
An FPGA Implementation of a Modified Version of
RED Algorithm

Fariborz Fereydoun-Forouzandeh and Otmane Ait Mohamed
Department of Electrical and Computer Engineering

Concordia University, Montreal, Canada
f ferevd@ece.concordia.ca and ait@ece.concordia.ca -

Abstract

Receiving large number of data packets at
direrent baud rates and different sizes at gatavays
in very high-speed network routers may lead to a
congestion problem and force them to drop some
packets. Several algorithms have been developed to
control this problem. Random Early Detection
(RED) algorithm is well commonly used. In this
paper, we present an FPGA implementation of a
mcdijkd version of RED able to run as fast as I O
Gbps. Furthermore, we discuss three enhancements
of the RED algorithm leading a better performance
suitable for FPGA implementation.

1. Introduction

Bursty data traffic causing global synchronization
leads to congestion problem, and this persuaded the
researchers to innovate some mechanisms to avoid it.
Among them the RED algorithm is well !mown
mechanism to improve TCP's performance and has
alleviated it efficiently. In this paper, we describe an
FPGA implementation of RED, as well as. some
improvements leading to more efficiency in average
computation which will reduce packets loss. The rest
of the paper is organized as follow: In Section 2, we
briefly introduce the RED algorithm and discuss
some of its features and advantages. Section 3
discusses our new FPGA implementation of RED. In
section 4, we present 0111 verification results. Finally,
we conclude and discuss our future research plan.

2. RED (Random Early Detection)

In RED algorithm there are two threshold levels
''Mi-th" and "Max-th" as Minimum and Maximum
threshold levels of Average queue length (Avg).
RED algorithm calculates new Avg on every
amving packet and verifies if it is between the two
threshold levels and then decides to drop based on
this Avg instead of the queue length (q)[l]. As long
as the Avg is below the Mn-th, the newly arrived
packet is queued. If the Avg is above the Max-th,
the newly arrived packet is dropped. When the Avg

is between the Min-th and Max-th the decision is
based on three parameters: the probability factor Pb,
a random number R (R in [0,1]) and a counter C
which counts the number of queued packets since the
last drop decision. Pb represents a uniform
distribution over Min-th and Max-th. It is computed
by the following formula:

Pb = h k - P (Avg - Mu-th)/(Max_th ~ &-&)

where M a x g is a constant (M a g in [1/30, 1/60]).
Finally the drop decision is based npon the
evaluation of the following conditions:

IfC > 0 and C t (Approximation of [R /PbJj then
Drop Ihe amvedpacket

3. Implementation

In this paper, we propose an implementation of
the RED algorithm that supports up to 10 Gbps
targeting the XC2VP30 Virtex-I1 Pro from Xilinx
FPGAs. First let discuss the timing requirements. At
10 Gbps, there is no enough time for arithmetic
floating point multiplication, division or powers. We
should complete all operations on the current packet
before the next one come in. In addition, we should
take into account the required time for external
interface to scan or sample the result. In order, to
estimate the maximum processing time of a given
packet, we must consider several minimum sue
Ethemet packets, (72 - 8 = 64 bytes). arriving hack
to back. We should subtract 8 byes from the 72
since the %bytes for Preamble and SFD fields are
automatically generated by the recipient hardware
[3]. lhis processing time should be equal to the
necessary time to scan 64 bytes at 10 Gbit/s. If
PTune is the above time period, then;

P - m e = 64 byteal(l0 Gbitis) = 51 2"s

For more reliability in our design, we assume the
P-Time as 48 ns. We decompose this time into eight
6 ns stages "SO to S l " . Thus the design requires a
166 MHz internal clock. SO to S7 are used to register
some results to he used in next stages but it does not
mean that we have a pipelined design since packets
amve in different sizes and a random gap time

0-7803-8652-3/04/$20.00 0 2004 IEEE 425 ICFPT 2004

between them. This frequency is obtained by using
the doubled output clock TLK2X" provided by
XLinx FPGA as an intemal clock. This allows us to
provide an extemal clock of 83.33 MHz while clock
specifications have been improved. Especially
falling and rising skews. This is achieved by using
the DLL (Delayed Locked Loop) feature of the
XLinX FPGA which provides a zero delay skew after
it is locked in 3 or 4 clock cycles after reset.

L...
Drop r-l-

Figure-I: Timings of Drop signal

Duty-Cycle-Correction is another DLL's feature
that allowed us to use both falling and rising edges
of the clock. Figure-1 gives an example of a drop
decision as it is taken within the 48 ns time frame. In
this figure P-arrive indicates the arrival of a new
packet, En signal enable the process and the PA-Ack
signal acts as an Acknowledgement. In order to
speed-up the process we have implemented the
multiplication and division by add and shift
operations. So, the results of multiplications and
divisions are chosen very close to positive or
negative powers of "2" because the RED algorithm
is based on approximation [I]. In following
subsection we present our implemented changes to
the original RED algorithm in order to increase its
efficiency.

I . Bing & all [4] proposed a way how to reduce the
excessive packet dropping after a long-term
congestion by halving the Avg on every arrival
packet if the Avg is above Min-th. A closer look
to the algorithm reveals that there is still some
excessive packet dropping, because waiting for
the queue to decrease as one half could still take
much time while dropping all amived packets
before it halves. In this design we have broken
down this long step to several small steps before
it is halved, trying to get closer to queue length as
long as Avg is bigger than q and Min_th. Step
resolution of the Avg is a power of "2". As
shown in FigureJ? effect of S-ODA (Stepped
Over Drop Avoidance) is illustrated comparing
with LPF (Low Pass Filter) (dashed) and ODA
(Over Drop Avoidance) (thick gray). Step
resolution in this design has been chosen as
2"4=16 and our algorithm for LPFIS-ODA
becomes:

afrer e w y packet anival and long-remi congestion do
if (Avg>Min_thi and (q < (Avg - (Avg / Steps))) then

= At,g - (Avg / Steps)
else

End if
End do

Avg

Avg < = (I-u~Avg + Isq

. .
'\ S.ODAi ODA

. ' ,. . . ._: . . ._r
. .. . :

Figure-2: LPFlODA compared with S-ODA

2- In the old RED algorithm, the new Avg is
calculated only after every arriving packet. In OUT
design we calculate the Avg after each packet is
sent too. The advantage could be seen in the case
where there is no packet arrival for a while such
that queue is freeing up spaces due to sending
packets and Avg is not affected, so it keeps invalid
high value previously stored in it which may cause
many excessive packet drops depending on
Min-th and Mn-th levels d e queue has
enough room to accommodate them.

3- In our implementation we have considered the
actual packet length in bytes instead of the number
of packets. This is in contrast to what it's done in
[I] where it's assumed that the entire arrived
packets are of the same length. So, they proposed
two constants Cl (very small, say, almost equal to
2 (-20)) and C2 to calculate Pb as follow:

Cl = m> / (ivk-th - Mi-&)
c 2 = c 1 . M i l - t h
Pb = CI.Avg-C2

In our case, since we are considering different
arrival packet sizes, we have used a coefficient
proportional to the Maximum packet size as a ratio
of arrived packet size which must he interpolated
to calculate the Pb as below:

Pb = (P_Size/Man_P_rize).(CI.Avg-CZ)

This implies that we are dealing with very small
floating point numbers say, 2 to power of (-20)
depending on Maxg , Max-th and Mm-th.
Although calculation is based on approximation,
there is still no easy and fast way to fmd a good
approximation for the result without using any
multiplier or divider. In this paper a fast and easy
heuristic method is exploited to do this job, of
course with appropriate approximation. Note that
the constant Max-P is already chosen:

Pb <= (P-size / Mz-P-slZe) (mj) [(Avg ~ Mil-th)/

(Max_th - Mil-Ih)l E (1)
Packet Size ratio : (P-Size / MaxP-Size)

Already assumed : M a x 9 = 2 (-5) E (2)
Avg distribution : (Avg ~ Mill) / (Max- th - Mi- h)
Packet Size Ratio: (6411518) 5 Packet SizeRatio 9 I

2 (-4) I Packer S u e Ratio 5 2 (0) E (3)
2 " (- 5) 5 Avg Ratio 5 2 "(0) E (4)

Assuming 8K (or 8192) and 24 K (or 24576) for
nonflexible Max-th and Mm-th in this design afler a

426

.......

A\g - SMed-Avg

Figure-3: Block Diagram of the modified RED Algorithm

nonlinear approximation "six divide by two levels"
between them we get the above Avg Ratio range E
(4). In worst case we have to compromise with a
maximum of 25% error for Avg ratio that is almost
the same as RED approximation. Now by Since R is a random number in [0, 11 , then the
substituting the values of equations (2), (3) and (4) result of equation (5) would be in the range [2 7 5) ,

in (1) we get: 2y14)], therefore equation (5) implies to a 14-bit
random number shifted between 0 to 9 bit to the
right. M a x 2 is a constant, and Avg Ratio and

Pb 3 2"(-5) * 2'YO to -5) * 2"(0 to -4)
or Pb+ 27-14) 5 Pb 5 2Y-5)
then W b = R I (2 ^ (- 5) to 2A(-14))

= R $ (2 " (+ 5) to 2"(+14)) E (5)

427

P-Size Ratio could he easily obtained from look up
table. This implementation is illustrated in a few
blocks in Figure3 that describes the block diagram
of our implementation where the input signals PA,
PS, PAS(16-bit), PSS(l6-hit), M‘(2-hit) represent
Packet Arrival, Packet Sent, Arrived Packet Size,
Sent packet size, and the weight of the queue,
respectively. W is in the range of 27-61 and 27.9). In
Block B-1 every arrived or sent packet size is
increased or decreased by old queue length (s) even
if both happen at the same time. Block B-2
calculates new Avg on every arriving or sent packet
considering weight of queue ‘W, as it’s done in
LPFIS-ODA (see section 3. 1.). In case of LPF, Avg
is approximated as [A V ~ + w (q - Avg)] in two clock
cycles after receiving the packet sue, othmvise as
[A V ~ - (~vgisieps)]. Block 8-3 is a random Pattem
generator. Although it‘s bard to generate real random
numbers, a well efficient method is exploited in this
design to generate the random number R necessary
for the Drop decision. We have implemented it in
our design to generate a 14-bit width random
number. Our method consists of composing two
standard pseudo random pattem generators; Linear
Feedback Shift Register (LFSR) and Cellular
Automata (CA) which is series of cells (Flip Flops).
Our 14-hit random pattem generator generates up to
97% coverage out of 2714) =16384 before it repeats.
On the other hand, sampling a random number (R)
is done due to unknown events based on anival
packet time, and this makes a well likely real random
number. Inputs to Block B-4 are Avg, Maxg ,
P-Size and R. As explained by the equations (2), (3)
and (4) it provides easily Wpb. Block B-5 compares
the Avg with Mn-th and Max-th levels and issues
the result signals to the fmal control unit. And Block
B-6 receives all the provided signals and information
and makes the appropriate decision to drop or get the
arrived packet. Outputs of this block are Drop,
Valid-Drop, Get, and PA and PS Acknowledgments.

4. Timing results and properties of design

The Design has been synthesized and implemented
into an XC2VP30 Vktex-I1 Pro from Xilinx FPGAs.
Timing results have met the specifications.
According to the fmal Xilinx synthesis reports, every
stage has responded in less than 6 ns and since the
hardware is well paralleliied, thus there is still room
to place more optional features for future work. ‘+e
RTL and behavioral versions have been simulated at
the same start time supplying by a unique packet
generator. Expected results have been achieved. Two
simultaneous portions of the waveforms are shown
in figure-4 as a sample of the results. The black
filled portions show the burstiness of Drops “while:
Avg is above Max-th”, and each single bar
illustrates a Packet Drop “while Avg is between
hfb-tb and May-th”. As we can see, the number of

Drop signals is almost the same for both cases. In
this simulation input load is about 1.4 times the
sending data load. There are obviously reasons for
the differences. First, in RTL, calculations are based
on approximation, but not in the behavioral model.
Secondly, generating Merent random numbers in
each abstraction level results in having drop decision
in different times but their number is almost the
same.

RTL
Drop ...
beh ’
Drop ...
Time i >
0“ 0.8 0.9 I 1.1 1.2 1.3 1.4 1.5

Figure+. Drop events in behavioral and RTL.

5. Conclusion

In this paper, we have presented a new
implementation of the RED algorithm incorporating
several enhancements to avoid excessive packet
drops and to achieve more improvements in average
calculation. The method which is used for
approximated calculations in order to speed up the
process, calculating the average queue size on every
packet sent, exploiting some features of the FPGA’s
DLL are major improvements. The design is scalable
for higher frequency than 10 Gbps. As future work,
we’ll implement the pseudo packet generator inside
the same FPGA (where the design is implemented)
as a built in self test. Intemal values to select
nonflexible constants [l] Mix-th and Max-th, and
also dynamically choosing the appropriate constant
value for weight of queue (W) which is very
effective for example in low traffic situation after a
long term congestion, would be well efficient.

6. References

[I] Sally Floy4 and Van JacobsoR “Random Early
Detection Gateways for Congestion Avoidance”,
IEEE/ACM Transactions on Networking, Lawrence
Berkeley Lab University of California, A u p t , 1993,

[2] Sally Floyd and van Jacobson, “Random Early
Detection Gateways for Congestion Avoidance”,
IEEE/ACM Trans. Networking, 1993 Vol.1, No. 4,
(Aug 1993), pp.397-413.

[3] Scntt Karlin and Larry Petersoq “Maximum Packet
Rates for Full-Duplex Ethemet”, Technical Report
TR_645-02, Department of Computer Science,
%centon University, February 14,2002,

[4] Bing Zheng and Mohammed Atiquzzaman, “Low Pass
Filter/Over Dmp Avoidance (LPFIODA): hi J.
Commnn. Syst. 2002; 15:899-906 (DOI: 10.1002 /
dac.571), School of Computer Science, UNv. of
Oklahoma, Norman, OK 73019, USA. 18, Oct, 2002.

428

