
FPGA Implementation of a Modular and Pipelined WF
Scheduler for High Speed OC192 Networks

Abdallah Merhebi
a merheb@ece.concordia.ca

Otmane Ait Mohamed
ait@ece.concordia.ca

Department of Electrical Engineering and Computer Science
University of Concordia,Montréal

Québec, Canada H3G 1M8

ABSTRACT
In this paper we propose an FPGA implementation of a
multi protocol Weighted Fair (WF) queuing algorithm able
to handle variable length packets targeted for Packet Over
Sonet (POS) interfaces and ideal for the design of hybrid
IP/ATM switches. Our contributions is an extension to an
existing 4 channel scheduler architecture that combines the
Highest Value First scheme and Round Robin scheme, to a
modular multi channel scheduler design. The improvement
we offer here compared to the previuous implementation is
that we have used the existing 4 channel core module to
build a higher order WF queuing system without decreasing
its overall performance . As a result, our scheduler is general
enough to accommodate ATM (UTOPIA Level3/4) , POS
Phy Level3 (or PL3 for OC48) as well as POS Phy Level4
(or PL4 for OC192) interfaces.

Categories and Subject Descriptors: Hardware, RTL
design, Control design.

General Terms: Algorithms, Design, Performance.

Keywords: FPGAs, WF scheduler, Pipeline, ATM,POS,
PL4, OC192.

1. INTRODUCTION
The rise of the Internet has created the need of implement-

ing high performance and scalable switches and IP routers
able to handle different types of traffic streams (voice, data
and video) over IP. The need for traffic management is essen-
tial in the Internet world since the nature of internet traffic
is bursty in contrast to a fixed timed slot traffic used in
TDM switches. In the mid 90’s the implementation of ATM
(Asynchronous Transfer Mode) switches was the first ini-
tiative to address network congestion by splitting different
traffic streams into different classes of services with differ-
ent priority levels. Furthermore ATM was the first medium

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’05, April 17–19, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-057-4/05/0004 ...$5.00.

used to converge Multimedia and Data traffic in fiber optic
SONET/SDH networks. This is achieved by using ATM as
an intermediate Layer 2 protocol. In the late 90’s, new stan-
dards for carrying IP packets directly over SONET/SDH has
been developed by the IETF (Internet Engineering Task
Force) and OIF (Optical Internetworking Forum)(IP over
SONET versus IP over ATM over SONET). This new stan-
dard became POS [3, 4] (Packet over SONET/SDH). The
advantage of POS compared to ATM is its ability to map
directly IP packets over SONET via PPP/HDLC framing
and hence reduce the packet overhead. In addition the POS
can map packet of variable lengths whereas ATM is fixed
to 53 bytes. For instance, the multi protocol frames could
be IP, Frame Relay or ATM itself. However traffic manage-
ment on POS is still in its early stages. Many companies use
POS with their own proprietary traffic management scheme
in contrary to ATM where all the implementations are de-
rived from the ATM Forum . The new trend in IP switches
is the use of Multiprotocol interfaces (POS/ATM). There-
fore, it is essential that the traffic management and queuing
algorithms are transparent to these protocols, which is that
they can handle ATM cells as well as POS frames transpar-
ently.In general the WF scheduler is based on:

1. An interface for transmitting and receiving packets be-
tween the external PL4 chip and the scheduler datap-
ath (e.g, The Xilinx Source-Sink IP cores [5]).

2. The 4 channel scheduler core.

3. The datapath where packets are stored and then sched-
uled.

4. The Status interface that monitors the error control
information of packets that are tramsmitted and re-
ceived on the PL4 bus.

5. The calendar programming interface that sets the se-
quence at the scheduler initialization phase. This se-
quence will dictate the channel status reporting order
on the transmit and receive sides of the scheduler.

In this paper, we propose an implementation of the sched-
uler core. Our new implemented Weighted Fair (WF) queu-
ing algorithm is able to handle variable length packets and
is targeted for POS interfaces. Several 4 channel scheduler
cores can be combined together to form a higher order WF
scheduler.

422

We have implemented, simulated and synthesized the pro-
posed scheduler core targeting Xilinx Virtex-II pro series
FPGA’s. The rest of our paper is organized as follows: In
Section 2, we introduce our proposed algorithm. Section
3 describes the detailed implementation of the 4 channel
weighted fair scheduler which is the building block that can
be used to implement higher order queuing systems. In Sec-
tion 4, we present our synthesis and simulation results for
the higher order scheduler based on a 4 channel building
block, and finally in Section 5 we conclude.

2. PROPOSED ALGORITHM
The common aspect of the majority of the known algo-

rithms is the credit computation at each clock cycle [2, 1].
The Data from the channel or service class with highest pri-
ority will be scheduled for transmission upon completion of
the required credit computation. Three main Scheduling
algorithms are presented in [2]:

1. Highest Value First (HVF). The counter with highest
value is selected. This policy selects the counter that
has accumulated more ”tokens” than anyone else, and
thus deserves to be serviced.

2. Round Robin (RR). The next class is selected in a
round-robin fashion. This policy attempts to achieve
some fairness among all competing service classes.

3. Highest-Priority-First (HPF). The class with highest
priority channel is selected. Here the value of the chan-
nel counter is irrelevant since the importance is given
to the value or the ranking of the class. As an example
if class 1 has more priority than class 4 and both classes
have non empty queues with class 4 having more cred-
its than class 1, then the packet from class 1 will be
chosen even if it has less credits.

Our algorithm uses a combination of Round Robin (RR)
and Highest Value First (HVF). The scheduling is performed
in two stages. In the first stage, the channels sharing the
same weight will be serviced in a round robin scheme. In
the second stage, the channel selected for scheduling will be
among the channels that have been serviced in the first stage
and possess the highest weight. The weight for a particular
class i such that 0 ≤ i ≤ N , where N is a total number of
classes, is computed as a ratio between the maximal weight
Wmax and the weight wi of class i. This ratio, say ci, rep-
resents the number of clock cycles that a packet of service
class i and weight wi needs to wait before being delivered.

The Round Robin stage monitors all the counts ci repre-
senting the count for channels sharing the same weight, and
services the channels in each group in a round robin scheme
each time the count ci is achieved and one of the channels
has a packet ready to be delivered. Than the second stage
follows the highest value first scheme and will perform a fi-
nal selection based on the channels that have been serviced
in the first stage and have the maximal weight (or smaller
count Ci = Wmax/wi of class i). The advantage of our im-
plementation is that once ci has reached its limit, it will not
increase and stay unchanged until the packet is delivered
where again it will be reset to 0. In the implementations de-
scribed in [2, 1] the credit will still increase until the packet
is delivered and may result in an overflow.

Our implemntation is not protocol specific because our
algrorithm is generic. For instance it can support several

interfaces(IP, ATM and Frame relay). The packets are en-
capsulated within a common PL4 control header that con-
tains control information on each packet (Start of packet
(SOP), End Of Packet (EOP) and Error control) [5]. The
algorithm stores and schedules variable length packets from
its internal RAM by decoding the information in the PL4
header. The Receive and transmit interfaces really work at
the lowest level and do not need to decode any higher level
headers (IP, ATM or Frame Relay).

3. DETAILED IMPLEMENTATION OF THE
4 CHANNEL SCHEDULER CORE

The 4 channel scheduler core contains two main parts:

3.1 The Weight Configuration interface

Figure 1: Overall block diagram of the Weight con-

figuration interface

There are three major steps undertaken by the Weight
configuration interface. The first is to determine the maxi-
mal weight among the 4 channels that have been configured.
The maximal weight is determined using cascaded compara-
tor stages. Once the maximal weight has been determined
the second step would be to determine the ratio (Wmax/Wi)
which will activate the appropriate group counter for the
channel i. For the ratio we need to determine the num-
ber of leading zeros in the weight of each channel starting
from the most significant bit, then we compute the differ-
ence between the number of leading zeros of the maximal
weight and the weight of the channel i. Since all weights are
one of the eight possible shifts of a single 1 in an eight bit
string, then it is easy to determine the weight ratio between
the highest weight among the four channels Wmax and the
current channel Wi. In the last step, the ratio (Wmax/Wi)

423

will lead to the selection of the appropriate group counter
for each channel. Another important point to outline here
is that channels having the same weight ratio (Wmax/Wi)
will be sharing the same group count. The result is that at
each time the count is completed for a specific group counter
the scheduler will switch the selection between the channels
sharing the same count in a round robin fashion to split
evenly the bandwidth between them.

3.2 4 channel Scheduler main control block
Once the appropriate group counter selection has been

set for each channel by the weight configuration interface,
the core scheduler control block (see Fig. 2) will enable the
scheduling scheme dictated by the group counters. The core
Scheduler is divided into three major functional stages:

a) The first stage is constituted of the eight group counters
corresponding to all the possible ratios already discussed
previously and the glue logic that detects if there is at least
one packet in the buffer that is ready to be transmitted. At
each time the required count is completed, the group counter
enables the round robin priority encoder which will schedule
evenly the active channels that share the same count and
have at least one packet in their buffer that is ready to be
transmitted.

Figure 2: Block diagram of the scheduler control

block

b) The second stage is the set of eight round robin priority

encoders associated to each ratio counters. The round robin
priority encoder will switch the selection between the chan-
nels once it receives the active enable signal from the group
counter and the count acknowledgement from the scheduler
Highest Value First (HVF) stage. The count acknowledge-
ment is initiated to confirm that the packet corresponding
to the channel has been transmitted.

c) The third functional block of the core scheduler is the
Highest Value First stage. After each of the round robin
priority encoders has made its own channel selection, the
HVF stage makes the selection among the channels from
the round robin stage with the highest weight.

We have implemented and tested the scheduling algorithm
on a virtex II pro FPGA. The size of a 4 channel implemen-
tation is about 1994 CLB’s. The design is pipelined and the
delay of the maximal pipeline stage is 17ns that can run at a
speed of 58.82 Mhz. Using an internal 64 bit datapath this
allows the scheduler to have a total bandwidth of 3.76 Gb/s.
Our next objective is to improve the design by adding more
pipelining in the internal stages. This consists in breaking
the RR and HVF stages into smaller pipelined stages and
optimizing the internal logic such that each pilpeline stage
does not exceed 7ns. This will result in increasing the speed
up to 9/10 Gbps.

4. 16 CHANNEL SCHEDULER IMPLEMEN-
TATION

The 16 channel scheduler is obtained by cascading several
4 channel WF scheduler building blocks as illustrated in
Figure 3. The size of a 16 channel modular design is 10200
CLB’s. Table 1 provides the theoretical and experimental
results for the 4 and 16 channel schedulers.For that table we
define the following parameters:

1. wi : weight of channel i

2. Nb insts: Number of instances for each channel

3. Biex : experimental bandwitdth measured

4. Bith : theorethical bandwidth derived from the weight
configuration

For the 4 channel scheduler we have the following weights:
(ch1 = 8, ch2 = 4, ch3 = 2, ch4 = 1). As for the 16 channel
scheduler, we assign the same weight, say 8, for the 4 chan-
nels in each scheduler of the first stage, and we assign the
wieght: 8, 4, 2,and 1 for channels (ch1, ch2, ch3, ch4) respec-
tively.

5. CONCLUSION
In this paper we presented a scalable and pipelined 4

channel weighted fair queuing algorithm that can be used
in Multi protocol IP/ATM/Frame Relay switches and han-
dle different sized packets as apposed to the implementa-
tions in [2, 1]. In our algorithm we combine two scheduling
schemes, round robin (RR) and Highest Value First (HVF).
This adds more flexibility to the algorithm and can make use
of both scheduling schemes or one of them depending on the
type of application. Another improvement we are providing
compared to the architectures proposed in the two papers [2,
1] is the ability of our scheduler to be pipelined for enhanced
performance.

424

wi Nb insts % Biex Bith

Ch1: w1 = 8 4281 42.86% 43.6 %
Ch2: w2 = 4 2570 25.73% 29.12 %
Ch3: w3 = 2 1996 19.98% 17.47 %
Ch4: w4 = 1 1141 11.41% 9.7 %

wi Nb insts % Biex Bith

Chgroup1: weight gr1 = 8 4283 42.87 % 43.6%
Ch1: weight ch1 = 8 1093 10.94 % 11.5%
Ch2: weight ch2 = 8 1067 10.68% 11.5%
Ch3: weight ch3 = 8 1063 10.64% 11.5%
Ch4: weight ch4 = 8 1060 10.61% 11.5%

Chgroup2: weight gr2 = 4 2569 25.72 % 29.12%
Ch5: weight ch5 = 8 657 6.57 % 7.8%
Ch6: weight ch6 = 8 637 6.37% 7.8%
Ch7: weight ch7 = 8 637 6.37% 7.8%
Ch8: weight ch8 = 8 638 6.38% 7.8%

Chgroup3: weightgr3 = 2 1996 19.98 % 17.47%
Ch9: weight ch9 = 8 510 5.10 % 4.36%

Ch10: weight ch10 = 8 498 4.98% 4.36%
Ch11: weight ch11 = 8 495 4.95% 4.36%
Ch12: weight ch12 = 8 493 4.93 % 4.36%

Chgroup4: weight gr4 = 1 1141 11.42 % 9.7%
Ch13: weight ch13 = 8 288 2.88 % 2.42%
Ch14: weight ch14 = 8 285 2.85% 2.42%
Ch15: weight ch15 = 8 285 2.85% 2.42%
Ch16: weight ch16 = 8 283 2.83 % 2.42%

Table 1: Experimental results measured for 10,000 clock cycles for 4 and 16 channel scheduler implementations

Figure 3: Scalable and pipelined 16 channel sched-

uler implementation

The use of pipelining opens the door to scalability to an
unlimited number of channels based on a 4 channel building
block and a flexible multilevel weight configuration interface.

6. REFERENCES
[1] Eddie Law K., L. Multi queue management and

scheduling for improved QoS communication network.
Technical report, Nortel Networks, Ottawa, Canada,
1997.
http://www.cnaf.infn.it/̃ferrari/papers/sched/TheBandwidt.pdf

[2] Katevenis M., Serpanos D., and Markatos E.
Multi-queue management and scheduling for improved
qos in communication networks. Technical report,
Institute of Computer Science (ICS) and Foundation
for Research & Technology - Hellas (FORTH), 1997.
http://www.ics.forth.gr/proj/avg/asiccom.html

[3] Cam R. and T. Pluris. System Packet Interface Level 4
(SPI-4) Phase2 : OC192 System Interface for Physical
and Link Layer Devices. PMC Sierra and Terabit
Network systems, June 2000.
http://www.oiforum.com/public/documents/OIF-SPI4-
02.1.pdf

[4] T. Pluris R., Cam. System Packet Interface Level 3
(SPI-3): OC48 System Interface for Physical and Link
Layer Devices. PMC Sierra and Terabit Network
systems, June 2000.
http://www.oiforum.com/public/documents/OIF-SPI3-
01.0.pdf

[5] XILINX INC. SPI-4.2 (PL4) IP core Product
Specification, February 2004.

425

