AddElement(param1, param2)

var seq2 as PSL_SERE = PSL_SERE(5)

seq2.AddElement(Bi3, Bi3, Bi4, Bi5, Bi6, Bi7)

var property as PSL_FL_Property = PSL_FL_Property()

property.AddImplication(seq1,seq2) var Assertion1 as

PSL_VerificationLayerUnit = new

PSL_VerificationLayerUnit(‘‘Assertion1’’)

Assertion1.AddProperty(property)

Fig. 7. Definition of the PSL Property P1 in AsmL.

state machine. Figure 8 displays the user time and number of transition for dif-
ferent combinations of the number of slaves and masters operating on the bus
for generating the FSM model and PSL property. For example, for four slaves
and eight masters, there were 4630 transitions, and it took around half an hour
to generate the state machine. The experiments were conducted on a Pentium
IV processor (2.4 GHz) with 256 MB of memory.

The above experimental results show that the number of transitions and ma-
chine time grow exponentially with the number of operating masters. Therefore,
the AsmL tool could not handle more complex combinations like seven masters

212

0

500

1000

1500

2000

2500

2 3 4 5 6 7 8

Number of Masters

M
ac

hi
ne

 T
im

e
(s

ec
)

3 Salves 2 Slaves 4 Slaves

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 3 4 5 6 7 8

Number of Masters

N
um

be
r o

f T
ra

ns
iti

on
s

3 Slaves 2 Slaves 4 Slaves

Fig. 8. FSM generation results for the bus model and the PSL properties.

0

5

10

15

20

25

30

2 3 4 5 6 7 8

Number of Masters

M
ac

hi
ne

 T
im

e
(s

ec
)

2 Slaves 3 Slaves 4 Slaves

0

20

40

60

80

100

120

140

2 3 4 5 6 7 8

Number of Masters

B
D

D
 N

od
es

 (x
10

00
)

2 Slaves 3 Slaves 4 Slaves

Fig. 9. SMV model checking results for the bus model and the PSL properties.

with four slaves and so failed to generate the state machine. This is because of
the limitations of the algorithm used inside the AsmL tool.

The AsmL tool provides the option to generate the FSM in the dot format.
We translated this representation into SMV code and conducted model check-
ing using the SMV tool. Figure 9 provides the verification results of the above
properties for the same set of combinations of masters and slaves. Accordingly,
the PSL properties were found correct in less than 30 sec., even for the most
complex cases. Therefore, we believe any improvement in the approach will come
at the level of improving the generation of the FSM from the AsmL code. In this
paper, we used the algorithm implemented in the AsmL tool as a black–box.

213

We will consider in a future work the introduction of new algorithms that will
take advantage of both the SystemC system level design particularities and the
property content and structure as defined in PSL.

5 Conclusion

In this paper, we presented an embedding of the Property Specification Lan-
guage (PSL) in Abstract State Machines Language (AsmL). We provided a deep
embedding in AsmL of the three hierarchical layers: Boolean, temporal, and ver-
ification of PSL. An AsmL model combining both the reduced design and the
PSL property is input to the AsmL tool, which compiles it into C#, and gen-
erates its FSM. The verification of PSL properties is performed using the SMV
model checker after translating the FSM model (given in dot format) into the
input language of SMV.

We used a previously defined embedding of the semantics of SystemC com-
ponents library and simulator in order to apply PSL properties verification on
SystemC designs. We illustrated this approach through a case study of the bus
structure model, on which we verified several PSL sample properties for a system
including up to eight masters and four slaves. This was not possible by directly
verifying the PSL properties on the original SystemC design model using any of
the publicly available tools. As future work, we plan to improve the proposed
algorithm to generate more efficient FSMs that take into consideration the prop-
erty under verification. We also intend to test the approach with a larger case
study and apply verification techniques such as assertion based verification and
test case generation. Furthermore, we intend to evaluate the verification of PSL
assertions by simulation using the interface offered by the AsmL tool to the .NET
framework. It is also possible to formalize the PSL into ASM (not AsmL) in order
to provide rigorous definitions for PSL semantics. We also propose to explore
the possibility of applying this approach on other system modeling languages
like SystemVerilog [23].

References

1. E. Börger, G. Fruja, V. Gervasi, and R. Stärk. A high-level modular definition of
the semantics of C#. Theoretical Computer Science, 2004

2. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer–Verlag, 2003.

3. K. Claessen and J. Martensson. An Operational Semantics for Weak PSL. In A.
Hu and A. Martin (eds.), Formal Methods in Computer-Aided Design, LNCS 3312,
Springer–Verlag, pp. 337–351. November 2004.

4. A. Gawanmeh, A. Habibi and S. Tahar: Enabling SystemC Verification using Ab-
stract State Machines, Proc. Languages for Formal Specification and Verification,
Forum on Specification & Design Languages, September 2004.

5. A. Gawanmeh, S. Tahar and Kirsten Winter. Formal Verification of ASM Designs
using the MDG Tool. In A. Cerone, P. Lindsay (eds.), Software Engineering and
Formal Methods, IEEE Computer Society, pp. 210–219. September 2003.

214

6. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating Finite State
Machines from Abstract State Machines. Software Engineering Notes, 27(4):112–
122, 2002.

7. M. Gordon, J. Hurd and K. Slind. Executing the Formal Semantics of the Accellera
Property Specification Language by Mechanised Theorem Proving. In D. Geist and
E. Tronci (eds.), Correct Hardware Design and Verification Methods, LNCS 2860,
Springer–Verlag, pp. 200–215, October 2003.

8. M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Environ-
ment for Higher-Order Logic, Cambridge, U.K., Cambridge Univ. Press, 1993.

9. M. Gordon. Validating the PSL/Sugar Semantics Using Automated Reasoning.
Formal Aspects of Computing, 15(4): 406–421, 2003.

10. Y. Gurevich. Evolving Algebras 1995: Lipari Guide. In E. Börger (ed.), Specifica-
tion and Validation Methods, Oxford University Press, 1995.

11. A. Habibi and S. Tahar. On the Transformation of SystemC to AsmL using Ab-
stract Interpretation. In Proc. Int. Workshop on Abstract Interpretation for Object
Oriented Languages. Paris, France, January 2005.

12. J. Huggins. Abstract State Machines website. http://www.eecs.umich.edu/gasm,
2003.

13. H. Jula. ASM semantics for C# 2.0. In Proc. Abstract State Machines 2005, Uni-
versité de Paris 12, France, March 2005.

14. H. Jula and N. Fruja. An executable specification of C#. In Proc. Abstract State
Machines 2005, Université de Paris 12, France, March 2005.

15. M.L. McMillan. Symbolic Model Checking, Kluwer Academic Pub., 1993.
16. AsmL for Microsoft .NET (version 2.1.5.7), Microsoft.

http://www.research.microsoft.com/foundations/asml, 2003.
17. W. Müller, J. Ruf, and W. Rosenstiel. SystemC Methodologies and Applications.

Kluwer Academic Pub., 2003.
18. Accellera Property Specification Language Reference Manual, Version 1.01.

http://www.accellera.org, 2004.
19. M. Spielmann. Automatic Verification of Abstract State Machines. In N. Halbwachs

and D. Peled (eds.), Computer Aided Verification, LNCS 1633, Springer–Verlag,
pp. 431–442, 1999.

20. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine Definition,
Verification, Validation. Springer–Verlag, 2001.

21. R. Stärk and E. Börger. An ASM Specification of C# Threads and the .NET Mem-
ory Model. In W. Zimmermann and B. Thalheim (eds.), Abstract State Machines.
Advances in Theory and Practice, LNCS 3052, Springer–Verlag, pp. 38–60, 2004.

22. SystemC. http://www.systemc.org, 2004.
23. SystemVerilog. http://www.systemverilog.org, 2004.
24. K. Winter. Model Checking Abstract State Machines, Ph.D. thesis, Technical Uni-

versity of Berlin 2001.

215

216

