
Hybrid Tool Integrating HOL Theorem Proving with MDG Model Checking
Rabeb Mizouni and So ene Tahar Paul Curzon

Dept. of CS, Queen Mary University of London. UK
Email: pc@dcs.qmul.ac.uk

Dept. of ECE, Concordia University, Montreal, Quebec
Email: { mizouni,tahar} @ece .concordia.ca

Abstract- We describe a hybrid loo1 for hardware forma!
verification that links the HOL theorem prover and the MDG
(MulUway Decision Graphs) model checker. Our tool supports
abstract datatypes and uninterpreted function symbols available
in MDG, allowing the verification of high level specificallons. The
hybrid toot HOL-MDG, is based on an embedding in HOL of
the grammar of the hardware modeling language, MDG-HDL, as
well as an embeddhg of the first-order temporal logic Lmdg used
to express properties for the MDG model checker. Verification
with the hybrid loo1 is Faster and more tractable than using
either tools separately. We hence obtain the advantages of both
verification paradigms.

1. INTRODUCTION
Hybrid verification approaches that link interactive proof

tools with automated (e.g. BDD based) proof tools are now
common. Such links gain the automation of the BDD tools
whilst, for example, using the interactive tool IO manage the
proof. Whilst abstraction can be dealt with by the interactive
tool, i t is advantageous if it could also be dealt with by the
automated tool. In this paper, we describe a hybrid tool that
does this. It combines the HOL theorem prover [L1] and
the MDG model checker [17]. HOL (Higher-Order Logic)
is an interactive theorem prover based on higher-order logic.
The MDG (Multiwey Decision Graphs) system is a decision
diagram based verification tool for Abstract State Machines
(ASM) verification encoded by multiway decision graphs [5] .
The latter extend Reduced-Ordered Binary Decision Diagrams
(ROBDD) [3] with abstract datatypes and uninterpreted func-
tion symbols. It is this feature that allows abstract designs to
be verified automatically using MDG, rather than needing to
do such proof wholly in the theorem prover HOL. The down
side of this abstraction facility is that in some cases the state
reachability algorithm may not terminate [21. This is due to
the fact that the terms that label the edges can be arbitrary
large and hence arbitrarily many. In a pure system for this
rare case, the user would have to use one of many heuristics
provided in [2] , [18]. The proposed hybrid tool gives ways to
uvercome the problem.

There has been a great deal of effort combining model
checking tools with proof systems. Similar work to ours,
though based on binary decision diagrams rather Than multi-
way ones, includes Rajan et al.'s [14] integration of a proposi-
tional p-calculus model checker with PVS, and Schneider and
Hoffmann [131 who linked the CTL model checker SMV to
HOL. Gordon [6] took a different approach with the EuDDy
BDD package, providing a secure and general programming
infrastructure to allow users to implement their own BDD-
based verification algorithms integrated within the HOL sys-

tem rather than tools being linked externally. Forte [IO], based
on the work of Aagarad et al. [I] is one of the maturest
formal verification environments based on tool integration
including simulation. It has been used in large-scale industrial
verification projects at Intel. Its power comes from the very
tight integration of the two provers, using a single functional
language, as both the theorem prover's meta-language and i ts
object language.

The tool described here extends the capabilities of an earlier
HOL-MDG tool and methodology [15], [9] for hierarchical
hardware Verification. The main contribution of the current
work is that our hybrid tool supports the absri-act datatypes or
MDG in addition to concrete (enurneration/Boolean) sons in
[9], [15]. This allows abstract designs to be passed from HOL
to MDG for verification. This allows, for cxample, largcr data
paths to be dealt with automatically than with a BDD based
linkage. In particular, we extended a previous HOL formal-
ization of the MDG modeling language, MDG-HDL [12]. We
also implemented an interface that automatically supports the
communication between the MDG and HOL tools. Ir generates
the necessary MDG files from the HOL files, passing them
to the model checker, takes back thc MDG results, interprets
them, and finally submits them to HOL in an appropriate form
(see Figure 1). The tool supports both equivalence checking
and model checking of abstract designs: a further extension
of the original hybrid tool. This involved embedding the
MDG temporal property specification language, C m d g in HOL.
An additional novel aspect is the explicit support of model
reduction in HOL based on the natural design hierarchy and
the specification being verified.

Fig. 1. The Hybrid Tool Overvitw

The rest of the paper is organized as follows. In Section
2, we present the proposed hybrid verification procedure.
Section 3 describes the internal stmcture of the hybrid tool.
In Section 4, we display some sample experimental results.
Finally, Section 5 concludes the paper.

392

mailto:pc@dcs.qmul.ac.uk

11 . H Y 5 R I D VERIFICATION WITH HOL-MDG the proof goal by the theorem prover HOL, and based on rhe

The hybrid tool developed consists of an interface integrat-
ing the HOL theorem prover and thc NlDG model checker.
During the verification procedure, the user deals mainly with
HOL. As shown in Figure 2, the user srarts by gi\.ing the
HOL design model, property specification, and the goal to
be proven. The respective MDG files (property specification,
design model, symbol order, algebraic specification, and fair-
ness constraints) are generated automatically and sent to the
MDG tool for model checking. If the property holds, a HOL
theorem is created. This could be used in higher HOL proofs,
for example proving theorems about the consequences of the
properties. If the verification within the M I X took fails (due
to the property checking to false, non-termination or state
explosionj, we have to perform the proof interactively usjng
thc theorem prover.

The too1 does not accept any arbitrary HOL specification:
only MUG-style modeels and properties using the embedded
HOL theories presented. The HOL goal should also be an im-
plication. where the MDG model checking result is converted
to a form that can be used in HOL to infer the properties from
the design niodel 1161.

Our hybrid tool also supports hierarchical verification,
where it is able to extract in HOL the block about which
we want to check a property, then generating files of the
specific block only. This is achieved by defining the structure
"block" in a recursive manner. So, for each block. we are able
to determine its subblocks. Hence, the model checker deals
with the verification of the considered block only, not the
whole design. As a result. we save on niodel size without
constraining the user to write another specification for the
appropriate block. This idea of program slicing is well-known
in the model checking literature [4]. The difference in our
work is the fact that the "slices" are extracted while expanding

& +-- Regular HOL prmf

Fig. 7. Vcrificalion Procedure with the Hybrid Tool

definition of the design block. In our approach, i t is therefore
done formally within HOL rather than informally outside the
tool.

Our hybrid tool is written in SML. It is composed of
live main modules: the Hybrid Tool Interface, the Property
Moduk, the Description File Module, the HOL Goal Parser
Module and the MDG Znreractiori Module (Figure 3) . The
user's interface to the hybrid too1 is a Java GUI, responsible
for getting the HOL goal, the property file and the model
description file, passing them to BOL, loading the L m d g and
MDG-HDL theories and at the end of the verification process,
communicating the result to the user [7]. Thc user thus sees
the hybrid tool as an integrated system but one that is more
powerful than MDG alone. In the second module, the Pinperry
Parser generates as output a dam structure from which the
MDG File Genemtor produces the MDG property file, and the
Property Type Generator provides fhc property type. The latter
contains information about the type of property submitted to
the tool, according to which, ir calls the appropriate property
checking algorithm. The Description File Module Aattcns the
specification by removing hierarchy.

When parsing the goal, we obtain the name of the property
and the block to check. The latter can be either the main
module in the model description or one of its submodules. If
the specification is written in a hierarchical way, it is possible
to extract the target module, and its submodules, discarding
the others. The Block E.xtraction Module achieves this task.
In the nexr step, the corresponding MDG files are generated,
including MDG model and MDG propem files, an algebraic
file containing sorts, functions, and rewriting rules, an Urdu
file, giving a total order of variables and function symbols, and
eventually faimess files, each describing an imposed fairness
constraint. The MDG file generation is done automatically.
The HOL specification file contains two main parrs. The first
is dedicated to the definition of the differcnt sorts, functions,
and MDG terms used. The second is dedicated to the tables
definitions. Using a syntactical analysis of the submitted HOL
files, our tool extracts the useful information from them to
generate the MDG files in the appropriate MDG-WDL syntax.

Before proceeding with the model checking operation, the
MDG tool has to encode the MDG-HDL syntax to gen-
erate ASMs. Since we wanted the communication between
the Iinked tools to be automatic, we implemented a special
module, called the ASM Generation Intc$me that implicitly
does the appropriate MDG instructions. The MDG Interaction
Module dues the communication with MDG. It takes all
the generated MDG files, the property type and the fairness
number. The latter are provided by the property parser module.
They indicate respectively the nuniber of fairness constraints
in the HOL property, if they exist, and ils temporal type. All
these files are supplied to the MDG tool. which performs
the verification process and passes the result to HOL through

393

MDG Interaction

Yt-4 (MM)

Y N (HOLI

I I meorem enerator
Correctness

+Correctness theorem (HOL)

Fig. 3. Hybrid Tool Sbcture

the MDG Result Interpreter Module. If the property holds, a
theorem is generated in HOL.

IV. EXPERIMENTAL RESULTS

We have experimented with our hybrid tool using a number
of benchmark designs including the Island Tunnel Controller
(ITC) (121 (Figure 4), which experimental results we report
here. The ITC controls the traffic lights ar both ends of a
tunnel connecting a mainland and island. It was chosen for
two reasons. First, its specification contains abstract sorts and
functions. It was not possible to express the specification of
this example in the tool in [9]. Second, the same example was
verified in [18], where the authors faced a problem of non-
termination in the Island Counter module. The hybrid tool
offers the solution of doing a hybrid verification, such that the
subblocks causing the non-termination problem are verified
within the HOL theorem prover interactively, while those
which do not are verified within the MDG model checker.

The input specifications for the ITC were written in HOL,
using the HOL MDG-WDL theory [12]. It is composed of a
term declaration of the MDG part, the different table speci-
fications and the main modules. The specification is written
in a hierarchical way. Each component is represented by the
conjunction of its tables. The whole system therefore is the

conjunction of the five mentioned blocks.
Experimental results on the verification of a set of properties

are given in Table 1. It gives CPU rime, verification memory
usage and number of MDG nodes generated as well as the
number of components and signals of the reduced (extracted]
design model effectively used for model checking in MDG. It
is clear that verification is much faster than doing the proof
interactively with HOL. At the bottom of Table I , we give
the example experimental results of checking Properry 1 and
Property 3 without block extraction done in the theorem prover
side, i.e., on the whole model. We can clearly see that the CPU
time and memory consumption were decreased by more than
half in the former case, which is due to the block extraction.
The results here are: similar to those in [17], where only rhe
MDG tool is used on the full model. This fact proves that our
hybrid tool achieves the verification without obstructing the
model checker.

V. CONCLUSIONS

We presented in this paper a hybrid verification tool jnte-
grating the HOL theorem prover and the MDG model checker.
In an earlier HOL-MDG tool, where HOL and the MDG
equivalence checker were linked, neither abstract data sorts
nor abstract functions, were supported. The main contribution

394

Propertyl(*) 11 0.74 I 1.38

I !

870 26 I 62

T7Tl
Island Comer b e l Counter

Fig. 4. ITC Structure

of our work is the extension of this tool to handle these main
features of MDG compared to 8DD b a e d model checkers as
wirh other roofs. Our system handles abstraction for model
checking and equivalence checking. Furthermore, i t directly
supports hierarchical proof to be conducted saving verification
time and memory usage. It also provides a way for overcoming
the non-termination problem of MDG. The tool has been rested
on several benchmark examples, including the Island Tunnel
Controller reported here. In a future work, we intend to apply
our tool on more complex designs as well as looking into
ways to render the MDG-HOL specification templates more
user-friendly.

REFERENCES

[l] M.D. Aagaard. R. Jones, and C. Segcr. Lifted-FL: A Pragmatic
I~npleinentation of Combined Model Checking and Theorem
Proving. In Throrem Proving iii Higher Order Logics, LNCS
1690. pages 313-340, Springer Verlag, 1999.

[2] 0. Air Mohmicd. X. Song, a id E. Cerny. On the Non-teniiination
of MDG-based Abstract Statc Enumeralioii. In Theorerical Corn-
pitrer Science, 300: 161-179, 2003.

131 K. Bryant. Syinbolic Boolean Manipulation with Ordered Binary
Decision Diagranis. In ACM Compuring Srmeys. 24(3):293-3 18.
September 1992.

[4] E.M. Cluke. 0. Giumberg, aid D. Peled. Model Checking. MlT
Press. 2000.

[SI F. Corella. Z. Zhou, X. Song, M. Langevin, and E. Cemy.
Multlway Decision Graphs for Auromated Hardware Verification.
In Formal Methods i n System Design. 10(1):7-46, 1997.

(61 IM. Gordon. Combining Deductive Theorem Proving with Sym-
bolic State Enumeration. 21 Years of Hardware Formal Verifica-
tion. Royal Society Workshop to mark 21 years of BCS FACS,
U.K.. December 1998.

[7] R. Hum, H. Yip? H. Li. R. Mizouni, and S . Tahar. A GUI for
linking HOL to MDG. Technical report. ECE Dept.. Concordia
University, June 2002.

[XI I. Joyce and C. Seger. The HOL-Voss System: Model-Checking
inside a General Purpose Tlimrem-Prover. In Higher O r r f ~ Logic
Theorem Proving and lis Applicarions. LNCS 7S0, pages 185-
198. Springer Verlag. 1994.

[9] I. Kort. S. Td~ar. and P. Curson. Hierarchical Formal VeriBcatiod
Using a Hybrid Tool. Sofnt.are Tooh for Technology Transfer.
4(3):313-312, May 2003, Springer Verlag.

[IO] T. Melham Integrating Model Checking and Theorem Roving
in a Reflective Functional Language. In Znregrared Formal Mech-
ods, LNCS 2999. pages 36-39, Springer Verlag. 2004.

[It] T. Melham and M. Gordon. Inrrodirction to Higher. Order
Logic, Theorem Proving Environmerir for Higher Order. Logic.
Cambridge University Press, 1993.

[I21 R. Mizouni. Linking HOL Theorem Proving and MDG Model
Chcckltig. Master's tliesis. Electrical and Coinputer Engineering
Dept.. Concordia University, 2003.

[I31 K. Schneider and D. Hoffmam. A HOL Canversion for Trans-
latmg Linear Time Temporal Logic to o-Automata. In Theorem
f%"g in Higher Order Logics, LNCS 1690. pages 255-272.
Springer Verlag, 1999.

[14] S. R4an, N.Shankar, and M.Srivas. An Inlegration of Model-
Checking with Automated Proof Checking. In Cornpuler Aided
Verification, LNCS 939. pages 84-97, Springer Verlag. 1995.

IIS] V.K. Pisini. S. Tahar. 0. Ait-Mohamed. P. Curzon. and X. Song.
Formal Hardware Verification by Integrating HOL and MDG.
In ACM 10th Grear Lakes Symposium on VLSI. pages 23-28,
Chicago, Illinois, USA, 2000.

[I61 H. Xiong, P. Curzon, and S. Tahar. Importing MDG Verification
Results into HOL. 1ri Theorem Proving in Higher Order Logics.
LNCS 1690. pages 293-310. Springer Verlag. 1999.

1171 Y. Xu, Model Checking €or aFirst-Order Temporal Logic Using
Mulriwov Decision Grwhs. PhD Thesis, University of Montreal.
Canarla,*April 1999. .

[18] 2. Zhou. X. Song, S . Tahar, E. Cerny. F. Corella. a id M.
Lmaevm. Formal Verification of the Island TunncI Controller Us-
ing kultiway Decision Graphs. In Forma! Mohods i r i Curnpitrrr-
Aided Design. LNCS 1166, pages 233-247. Springer Verlag.
1996.

395

