
An Executable Specification of the PCI-X Bus Standard in AsmL

Haja Moinudeen, Ali Habibi and Sofiène Tahar
Electrical and Computer Engineering Department

Concordia University

1455 De Maisonneve, West

Montreal, Quèbec, H3G 1M8, Canada

E-mail: {haja m,habibi,tahar}@ece.concordia.ca

Abstract

In this paper, we describe an executable formal specification of the
PCI-X bus standard using the Abstract State Machines Language,
AsmL. PCI-X, is the latest extension of the PCI local bus that is
designed to meet increased I/O demands of recent technologies. The
actual specification of PCI-X, provided by the PCI Special Interest
Group (PCI-SIG), is informal (in natural English). Hence, it is prone
to inherent problems of incompleteness, inconsistency and ambiguity.
In our approach, we first model the bus in UML and then map it to
AsmL. This AsmL model can be executed using the Asmlt tool that
can generate the Finite State Machine (FSM) of the model. Such
FSM can be of great use for verification purposes.

Keywords— Formal Specification, PCI-X, Abstract State

Machine Language (AsmL), UML.

1 Introduction

PCI-X [11] is the latest implementation of PCI [11]. It
was adopted as industrial standard ratified by the PCI-SIG.
Using the same 64-bit architecture as the current standard,
PCI-X has tremendously increased the clock speed to 533
MHz, allowing transfer speeds up to 4 GB/sec and it is
backward compatible with standard PCI cards. Further-
more, the PCI-X bus plays a vital role in today’s System-
On-Chip (SoC) designs involving various components con-
nected using high-speed standard buses. Such bus proto-
cols, however, are not easy to specify correctly due to their
complex nature. The original specification of PCI-X from
PCI-SIG is given in the English natural language. Conven-
tional informal specifications, however have inherent prob-
lems such as misunderstanding. In contrast, formal spec-
ifications are good solutions for the aforementioned prob-
lems, but they are not being widely used in the industry
because they require an advanced mathematical and theo-
retical knowledge [5].

In this paper, we present a three-step specification
methodology of the PCI-X standard bus. We first model
the bus in UML [13] using class and sequence diagrams in
order to have a clear view of the design modules and their
interactions. The UML representation is then mapped to
the Abstract State Machines Language, AsmL [3]. Our
preference to this relatively new language is due to its
object-oriented nature, simplicity, precision, understand-
ability, executability, inter-operability and scalability [3].
Moreover, AsmL is integrated in the .NET framework and
Microsoft development tools allowing both the execution

of AsmL specifications as stand-alone applications. AsmL
specifications can also be used to generate an FSM (Finite
State Machine) by the AsmL tester (Asmlt) [8]. The FSM
generation is of interest for the following three reasons: (1)
it can be used to check the correctness of an implementa-
tion of the PCI-X bus with respect to its specification using
conformity testing; (2) it can be used as input to a model
checking tool to verify certain properties of the bus; and (3)
it can present a good coverage metric for simulation based
verification (nodes coverage, paths coverage, etc.).

There exists a few related work to ours in the open lit-
erature. For instance, Shimizu et al.[12] presented a spec-
ification of PCI bus as a Verilog monitor. This approach,
however, makes any modification or refinement of the model
complex since the level of specification of the PCI is very
low. Oumalou et al. [10] implemented the PCI bus in
SystemC [9]. First, they specified the bus in UML; then,
mapped the UML representation to AsmL and finally trans-
lated the AsmL code into SystemC. In [4], Habibi et al,
specified and implemented the Look-Aside Interface [7] us-
ing the same approach as in [10]. Our work is similar to
the work of [10] and [4], but distinguishes itself by correctly
specifying the latest high-speed bus standard (PCI-X) in-
cluding its very complex transaction rules. Furthermore,
we provide an executable specification that can be used to
explore the design space before implementation to check un-
intended behavior of the system. Once a system has been
implemented, we can also run our specification in parallel
with the implementation to find out whether the implemen-
tation produces the expected results. Besides, the Asmlt
tool can automatically generate behavioral test cases from
the specification.

The rest of the paper is organized as follows: In Section
2, we present the general architecture and an overview of
PCI-X transactions. Section 3 describes our specification
methodology. Section 4 concludes the paper with hints to
some future work.

2 The PCI-X Bus

Improvements in processors and peripheral devices have
caused conventional PCI technology to become a bottle-
neck to performance scalability. The introduction of the
PCI-X technology has provided the necessary bandwidth
and bus performance needed to avoid the I/O bottleneck,

0-7803-8886-0/05/$20.00 ©2005 IEEE
CCECE/CCGEI, Saskatoon, May 2005

1308

thus achieving optimal system performance. For instance,
version 2.0 of PCI-X specifies a 64-bit connection running
at speeds of 66, 133, 266, or 533 MHz, resulting in a peak
bandwidth of 533, 1066, 2133 or 4266 MB/s, respectively.

PCI-X provides backward compatibility by allowing de-
vices to operate at conventional PCI frequencies and modes.
Moreover, PCI-X peripheral cards can operate in a conven-
tional PCI slot, although only at PCI rates and may require
a 3.3 V conventional PCI slot. Similarly, a PCI peripheral
card with a 3.3 V or universal card edge connector can op-
erate in a PCI-X slot, however the bus clock will remain at
a frequency acceptable to the PCI card. Figure 1 shows the
general architecture of PCI-X with one Initiator (Master)
and Target (Slave). There is an arbiter that performs the
bus arbitration among multiple Initiators and Targets. Un-
like the conventional PCI bus, the arbiter in PCI-X systems
monitors the bus in order to ensure good functioning of the
bus.

I

N

I

T

I

A

T

O

R

T

A

R

G

E

T

ARBITER

REQ#GNT#

CLOCK

AD[31:0] / AD[63:0]

C/BE [3:0] / C/BE[7:0]

IRDY#

FRAME#

TRDY#

DEVSEL#

STOP#

IDSEL

REQ# GNT#

Figure 1: General Architecture of PCI-X.

PCI-X supports two modes of transactions: Mode 1 and
Mode 2. Mode 1 operates at either 66 or 133 MHz and uses
a parity error checking scheme. The higher transfer rates
(266 or 533 MHz) in PCI-X 2.0 are defined in Mode 2, which
uses ECC as its error correcting scheme. Split Transactions
in PCI-X replace Delayed Transactions in conventional PCI
[11]. If a Target cannot complete the transaction within the
Target initial latency limit, the Target must complete that
transaction as Split Transaction. If the Target meets its
initial latency limits, it can optionally complete the trans-
action immediately.

Both PCI-X Initiator and Target has a pair of arbitration
lines that are connected to the Arbiter. When an Initiator
requires the bus, it asserts REQ#. If the arbiter decides to
grant the bus to that Initiator, it asserts GNT#. FRAME#

and IRDY# are used by the Arbiter to decide the granting
of an Initiator request for the bus. Unlike PCI, the tar-
gets can only insert wait states by delaying the assertion of
TRDY#. TRDY# and IRDY# have to be asserted for a
valid data transfer. An Initiator can abort the transaction
either before or after the completion of the data transfer
by de-asserting the FRAME# signal. In contrast, a Target
can terminate a bus transaction by asserting STOP#. If
STOP # is asserted without any data transfer, the Target
has issued a retry and if STOP# is asserted after one or
more data phases, the Target has issued a disconnect. Un-
like PCI, the Target has also REQ# and GNT# that are
connected to the Arbiter. This facilitates the Split Trans-
action of PCI-X which does not exist in conventional PCI.

3 Specification Methodology

Figure 2 depicts our specification methodology of the
PCI-X bus standard. We start with the informal specifi-
cation given in [11], where all protocol rules have been de-
scribed. The core components of the protocol, the different
types of transactions and respective transaction rules are
identified. Thereafter, we specify the bus semi-formally us-
ing UML’s class and sequence diagrams. From the sequence
diagrams, we write the formal (executable) specification of
the bus using AsmL and then compile it using the AsmL
tool (Asmlt). The Asmlt has its own FSM generation al-
gorithm from the AsmL code and can generate test cases
in C# [1]. Such C# test cases can be used to verify the
model by simulation.

UML Representation
(Class Diagram, Sequence Diagram)

Informal Specification

AsmL Model

AsmL Tool

FSM Test Cases

Figure 2: PCI-X Specification Methodology.

3.1 UML Representation

The core components of the bus viz, Initiators, Targets,
Arbiters, PCI-X bus are represented as classes, where spe-
cific instances of the components are called as objects. In

1309

addition to these four components, we also added another
component, the Simulation Manager (SimManager), in or-
der to have a notion of the Clock. The detailed description
of these components (classes) is discussed in Section 3.2.
Figure 3 shows the class diagram of the PCI-X bus. As it
can be seen from the figure, we have five classes and each
class has its own data members and methods.

+PCIX_Arbiter()

+PCIX_Arbiter_GNT()

+PCIX_Arbiter_Park_Initiator()

PCIX_Arbiter

+Active_Initiator : BaseVar

+REQ : BaseVar

+GNT : BaseVar

+CBE : BaseVar

+FRAME : BaseVar

+IRDY : BaseVar

+PCIX_Bus()

+PCIX_BUS_DataPhase()

-PCIX_Bus_common()

+CLK : BaseVar

+FRAME : BaseVar

+IRDY : BaseVar

+TRDY : BaseVar

+DEVSEL : BaseVar

+STOP : BaseVar

+AD : BaseVar

+CBE : BaseVar

PCIX_Bus

+PCIX_Initiator()

+PCIX_Initiator_Req()

+PCIX_Initiator_FRAME_Assert()

+PCIX_Attribute_Phase()

+PCIX_Initiator_IRDY_Assert()

+PCIX_Initiator_Termination()

+PCIX_Initiator_Abort()

+PCIX_Initiator_LastPhase()

+PCIX_Initiator_Release()

+REQ : BaseVar

+GNT : BaseVar

+FRAME : BaseVar

+IRDY : BaseVar

+IDSEL : BaseVar

+AD : BaseVar

+CBE : BaseVar

+DEST : BaseVar

+STOP : BaseVar

PCIX_Initiator

+PCIX_Target()

+PCIX_Target_DEVSEL_Assert()

+PCIX_Target_TRDY_Assert()

+PCIX_Target_Abort()

+PCIX_Target_Termination()

+REQ : BaseVar

+GNT : BaseVar

+TRDY : BaseVar

+DEVSEL : BaseVar

+STOP : BaseVar

+AD : BaseVar

+CBE : BaseVar

+ID : BaseVar

+TARGET_STOP : BaseVar

PCIX_Target

+SimManager()

+PCIX_SimManager_Init()

+PCIX_SimManager_CLK_Update()

+CLK : BaseVar

SimManager

*

1

1

*

*

1

*

1

1
1

*

1

*

1

*

1

*

1

Figure 3: Class Diagram of PCI-X.

In Figure 4, we show the protocol sequence of the Mode 1
transaction of PCI-X using a sequence diagram. Figure 4 is
a best case scenario of Mode 1 transactions, with one Initia-
tor and one Target and without any wait states. In the first
clock cycle, the Initiator asserts the REQ# signal to get the
control of the bus. The Arbiter asserts the GNT# signal to
that Initiator. In the third clock cycle, the address phase
takes place and also the FRAME# signal is asserted by the
Initiator to signal the start of the transaction. In the next
clock cycle, the attribute phase takes place, where addi-
tional information included with each transaction is added.
In clock cycle N+4, the DEVSEL# signal is asserted by
the Target and in the next clock cycle, the data phase is
started with the assertion of the IRDY# and TRDY# sig-
nals by the Initiator and the Target, respectively. Before
the last data phase, the FRAME# signal is de-asserted to
signal the completion of the data transfer and in the termi-
nation phase all the other signals are de-asserted. In order
to represent the clock constraints of the PCI-X transaction,
we added an additional operator @. This operator is used
to specify at which clock cycle a particular action should
occur.

3.2 AsmL Model

In this section, we discuss our approach of mapping the
UML representation of PCI-X into an AsmL model by
showing some of the important methods of our AsmL code.
We used AsmL’s class features to model all four compo-
nents discussed in the previous section. Each of these has
its own data members (signals) and methods (behavior) in

Initiator TargetArbiterPCI-X-Bus

Req#_assert@clkN

GNT#_assert@clkN+1

AttributePhase@clkN+3

DEVSEL#_assert@clkN+4

IRDY#_assert@clkN+5
Data Phase#1

Data Phase#2

Data Phase#M

FRAME#_assert@clkN+2

(Address Phase)

TRDY#_assert@clkN+5

Data Phase#M-1FRAME#_negate@clkN+7

(Initiator Termination)

Termination PhaseIRDY#_negate@clkN+9
DEVSEL#, STOP#,

TRDY#

Negate@clkN+9

Figure 4: Sequence Diagram of Mode 1 Transaction.

addition to the Constructors. Constructors are used to ini-
tialize the objects and they are invoked whenever an object
is created. We also used enumeration features (enum) of
AsmL to model different modes of PCI-X, different types of
transaction phases, the state of the system and the clock.
(see Figure 5).

enum Transaction_Mode

MODE_1

MODE_2

enum Transaction_Phase

IDLE_PHASE

ADDR_PHASE

ATTR_PHASE

TGT_RES_PHASE

DATA_PHASE

INR_TER_PHASE

TURN_AROUND_PHASE

enum Clock

CLK_UP

CLK_DOWN

enum SystemStatus

INIT

STARTED

Figure 5: Enumeration in the AsmL Model.

In addition, we exhaustively used the require and ”:=”
statements of AsmL in our design approach. require is the
pre-condition statement in AsmL used to check if a certain
condition is satisfied or not, and ”:=” is the update state-
ment used to change the system state. Figure 6 shows the
Arbiter grant method (PCIX Arbiter GNT()). In order to
grant the bus to the requested Initiator, this method has
the following pre-conditions (require) to be met: (1) there
must be at least one Initiator requesting the bus and that
Initiator has not been granted the bus at the time of the re-
quest; (2) the clock is on the rising edge; and (3) the mode
can be either Mode 1 or Mode 2. If these pre-conditions
are met, the Arbiter updates the GNT# signal.

Figure 7 shows the Initiator termination method
(PCIX Initiator Termination). This method basically sig-
nals the end of a transaction if BYTECOUNT is less than
2. This signaling is done by de-asserting the FRAME#

1310

public PCIX_Arbiter_GNT()

require

(exists x in Initiatorswhere x.REQ = true and x.GNT = false) and me.GNT =

false and Smanager.CLK = CLK_UP and (Mode = MODE_1 or Mode = MODE_2)

me.Active_Initiator := min y | y in Initiators_Range where (Initiators(y).REQ =

true)

me.REQ := true

require me.REQ = true and me.GNT = false

me.GNT := true

Initiators(Active_Initiator).GNT := true

Figure 6: Arbiter GNT Method.

signal and updating the transaction phase to Initiator
Termination Phase (INI TER PHASE). This method has
some pre-conditions that need to be true so that it can
terminate the transactions. The pre-conditions (require)
are the following: Initiator’s REQ#, GNT#, FRAME#,
IRDY#, DEVSEL#, TRDY# are asserted, BYTECOUNT

is less than 2, and the clock is on the rising edge. If
all the above pre-conditions are true, this method up-
dates the FRAME# signal to false and the phase to
INI TER PHASE using the ”:=” operator. After this
FRAME# signal de-assertion, the Initiator’s last phase
method (PCIX Initiator LastPhase()) is invoked.

public PCIX_Initiator_Termination()

require me.GNT = true and me.REQ = true and me.FRAME = true and

me.IRDY = true and Bus.TRDY = true and Bus.DEVSEL = true and

BYTECOUNT < 2 and me.STOP = false and Smanager.CLK = CLK_UP

me.FRAME := false

Bus.FRAME := false

Phase := INR_TER_PHASE

Figure 7: Initiator Termination Method.

Figure 8 shows the clock update method of the AsmL
code. It checks if the system and simulation are started in
order to update the clock.

public PCIX_SimManager_CLK_Update()

require SystemFlag = STARTED and SimStatus = RUNNING

if CLK = CLK_UP then

CLK := CLK_DOWN

else

CLK := CLK_UP

Figure 8: Clock Update Method.

Figure 9 shows the data phase method of the AsmL code.
The method decreases the BYTECOUNT by 1 based on the
following pre-conditions: IRDY#, DEVSEL#, TRDY#
are asserted, the phase has the value DATA PHASE, the
clock is on the rising edge, and the system started running.

public PCIX_BUS_DataPhase()

require SystemFlag = STARTED and SimStatus = ON_INIT and

Bus.IRDY = true and Bus.TRDY = true and Bus.DEVSEL = true

and Smanager.CLK = CLK_UP and Phase = DATA_PHASE

BYTECOUNT := BYTECOUNT - 1

Figure 9: Data Phase Method.

Once the modeling of the bus in AsmL was completed,
we used the Asmlt tool to execute the AsmL code and gen-

erated the model’s FSM. Details of our AsmL implementa-
tion, UML representations and the generated FSM of the
PCI-X standard bus can be found in the project website1.

4 Conclusions

In this paper, we presented an executable specification of
PCI-X bus standard using UML representation and AsmL.
Starting from the informal description of the bus standard,
we provided a formal specification using the UML class and
sequence diagrams then mapped the sequence diagrams into
an AsmL model. The AsmL model is executed using Mi-
crosoft’s Asmlt tool and an FSM of the model is generated.
In a future work, the generated FSM can be used as input
to verify formally using model checking tools such as SMV
[6] or FormalCheck [2]. The developed model can also be
used to check the correctness of an implementation of the
PCI-X bus with respect to its specifications using confor-
mity testing in Asmlt.

References

[1] C# Language Specification, Microsoft Incorporation.
http://msdn.microsoft.com/vcsharp, 2004.

[2] Cadence. Affirma Formalcheck version 2.6, 2000.
[3] Y. Gurevich, B. Rossman, and W. Schulte. Seman-

tic Essence of AsmL. Technical report, Microsoft Re-
search, MSR-TR-2004-27, March 2004.

[4] A. Habibi, A.I. Ahmed, O. Ait-Mohamed, and S.
Tahar. On the design and verification of the look-
aside interface. In Proc. Design Automation and Test

in Europe, Munich, Germany, March 2005 (to appear).
[5] A. V. Lamsweerde. Formal Specification: A Roadmap.

In Proc. of Conference on The Future of Software

Engineering, pages 147–159, Limerick, Ireland, June,
2000. ACM Press.

[6] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[7] Network Processing Forum. Look-Aside (LA-1) Inter-

face, Implementation Agreement, Revision 1.1. Kluwer
Academic Publishers, April 15, 2004.

[8] Microsoft Research Foundations of Soft-
ware Engineering. Asml for microsoft .net.
http://www.research.microsoft.com/foundations/asml.

[9] Open SystemC Initiative. www.systemc.org, 2004.
[10] K. Oumalou, A. Habibi, and S. Tahar. Design for veri-

fication of a PCI bus in SystemC. In Proc. Symposium

on System-on-Chip, pages 201–204, Tampere, Finland,
November 2004.

[11] PCI Special Interest Group. www.pcisig.com, 2004.
[12] K. Shimizu, D. L. Dill, and A. J. Hu. Monitor-based

formal specification of PCI. In Formal Methods in

Computer-Aided Design, pages 335–353. LNCS 1954,
Springer-Verlag, 2000.

[13] Unified Modeling Language. http://www.uml.org,
2003.

1http://hvg.ece.concordia.ca/Research/Soc/PCIX

1311

