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Abstract. While model checking suffers from the state space explosion
problem, theorem proving is quite tedious and impractical for verifying
complex designs. In this work, we present a verification framework in
which we attempt to strike the balance between the expressiveness of
theorem proving and the efficiency and automation of state exploration
techniques. To this end, we propose to integrate a layer of checking
algorithms based on Multiway Decision Graphs (MDG) in the HOL
theorem prover. We deeply embedded the MDG underlying logic in HOL
and implemented a platform that provides a set of algorithms allowing
the user to develop his/her own state-exploration based application
inside HOL. While the verification problem is specified in HOL, the
proof is derived by tightly combining the MDG based computations
and the theorem prover facilities. We have been able to implement and
experiment with different state exploration techniques within HOL such
as MDG reachability analysis, equivalence and model checking.

1 Introduction

Whenever an error creeps into a design, time and money must be spent to lo-
cate the problem and correct it, and the longer a bug evades a detection, the
harder and more expensive it is to fix. As design complexity increases, simulation
times become prohibitive and coverage becomes poor, allowing numerous bugs
to slip through to later stages of the design cycle. What is needed, therefore,
is a complement to simulation for determining the correctness of a design. For
this reason, there has been a surge of research interest in formal verification
techniques. In general, a formal verification problem consists of mathematically
establishing that an implementation satisfies a specification. The implementa-
tion refers to the system design that is to be verified and the specification refers
to the property with respect to which the correctness is to be determined.

Formal verification methods fall into two categories: proof-based methods,
mainly theorem proving and state-exploration methods, mainly model checking
and equivalence checking. While theorem proving is a scalable technique that can
handle large designs, model checking suffers from the so-called state-explosion
problem which prevents its application to industrial systems. On the other hand,
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while model checking is fully automatic, deriving proofs is a user guided tech-
nique that requires a lot of expertise and hence can be tedious and difficult. Both
techniques do not allow the automatic verification of large systems. So, various
compromises are being explored to combine the strengths of both. They can
be summarized as : (i) tools integration, (ii) adding deduction rules to a state-
of-the-art checking tool, or (iii) deeply embedding checking algorithms inside a
theorem prover. For the first approach, we start with two stand-alone tools, a
theorem prover and a checking tool, where we link the latter to the theorem
prover using scripting languages to be able to automatically verify small sub-
goals generated by the theorem prover from a large system. The starting point
of the second approach is an automatic (model) checker to which we add proving
rules to hopefully extend the verification to complete systems. Finally, the third
approach, which is the one we adopt in our work, consists of embedding algorith-
mic infrastructures inside a theorem prover resulting in a hybrid system tightly
combining checking algorithms and proving facilities. This approach differs from
the first one in the way the verification is performed. In fact, we do not use an
external checking tool, instead we develop state-exploration algorithms inside
the theorem prover.

In this work, we developed a platform of state-exploration algorithms inside
the HOL proof system [9]. Our decision diagram data structure is the Multiway
Decision Graphs (MDGs) [4], which we integrate in HOL as a built-in datatype.
The logic underlying MDGs is embedded as a theory that provides the tools
to specify the verification problem in the logic supported by the MDGs. The
specification consists of a set of HOL formulae that can be represented by their
correspondent MDGs. Operations over these formulae are viewed as MDG op-
erations over their respective graphs. An MDG package is then used to build
the graph representation of HOL formulae allowing the manipulation of graphs
rather than HOL terms. Once available inside the theorem prover, the MDG
data structure and operators can be used to automate parts of the verification
problem or even to write state enumeration algorithms like reachability analysis
or model checking.

The organization of this paper is as follows: Section 2 reviews some related
work. Section 3 describes the embedding of the logic underlying the MDGs in
HOL. Section 4 shows how HOL is linked to the MDG package. In Section 5, we
describe the embedding of the reachability analysis procedure. Sections 6 and 7
illustrate the use of the embedding in the implementation of state-exploration
algorithms and decision procedures, respectively. Section 8, finally, concludes the
paper and gives some future research directions.

2 Related Work

The quest for an efficient combination of theorem proving and model checking
has long been one of the major challenges in the field of formal verification. The
work described here has been strongly influenced by the HolBdd [7,8] system
developed by Gordon. HolBdd consists of a platform allowing the programming
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of Binary Decision Diagrams (BDD) based symbolic algorithms in the Hol98
proof assistant. It provides intimate combinations of deduction and algorithmic
verification. They use a small kernel of ML functions to convert between BDDs,
terms and theorems. Their work was applied to perform reachability program-
ming in Hol98.

A pioneering work in the area of linking theorem proving with automated
verification tools is the one of Joyce and Seger [11] combining HOL and the sym-
bolic trajectory evaluation (STE) tool VOSS. A HOL tactic, VOSS TAC, calls
the VOSS system as a child process of the HOL system to check whether an
assertion, expressed as a term of higher-order logic, is true. Early experiments
with HOL-VOSS suggested that a lighter theorem prover component was suffi-
cient, since all that was needed was a way of combining results obtained from
STE. A system based on this idea, called Voss-ThmTac, was later developed by
Aagaard et al. [1], which combines the ThmTac theorem prover with the VOSS
system. Its power comes from the very tight integration of the two provers, using
a single language, FL, as both the theorem prover’s meta-language and its object
language.

Rajan et al. [18] described an approach where a BDD based model checker
for the propositional µ-calculus has been used as a decision procedure within the
framework of the PVS proof checker [16]. They used µ-calculus as a medium for
communicating between PVS and the model checker. Temporal operators are
given the customary fixpoint definitions using the µ-calculus. These expressions
were translated to the form required by the model checker.

Hurd [10] used PROSPER [5] to combine the Gandalf first-order theorem
prover with HOL. A HOL tactic, GANDALF TAC, is used to enable first-order
HOL goals to be proven by Gandalf and mirror the resulting proofs in HOL. It
takes the original goal, converts it to the appropriate format, and sends it to
Gandalf. Gandalf then parses the proof, translates it to a HOL proof and proves
the original goal in HOL.

Schneider and Hoffmann [19] linked the SMV model checker [13] to HOL
using PROSPER. They embedded the linear time temporal logic (LTL) in HOL
and translated LTL formulae into equivalent ω-Automata, a form that can be rea-
soned about within SMV. The translation is completely implemented by means
of HOL rules. The deep embedding of the SMV specification language in HOL
allows LTL specifications to be manipulated in HOL.

In [12], [17] and later [15] a hybrid tool and a methodology tailored to perform
hierarchical hardware verification have been developed by the Hardware Verifi-
cation Group of Concordia University. The hybrid tool, called HOL-MDG, inte-
grates the HOL theorem prover with the MDG tool by performing equivalence
and model checking using two HOL tactics, MDG EQ TAC and MDG MC TAC,
respectively. In case the design is large enough to cause state explosion, and as-
suming a hierarchical model, a tactic HIER VERIF TAC is called to break the
design into sub-blocks. The same procedure is recursively applied if necessary.
At any point, the goal proof can be done in HOL.



Providing Automated Verification in HOL Using MDGs 281

While [12,15,17] describe systems integrating two stand-alone tools, namely,
HOL and an external MDG tool, the work described in this paper is not intended
to use an external tool to verify subgoals. Instead, MDGs are defined as a built-
in datatype of HOL and operators over MDGs are available in the proof system,
which allows us to tightly combine HOL deduction and MDG computations.
Besides, state-exploration algorithms will be written inside HOL. Thereafter,
the main difference between our approach and the HOL-MDG tool is that our
embedding provides a secure and general programming infrastructure to allow
the users to implement their own MDG-based verification algorithms inside the
HOL system.

The work in [1,10,11,19] use the same approach as the HOL-MDG hybrid tool
in the way they integrate the model checker to the theorem prover. The work
in [18] uses the µ-calculus as a medium for communicating between the theorem
prover and the model checker. It is a shallow embedding of a stand-alone tool’s
language while ours is a deep embedding of the decision diagram data structure
and its operators are embedded inside the theorem prover.

Obviously, the most related work to ours is that of Gordon [7,8]. Our work,
however, deals with embedding MDGs rather than BDDs. In fact, while BDDs
are widely used in state-exploration methods, they can only represent Boolean
formulae. MDGs, however, represent a subset of first-order terms allowing the
abstract representation of data and hence raising the level of abstraction.

3 Embedding the MDG Logic in HOL

3.1 Multiway Decision Graphs

A Multiway Decision Graph (MDG) is a finite directed acyclic graph G where
the leaf nodes are labeled by formulae, the internal nodes are labeled by terms,
and the edges issuing from an internal node N are labeled by terms of the same
sort as the label of N . Such a graph represents a formula defined inductively
as follows: (i) if G consists of a single node labeled by a formula P , then G
represents P ; (ii) if G has a root node labeled A with edges labeled B1, ..., Bn

leading to subgraphs G′
1, ..., G

′
n and if each G′

i represents a formula Pi then G
represents the formula ∨1≤i≤n((A = Bi) ∧ Pi).

The above is of course too general, a set of well-formedness conditions [4]
turns MDGs into canonical representations that can be manipulated by efficient
algorithms. Multiway Decision Graphs are intended to represent Abstract State
Machines (ASM) [4], an abstract description of state machines based on a many-
sorted first order logic with a distinction between abstract and concrete sorts.
It is then possible to let nodes range over abstract sorts for which there is no
enumerable set of edges, and to use non-mutually-exclusive first-order terms as
edge labels. More details on MDG are described in the sections to follow.

3.2 MDG Sorts

An enumeration is a finite set of constants. While concrete sorts have enumer-
ations, abstract sorts do not. This is embedded in HOL using two constructors
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called Concrete Sort and Abstract Sort. The former takes as arguments a sort
name and its enumeration to define a concrete sort. For example, if state is a
concrete sort with [ stop; run ] as enumeration, then this is declared in HOL by:

�def state = Concrete_Sort "state" [stop;run]

To define an abstract sort of type alpha (which means that the sort is actu-
ally abstract and hence can represent any HOL type) we use the Abstract Sort
constructor as follows:

�def alpha = Abstract_Sort "alpha"

To determine whether a sort is concrete or abstract, we use predicates over the
sorts constructors called IsConcreteSort and IsAbstractSort. These predicates
will be used for instance to determine the sort of a variable or a function symbol.

The vocabulary of the MDG based logic consists of concrete and generic
constants, variables and function symbols (also called operators). The distinction
between abstract and concrete sorts leads to a distinction between three kinds
of function symbols. Let f be a function symbol of type α1 × ...×αn → αn+1. If
αn+1 is an abstract sort then f is an abstract function symbol. Abstract function
symbols are used to denote data operations and are uninterpreted. If all α1...αn+1
are concrete, f is a concrete function symbol. Concrete function symbols, and
concrete constants as a special case, can always be entirely interpreted and thus
be eliminated; for simplicity, we assume that they are not used. Finally, if αn+1
is concrete while at least one of α1...αn is abstract, then we refer to f as a
cross-operator.

3.3 MDG Variables

An abstract variable can be either primary or a secondary variable. A primary
variable labels a node in the graph while a secondary variable is an abstract
variable occurring in the argument list of a function symbol. It can also be
an abstract variable labeling an edge in the graph. In our embedding, a pri-
mary abstract variable is declared using the Abstract Var constructor. The Sec-
ondary Var constructor is used to declare a secondary variable.

A variable is identified by its name and sort. For example, If x is a concrete
variable of sort state, declared above, then this is written in HOL as follows:

�def x = Concrete_Var "x" state

Similarly, we use some predicates to determine whether a variable is concrete, ab-
stract or secondary. They are called, respectively, IsConcreteVar, IsAbstractVar
and IsSecondaryVar.

3.4 MDG Constants

A constant can be either an individual (concrete) constant or an abstract generic
constant. The latter is identified by its name and its abstract sort. The individual
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constants can have multiple sorts depending on the enumeration of the sort in
which they are. We use the Individual Const and Generic Const constructors
to declare constants in HOL. For example, the enumeration of the concrete
sort state is [stop ; run ]. stop and run are two individual constants that have
state as their sort. They must be already defined in order to be able to declare
the sort state. To check whether a constant is an individual constant or an
abstract generic constant, we define two predicates, IsIndividualConstant and
IsGenericConstant.

3.5 MDG Functions

MDG functions can be either concrete, abstract or cross-operators. As mentioned
before, concrete functions are not used since they can be eliminated by case
splitting. Cross-functions are those that have at least one abstract argument.
But when we focus on terms that are concretely reduced, all the sub-terms of a
compound term (abstract/cross function) have to be abstract. In addition they
are secondary variables.

In general, a function is identified by its name, the sorts of its arguments
and its sort. In this case, we specify the variables rather than sorts because we
focus on cross-terms or abstract terms instead of the correspondent symbols. If
equal is a function that checks if two abstract variables are equal, then, equal is
a cross-function.

�def bool = Concrete_Sort "bool" ["0";"1"]
�def y1 = Secondary_Var "y1" alpha
�def y2 = Secondary_Var "y2" alpha
�def equal = Cross_Function "equal" [y1;y2] bool

If max is a function that takes two abstract variables as arguments and returns
the greater one, then max is an abstract function.

�def max = Abstract_Function "max" [y1;y2] alpha

The predicates IsAbstractFunction and IsCrossFunction are used to determine
the nature of a compound term.

3.6 MDG Terms

MDG terms are either individual constants, generic constants, concrete or ab-
stract variables, cross-operators or abstract function symbols. We provide a con-
structor called MDG Term that is used every time a new term is declared. The
single constructor is used so that terms will have the same type and hence can
be used in equalities. In fact if x is declared using the Concrete Var constructor
and stop using the Individual Const constructor, we will not be able to write
an equation of the form x = stop due to type mismatching. However, such an
equation is possible if both are declared using the same constructor.
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3.7 Well-Formed MDG Terms

For BDDs to be canonical, they have to be reduced and ordered. Similarly,
MDGs require certain well-formedness conditions to canonically represent the
MDG terms. Such terms are called Directed Formulae (DF). Given two disjoint
sets of variables U and V , a DF of type U → V is a formula in disjunctive normal
form (DNF) such that

1. Each disjunct is a conjunction of equations of the form:
– A = a, where A is a cross-term of concrete sort α containing no vari-

ables other than elements of U , and a is an individual constant in the
enumeration of α, or

– u = a, where u ∈ U is a variable of concrete sort α and a is an individual
constant in the enumeration of α, or

– v = a, where v ∈ V is a variable of concrete sort α and a is an individual
constant in the enumeration of α, or

– v = A, where v ∈ V is a variable of abstract sort α and A is a term of
type α containing no variables other than elements of U ;

2. In each disjunct, the left hand sides of the equations are pairwise distinct;
and

3. In each disjunct, every variable v ∈ V should appear as the left hand side of
an equation v = A.

Conditions 2 and 3 must be respected by the user when specifying the verifica-
tion problem. Condition 3 is less stringent than it seems. In practice, one can
introduce an additional dependent variable u and add an equation v = u to a
disjunct where an abstract v is missing.

For example, we embedded condition 1 in HOL and check it using the func-
tion Well formedTerm that, recursively, calls Well formedEQ to check the well-
formedness of an equation. In the definition below, eq is an equation of the form
lhs = rhs.

�def Well_formedEQ eq =
((IsConcreteVar lhs) ∧ (IsConcreteConstant rhs)) ∨
((IsCrossFunction lhs) ∧ (IsConcreteConstant rhs)) ∨
((IsAbstractVar lhs ) ∧ (IsAbstractFunction rhs)) ∨
((IsAbstractVar lhs ) ∧ (IsAbstractVar rhs)) ∨
((IsAbstractVar lhs ) ∧ (IsGenericC rhs)) ∨
(IsBool lhs)

4 Linking HOL to the MDG Package

The MDG logic is embedded in HOL to make it possible to specify a verifica-
tion problem in HOL in terms of formulae that can be represented by canonical
MDGs. The next step would be to provide the necessary tools to build and ma-
nipulate the graph representations of these formulae. This platform will consist
of ML functions that call an MDG package as an external process. The package
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is invoked using a script file, in which, the different manipulations to be done
in MDG are specified. For example, to perform the conjunction of a list of well-
formed terms, we use the ML function Conj. This function calls an intermediate
function to write the script file corresponding to a conjunction, then calls the
specific MDG functions to perform the operation and eventually return the result
to HOL. The ML functions pass the script file to the MDG package using the
system function. The latter computes the result (MDG graph) and then writes it
in a file “mdghol.ch”. Using the function ReadMdgOutput, the result is retrieved.

4.1 Constructing MDGs in HOL

To construct the graph representation of a HOL term, we use the function
termToMdg. Well-formedness conditions are first checked using the predicate
Well formedTerm, which either raises an exception when this is not the case or
begins gathering the information to call the package.

The first step is to determine the sorts of all the sub-terms using the func-
tion ToMdgSorts. If a sub-term is of concrete sort Sort, it is declared as con-
crete sort(Sort,Enum), where Enum is the enumeration of Sort. When an ab-
stract sort, say alpha, is encountered, then it is declared by abs sort(alpha). For
example, if a term A includes a concrete variable of sort bool and an abstract
variable of sort alpha, then ToMdgSorts returns the following list:

[conc_sort(bool,[0,1]),abs_sort(alpha)].

The second step is to declare all the variables, functions and generic constants
used in the term. A variable is declared by signal(label,sort). A generic constant
is declared by gen const(label,sort). When a function is encountered, both the
secondary variables and the function symbol must be declared. The function
symbol is declared as function(f,[sorts],sort). sorts are the sorts of the secondary
variables, arguments to the function symbol f . sort is its target sort.

Thereafter, termToMdg writes the variables order list in the script file and
then calls the function header responsible for retrieving the list of the LHSs
and RHSs of the equations in the term which will be the parameters of the
mdg function. The latter is then called and the result is retrieved using the
readMDGOutput function. Instead of returning the whole graph structure, we
return only its ID, which will be used to map the term to its MDG representation.

4.2 Embedding MDG Basic Operators

The MDG operators are embedded, as well, to allow the manipulation of graphs
rather than terms. We show below the basic MDG operators.

- Conj: performs the conjunction of a set of graphs;
- Disj: performs the disjunction of a set of graphs;
- Relp (Relational Product): used for image computation. It takes the con-

junction of a collection of MDGs, having pairwise disjoint sets of abstract
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primary variables, and, existentially quantifies with respect to a set of vari-
ables, either abstract or concrete, that have primary occurrences in at least
one of the graphs. In addition, it can rename some of the remaining primary
variables according to a renaming substitution;

- PbyS (Pruning By Subsumption): used to approximate the set difference
operation. Informally, it removes all the paths of a graph P from another
graph Q.

5 Reachability Analysis in HOL

The reachability analysis is embedded using the MDG operators interfaced to
HOL. We show here the different steps to compute the set of the reachable states
of an abstract state machine.

5.1 Computing Next States

Let I, B and R be, respectively, a set of inputs, a set of initial states of a machine
and its transition relation. The set of next states reached from B with respect
to the transition relation R is computed using the ML function ComputeNext.
This is done by, first, computing the graphs of I, B and R. The RelP operator
is then used after identifying the renaming substitution function and the set
of inputs and state variables over which the MDG is quantified. The resulting
graph represents the set of next states.

5.2 Computing Outputs

The set of outputs corresponding to a set of initial states and inputs, with respect
to an output relation O is computed in the same way as the next states. But
instead of using the transition relation R of the machine, the output relation O
is used. For every state of the machine, and a set of data inputs, corresponds
a set of output values. These will be used to check if an invariant holds in the
current state.

5.3 Computing Frontier Set

The frontier set is the set of newly visited states. If V represents the set of states
already visited, Vn = ComputeNext(I V R) is the set of next states reached
from V . In this case the frontier set is Vn \ V which is represented by the ML
function ComputeFrontier. The frontier set is used to check if all the states
reachable by the machine are already reached. If this is the case (the frontier
set is empty), then the reachability analysis terminates and the set of reachable
states is returned. If the frontier set is not empty, then new states were visited
during the last iteration. In this case, the analysis continues until reaching the
fixpoint (set).
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5.4 Computing Reachable States

The set of reachable states is the set of all the states of a machine, starting
from an initial state, for a certain set of inputs. For abstract state machines, the
state space can be infinite. Hence, the set of reachable states may not exist1. We
implemented in HOL the solutions proposed in [2] to compute the set of reachable
states which we represented by the function, ComputeReachable2, defined in
Figure 1.

ComputeReachable GI GB GR =

K = 0, S = GB

loop

end loop

end;

K = K + 1
N = ComputeNext GIK GB GR

if ComputeFrontier N S = F then return success

GB = ComputeFrontier N S

S = Disj N S

Fig. 1. Reachability Analysis Algorithm

ComputeReachable computes the set of reachable states S of a state machine
described by its transition relation, starting from an initial state and for a certain
data input. S is initialized to B (the initial state), and the sets of next-states
are computed until reaching a fixpoint characterized by an empty frontier set.

6 Invariant and Model Checking in HOL

6.1 Invariant Checking

Invariant checking is a direct application of the reachability analysis algorithm.
It consists of checking that a property or an invariant holds on the outputs
of a state machine in every reachable state. First, the invariant is checked in
the initial state. This is done by computing the outputs corresponding to that
state and then using the MDG operators to check that these outputs satisfy the
invariant. After that, next-states are computed and for every state reached, the
invariant is checked on the outputs. In a given iteration, if the outputs of the
machine satisfy the invariant, then the procedure continues for the next-state.
If, on the other hand, the invariant does not hold, the analysis terminates and
a failure is reported. A counterexample can be generated to trace the error.
1 This is the well-known non-termination problem in MDG, which is discussed in [2]

providing various heuristics to solve it.
2 For the sake of clarity, this is just a simplified version of the algorithm
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We implemented the invariant checking algorithm in HOL as an ML function
InvariantChecking which takes as arguments:

– TR: the transition relation specified as a list of directed formulae;
– OR: the output relation specified by a directed formula;
– IN : the initial state specified by a directed formula;
– Inputs: the input variables list;
– States: the state variables list;
– NxStates: the next-state variables list corresponding to States.
– Inv: the invariant to be checked, specified as a directed formula.

We implemented in HOL the function InvariantChecking as defined in Figure 2.
It first, builds the graphs of the transition relation, output relation, the initial
state and the invariant using the function termToMdg. Then, generates the input
graph. After that, the outputs are computed using NewOutputs and then the
invariant is checked. If the invariant holds, the next-state variables are computed
using ComputeNext. Checking the frontier set will cause the termination of the
analysis or another iteration.

S = Disj N S

R = ComputeFrontier N S

if ComputeFrontier N S = F then return success

N = ComputeNext GIK R GTR

if (PbyS OS GInv) �= F return failure

OS = ComputeOutputs GOR R GIK

// generates the input graph GIK

K = K + 1

end InvariantChecking;

end loop

loop

K = 0, S = GIN , R = GIN

// builds the MDG representations

InvariantChecking TR OR IN Inputs States NxStates Inv =

Fig. 2. Invariant Checking Algorithm

6.2 Model Checking

MDG temporal operators can be implemented in HOL for model checking. In
Figure 3 we present, for illustration purposes, how the operator AF on a first-
order property formula P [20] is embedded. All the MDG model checking algo-
rithms are embedded in HOL in a similar fashion. More details can be found
in [14].
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end Check AF;

C = ComputeNext GIN Q GTR

K = K + 1

end loop

Σ = Disj Σ Q

if ComputeFrontier Σ Q �= Σ then return failure

if Q = F then return success

// removes states satisfying P

= ComputeFrontier C GP

loop

// Σ contains sets of states not satisfying P

K = 0, Σ = F , C = GIN

// builds the MDG representations GTR, GIN , GP

Check AF TR IN Inputs States NxStates P =

Fig. 3. Model Checking Algorithm for AF

6.3 Application

We have experimented our embedding on some benchmark examples and case
studies, including the Island Tunnel Controller (ITC), which was originally intro-
duced by Fisler and Johnson [6]. The ITC controls vehicles traffic in a one-lane
tunnel connecting the mainland to a small island. The ITC is specified using
three communicating controllers and two abstract counters. We used the invari-
ant checking procedure discussed above to verify a number of properties on the
ITC. For each property, we derived those transition relations and variables in-
volved in the property (specified manually) and let the property checking run
automatically from within HOL. This reduces the verification problem and pro-
motes hierarchical verification. In fact, every module of the design can be treated
separately. Thus, enhancing a lot the performance of the verification task in
terms of memory usage compared to verifying the whole system in MDG. It is
needless to mention that the memory usage is one of the most challenging factors
in formal verification as it is the cause of the state-space explosion problem.

Table 1 summarizes the verification results of checking a set of properties
on ITC using: (1) pure MDG, (2) the MDG-HOL shallow embedding approach
[15], and (3) our MDG-HOL deep embedding. A “*” beside a property means
that this latter failed in the invariant checking, where a counterexample is gen-
erated. Experiments are run on an Ultra2 Sun workstation with 296Mhz CPU
and 768MB memory. The CPU times represent the system times to perform the
reachability analysis. They also include the time to translate the HOL specifica-
tion to MDG files in the case of our HOL-MDG deep embedding. The memory
usage statistics represent the total memory used by the MDG tool to build the
different graphs. As expected, when the verification can be handled using pure
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Table 1. Performance comparison for the ITC benchmark

CPUsec MemoryMByte

Property MDG HOL-MDG HOL-MDG MDG HOL-MDG HOL-MDG

(Shallow) (Deep) (Shallow) (Deep)

Property1 0.87 1.15 101.9 0.66 0.47 0.220
*Property2 0.55 0.87 52.8 0.27 0.23 0.013
Property3 0.57 0.91 54.9 0.31 0.26 0.077
Property4 0.53 0.81 44.3 0.23 0.22 0.02
Property5 0.71 1.04 72.0 0.37 0.32 0.058
Property6 0.53 0.80 44.8 0.24 0.17 0.035
Property7 0.69 0.96 63.9 0.33 0.27 0.039
Property8 0.70 0.98 64.2 0.32 0.27 0.039
Property9 0.54 0.85 45.4 0.21 0.15 0.035

MDG or shallow embedding, the CPU time is lower compared to the time needed
for verifying using our deep embedding of MDG in HOL. However, the latter
remains reasonable especially when the timing is not the major performance
measure. On the other hand, we notice the drastic memory usage reduction pro-
vided by the deep combination of HOL and MDG compared to using pure MDG
or the shallow embedding of MDG in HOL. This reduction can be explained by
the fact that we are considering the graphs of each directed formula separately
instead of working with the whole system to verify, leading to a better garbage
collection. This advantage is crucial because it would enable the handling of
larger designs. More details about the ITC models and properties specification
and verification can be found in [14].

7 MDG as a Decision Procedure

The multiway decision graphs are a canonical representation of the directed for-
mulae. Two directed formulae are equivalent if and only if they are represented
by the same graph for a fixed order. This property can be used to prove auto-
matically the equivalence of HOL terms or to check that a formula is a tautology
in case it is represented by the MDG true.

7.1 Combinational Equivalence Checking

We provide here a decision procedure that enables us to verify automatically the
equivalence of a certain subset of first-order HOL terms. This is performed using
the ML function EquivCheck.

�def EquivCheck order t1 t2 =
let s1 = termToMdg order t1

s2 = termToMdg order t2
in (s1=s2)
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Using EquivCheck we write an oracle that builds a theorem stating the equiva-
lence between terms. The theorem is not derived from axioms and inference rules,
which will endanger the security provided by the HOL reasoning style. Theo-
rems created using the oracle are tagged so that an error can be traced whenever
it occurs. This kind of decision procedures are widely used to introduce some
automation to the theorem provers.

7.2 Tautology Checking

A formula is a tautology if it is represented by the MDG T . This makes the
check very easy for the subset we consider, which are the directed formulae. We
use the ML function Tautology which we implemented in HOL.

�def Tautology order t =
let s = termToMdg order t
in (isTrue s)

8 Conclusions and Future Work

Expertise and user guidance is a major problem for applying theorem proving on
even the most trivial systems. On the other hand, state exploration techniques
suffer from the state space explosion problem, which limits their applications to
industrial designs. An alternative to these techniques would be to combine the
advantages of both in a hybrid approach that will lead to a hopefully, automatic
or semi-automatic technique, which can handle large designs. In this paper, we
proposed an approach that allows certain verification problems, specified in the
HOL theorem prover, to be verified totally or in part using state-exploration
algorithms. Our approach consists of an infrastructure of decision diagrams data
structure and operators made available in HOL, which will allow the user to
develop his/her own state-exploration algorithms in the HOL proof system. The
data structure we considered in our work is the multiway decision graphs (MDG).
MDG is an extension to the well-known binary decision diagrams (BDD) in that
it eliminates the state explosion problem introduced by the datapath.

The platform we provide allowed us to develop state-exploration algorithms
inside HOL like reachability analysis, model checking and invariant checking pro-
cedures. We also developed decision procedures based on the MDGs allowing the
equivalence and tautology checking of a certain subset of HOL terms automat-
ically. Finally, we demonstrated the feasibility of our approach by considering
some case study examples, which we have been able to verify using a seamless
interaction between HOL and MDG.

The embedding of the MDGs in HOL opens the way to the development of
a wide range of new verification applications combining the advantages of state-
exploration techniques and theorem proving. There are many opportunities for
further work on using this embedding for formal verification. For instance, MDG
canonicity can be used in HOL for term simplification. In fact, when built, MDGs
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are reduced by construction. Retrieving the term represented by this graph gives
a simplification of the original one. The Embedding can be used for the formal
proof of the soundness of the MDG algorithms extending the work in [21],
where the correctness of the MDG system translators was proved, ensuring the
correctness of the whole MDG system. A similar work was done in [3] to verify a
SPIN model checking algorithm in HOL. Finally, the embedding can be enhanced
by using the LCF style [9]. In this case, an MDG representation for a HOL term
can only be derived using inference rules and trivial MDGs. The graph of a
directed formula is derived from the graphs of its equations (trivial MDGs) and
the MDG operators (inference rules). This restricts the scope of soundness to
single operators which, are easier to get right [8].
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