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Abstract. In this paper, we describe a first-order linear time temporal
logic (LTL) model checker based on multiway decision graphs (MDG).
We developed a first-order temporal language, LMDG∗, which expresses
a subset of many-sorted first-order LTL and extends an earlier language,
LMDG , defined for an MDG based abstract CTL model checking. We
derived a set of rules, enabling the transformation of LMDG∗ formu-
las into generalized Büchi automata (GBA). The product of this GBA
and the abstract state machine (ASM) model is checked for language
emptiness. We have lifted two instances of the generalized Strongly Con-
nected Component(SCC)-hull (GSH) checking algorithm [17] to support
abstract data and uninterpreted functions based on operators available
in the MDG package. Experimental results have shown the superiority
of our tool compared to the same instances of GSH implemented with
BDDs in VIS.

1 Introduction

Formal verification has received considerable attention from the electrical en-
gineering, computer science and the industry communities, where many BDD
based formal verification tools being developed over the years. These, however,
suffer from the well-known state space explosion problem. Multiway Decision
Graphs (MDGs) [5] have been introduced as one way to reduce this problem.
MDGs are based on a many-sorted first-order logic with a distinction between
concrete and abstract sorts. Abstract variables are used to represent data sig-
nals, while uninterpreted function symbols are used to represent data operations,
providing a more compact description of circuits with complex data path. Many
MDG based verification applications have been developed during the last decade,
including invariant checking, sequential equivalence checking, and abstract CTL
model checking [21] of abstract state machines (ASM) [5]. The MDG tools are
available at [22].

In this paper we introduce a new MDG verification application by imple-
menting automata based model checking of a subset of first-order linear time
temporal logic (LTL). Generally, LTL model checking verifies a Kripke structure
with respect to a propositional linear time temporal logic (PLTL) formula. A
PLTL formula φ is valid if it is satisfied by all paths of the Kripke structure
M . The validation of φ can be done by converting its negation into a Gener-
alized Büchi Automaton (GBA) [19] B¬φ, composing the automaton with the

F. Wang (Ed.): ATVA 2004, LNCS 3299, pp. 441–455, 2004.
c� Springer-Verlag Berlin Heidelberg 2004



442 F. Wang, S. Tahar, and O.A. Mohamed

model M , and checking its language emptiness [19]. The main idea of the work
we describe in this paper is to lift classical LTL model checking procedures to
the language emptiness checking (LEC) of a GBA encoded with MDGs. To this
end, we define an extended temporal logic, called LMDG∗, for which we have
developed a set of derivation rules that transform LMDG∗ properties into PLTL
formulas augmented with a transformation circuit, which will be composed with
the system model (ASM) under verification. We use an automata generator to
get a GBA for the negation of this PLTL formula. Language emptiness checking
based on two instances of the GSH algorithm [17] is finally performed on the
product of this latter and the composed ASM described earlier. We call this new
MDG verification application MDG LEC.

The rest of the paper is organized as follows: Section 2 describes related
work. Section 3 overviews the notion of multiway decision graphs. Section 4
defines the first order linear temporal logic LMDG∗ and related transformation
rules. Section 5 describes the language emptiness checking algorithms. Section
6 provides a case study applying the developed MDG LEC tool on an ATM
(Asynchronous Transfer Mode) switch fabric. Finally, Section 7 concludes the
paper.

2 Related Work

The idea of first-order temporal logic model checking is not new. For instance,
Bohn et. al [3] presented an algorithm for checking a first-order CTL specification
on first-order Kripke structure, an extension of “ordinary” Kripke structures by
transitions with conditional assignments. The algorithm separates the control
and data parts of the design and generates the first-order verification conditions
on data. The control part can be verified with Boolean model checking, while
the data part of the design has to be verified using interactive theorem proving.
Compared to this work, our logic is less expressive since LMDG∗ cannot accept
existential quantification. However, in our approach the property is checked on
the whole model automatically, while in [3] a theorem prover is needed to validate
the first-order verification conditions. Besides, our method can be applied on
any finite state models, while their application is limited to designs that can be
separated into data and control parts.

Hojati et.al [13] proposed an integer combinational/sequential (ICS) concur-
rency model to describe hardware systems with datapath abstraction. They used
symbols such as finite relations, interpreted and uninterpreted integer functions
and predicates, and proceeded the verification of ICS models using language
containment. For a subclass of “control-intensive” ICS models, integer variables
in the model can be replaced by enumerated variables, hence enabling a verifi-
cation at the Boolean level without sacrificing accuracy. Compared to ICS, our
ASM models are more general in the sense that the abstract sort variables in
our system can be assigned any value in their domain, instead of a particular
constant or function of constants as in ICS models. For the class of ICS mod-
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els where finite instantiations cannot be used, our verification system can still
compute all the reachable states and check properties.

Cyrluk and Narendran [6] defined a first-order temporal logic—ground tem-
poral logic (GTL), which for universally quantified computation paths, falls in
between first-order and propositional temporal logics. GTL models consist of
first-order language interpretation models and infinite sequences of states. The
validity problem is the same as checking of an LTL formula. The authors fur-
ther identified a decidable fragment of GTL, which consists of ✷P (always P)
formulas, where P is a GTL formula only containing an arbitrary number of
“Next” operators. For this decidable fragment, they did not show how to build
the decision procedure, though. Compared to [6], our LMDG∗ is more expressive
(cf. Section 4).

In [4], Burch and Dill also presented a subset of first-order logic, specifically,
quantifier-free logic of equality with uninterpreted functions, to specify proper-
ties for verifying microprocessor control circuitry . Their method is appropriate
for verification of microprocessor control because it allows abstraction of dat-
apath values and operations. However, their approach cannot verify liveness
properties.

Based on MDGs, Xu et. al [21] developed an abstract CTL model check-
ing tool, which verifies an ASM with respect to a first-order temporal logic
(LMDG). LMDG consists of limited set of templates including: A(P ), AG(P ),
AF(P ), A(P )U(Q), AG(P → (F(Q)), and AG((P ) → ((Q)U(R)), where P , Q,
and R are Next let formulas.1 This MDG tool does not allow temporal operator
nesting and cannot deal with properties beyond its templates. For example, a
property like G(a = 1 → F(b = 1) ∧ F(c = 1)) cannot be expressed in LMDG .

3 Multiway Decision Graphs

The underlying logic of MDGs is a many-sorted first-order logic with a distinc-
tion between concrete and abstract sorts. Concrete sorts have an enumeration,
while abstract sorts do not. This distinction leads to the definition of concrete
variables, abstract variables, individual constants appearing in the enumeration,
generic constants of abstract sorts, abstract function symbols and cross-operators
[5]. Let f denote a function symbol of type α1 × . . .×αn → αn+1. Then, if αn+1
is an abstract sort, then f is an abstract function symbol; if αn+1 is a concrete
sort, and at least one of the sorts α1, . . . , αn is abstract, f is a cross-operator.

An interpretation is a mapping ψ that assigns a denotation to each sort, con-
stant and function symbol and satisfies the following conditions: 1) The denota-
tion ψ(α) of an abstract sort α is a non-empty set; 2) If α is a concrete sort with
enumeration {a1, · · · , an} then ψ(α) = {ψ(a1), · · · ψ(an)}, and ψ(ai) �= ψ(aj)
for 1 ≤ i ≤ j ≤ n; 3) If c is a generic constant of sort α, then ψ(c) ∈ ψ(α); 4) If f
is a function symbol of type α1 ×· · ·×αn → αn+1, then ψ(f) is a function map-
ping from ψ(α1) × · · · × ψ(αn) into the set ψ(αn+1); 5) A variable assignment
1 Since our LMDG∗ is an extension of LMDG , Next let formula will be explained in

Section 4.
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with the domain X compatible with an interpretation ψ is a function φ that
maps every variable x ∈ X of sort α to an element φ(x) of ψ(α), Φψ

X is used to
represent the set of ψ-compatible assignments of the variables in X; 6) ψ, φ |= P
means that the formula P is true under an interpretation ψ and ψ−compatible
variable assignment φ, ψ |= P represents ψ, φ |= P for every ψ−compatible vari-
able assignment φ, and |= P means ψ |= P for all ψ; Two formulas P and Q are
logically equivalent iff |= P ⇔ Q.

An MDG is a finite directed acyclic graph. An internal node of an MDG
can be labeled with a concrete variable with its edge labels being the individual
constants in the enumeration of the sort; Or it can be an abstract variable and
its edges are labeled by abstract terms of the same sort; Or it can be a cross-
operator with its edges labels being the individual constants. An MDG may have
only one leaf node denoted as T, which means all paths in the MDG correspond
to true formula. MDGs are used to represent relations as well as sets in abstract
state machines (ASM). An ASM is defined as a tuple D = (X, Y, W, FI , FT , FO),
where X, Y and W are disjoint finite sets of input, state, and output symbols,
respectively. FI is an MDG representing the initial states, FT is an MDG for the
state transition relation, and FO is an MDG for the output relation.

The MDG package provides a set of basic operators, including conjunction
(Conj) of a set of MDGs with different nodes of abstract variables; Disjunc-
tion (Disj) of a set of MDGs; Relational Product (RelP), which computes con-
junction, existentially quantification, and renaming substitution in one pass;
Pruning by Subsumption (PbyS) produces an MDG, representing the differ-
ence of two abstract sets, given say by MDGs P and Q, by pruning the edges
from P contained by Q. Finally, a procedure ReAn(G, C) computes the set
of reachable states of a state machine M = (Φψ

X , Φψ
Y , Φψ

Z , SI , RT , RO) repre-
sented by D, with any interpretation ψ, while the invariant condition C holds
in all reachable states. In M , SI = Setψ(FI) = {φ ∈ Φψ

Y | ψ, φ |= (∃U)FI},

RO = Setψ(FO) = {(φ, φ�, φ��) ∈ Φψ
X × Φψ

Y × Φψ
Z | ψ, φ ∪ φ� ∪ φ�� |= FO}, and

RT = Setψ(FT ) = {(φ, φ�, φ��) ∈ Φψ
X × Φψ

Y × Φψ
Z | ψ, φ ∪ φ� ∪ φ�� |= FT }.

4 MDG Language Emptiness Checking Approach

4.1 MDG LEC Tool Structure

The structure of the MDG LEC is shown in Figure 1. It takes as inputs a property
ϕ in a first-order temporal logic LMDG∗ (to be defined later) and a system
design M modeled as an ASM. The tool first transforms the LMDG∗ formula
ϕ into a set of atomic propositions (APϕ) augmented by a circuit Cϕ, which
constructs all basic logic operators as well as equality conditions. The details on
the construction will be given in Section 4.3. The tool then builds the equivalent
PLTL formula φ. Cϕ is further composed with M to produce a new ASM M � by
the composer, which connects ASM variables (input, state and output signals) in
Cϕ with the system model. Using APϕ, we reconstruct a syntactically equivalent
PLTL property formula φ, which we feed into an automata generator producing
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a GBA B¬φ. The latter is then composed with M � to produce an ASM M ��

and a set of fairness conditions fB¬φ
. Finally, the tool checks if the language of

the composed machine is empty using an adapted forward generalized Strongly
Connected Component(SCC)-hull (GSH) algorithm [17]. In the following, we give
a definition for LMDG∗ and detail the transformation procedure. The checking
algorithm will be described in Section 4.
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Fig. 1. Structure of MDG LEC

Given a PLTL formula φ, there exist many procedures to generate a GBA
B¬φ for φ such that GPVW [11], GPVW+ [11], LTL2AUT [7], and Wring [10].
Although these procedures are based on the same tableau construction method,
Wring improves on others by applying rewriting on the PLTL formula and sim-
plifying the result GBA. We have chosen the Wring procedure for the automaton
generation in MDG LEC. The constructed GBA is an ω-automaton with several
sets of accepting states defined as the fairness condition. A run is accepted if it
contains at least one state in every accepting set infinitely often. As a result, the
language of the automaton is nonempty iff the automaton contains a fair cycle
– a (reachable) cycle that contains at least one state from every accepting set,
or equivalently, a (reachable) nontrivial SCC that intersects each accepting set
[19].

4.2 LMDG∗: A First-Order Temporal Logic

Let F be a set of function symbols and V a set of variables. We denote the set
of terms freely generated from F and V by T (F , V). The syntax of an LMDG∗

formula is given by the following grammar:

Sort S ::= S | S
Abstract sort S ::= α | β | γ | . . .
Concrete sort S ::= α | β | γ | . . .
Generic constant C ::= a | b | c | . . .
Concrete constant C ::= a | b | c | . . . | 0 | 1 | . . .
V ariable V ::= V | V | V
Abstract variable V ::= x | y | z | . . .
Concrete variable V ::= x | y | z | . . .
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Ordinary variable V ::= x | y | z | . . .

Atomic formula A ::= true | false | Eq
Eq ::= V1 = V2 | V = C | V1 = C | C1 = C2 | V = T (F , V)

Next let formula N ::= A |!N | N & N | N � N | N → N | X N
| LET (V = V ) IN N

Property P ::= N |! P | P1 & P2 | P1 � P2 | P1 U P2 | P1 R P2 | G P
| F P

Semantics. An infinite path π in an ASM M is an infinite sequence of
states. We denote by πi the suffix of π beginning with the state πi, which is
the ith state in π. We use V alφ∪σ(t) to denote the value of term t under a ψ-
compatible assignment φ (cf. Section 3) to state variables, input variables, and
output variables and a ψ-compatible assignment σ to the ordinary variables v.
The satisfaction of an LMDG∗ formula along a path π under the ψ-compatible
assignment σ to the ordinary variable v is defined inductively as follows.

π, σ |= t1 = t2 iff V alπ0∪σ(t1) = V alπ0∪σ(t2).
π, σ |= LET (v = t)IN p iff π, σ� |= p

where σ� = σ \ {(v, σ(v))} ∪ {(v, V alπ0∪σ(t))}
π, σ |= !p iff it is not the case that π, σ |= p.
π, σ |= p&q iff π, σ |= p and π, σ |= q.
π, σ |= p | q iff π, σ |= p or π, σ |= q.

π, σ |= p → q iff π, σ |=!p or π, σ |= q.
π, σ |= Xp iff π1, σ |= p.
π, σ |= Gp iff πj , σ |= p for all j ≥ 0.
π, σ |= Fp iff πj , σ |= p for some j ≥ 0.
π, σ |= pUq iff for some k ≥ 0, πk, σ |= q, and πj , σ |= p for all j(0 ≤ j < k).
π, σ |= pRq iff for some k ≥ 0, πk, σ |= q, or there exists j,

πj , σ |= p for all j(0 ≤ j < k).

An LMDG∗ formula is said to be satisfied in the machine D if it is satisfied
along a path of M ; a formula is said to be valid in D if it is satisfied along all
paths of M .

4.3 LMDG∗ Transformation

As shown in Figure 1, the first step of the MDG LEC is to transform the for-
mula LMDG∗ into a PLTL formula. The transformation of formula in LMDG∗

to PLTL is obtained by generating a circuit description for each subformula
(Next let formula) in the property. The generated circuit provides a single atomic
proposition output, which will replace the entire Next let formula in the original
property. Applying the same procedure to each subformula results in a simpler
formula. The rules which govern this construction are given below:

– < V1 = V2 >= absComp(V1, V2), where absComp is a cross-operator, which
denotes the truth of V1 = V2 in the current state of the circuit. The cross-
operator is partially interpreted by the rewriting rule: absComp(X, X) = 1,
which can be interpreted as “the value of the two abstract terms are equal
if the two abstract terms are syntactically the same”.
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– < V1 = C >= absComp(V1, C).
– < V1 = C >= comp(V1, C), where comp is a concrete function.
– < LET (V = V ) IN N >. Here, search the referred ASM variable V in N ,

count the nesting depth n of the X operator between the Let operator and
the atomic formula, and add a sequence of n “registers”. The input of the
sequence is V , and its output is the ordinary variable V .

– N1 → N2 is handled as an abbreviation for ¬N1 � N2.
– &, �, and ! are built using the logic gates “and”, “or” and “not” gates,

respectively.
– < V = T >= buildterm(V, T ), where buildterm is a function that imple-

ments a term T ∈ T (F , V). It builds the function symbols for each element
in F and connects them together according to the appearance order in the
term. The inputs are the variables of V, while the output is the term T . The
cross-operator absComp is used to denote the truth of V = T.

The function < ., . > is generalized to a property definition as follows:

1. For the atomic formula false or true, we generate constant signal 0 or 1,
respectively.

2. < Top N >, where Top = U, R, G, F. According to temporal operators before
the Next let formula N , we rewrite the N to (true & N) or (false | N). If the
immediate operator is F, U, or R, we use (true & N), or (false | N) otherwise.
This is done to make sure that the property is checked after n cycles (using
registers) from the initial states, where n is the maximum nesting depth of
the X operators in the property.

3. < P1 op P2 >=< P1 > OP < P2 >, where OP is an implementation of op.
4. < Top P >= Top < P >, where Top = U, R, G, F.

4.4 Illustrative Example

To illustrate the LMDG∗ transformation approach, we use the property

G((state = fetch st & input = inc2) →
F(LET (v = pc)IN(XXX(state = fetch st & pc = inc(inc(v))))))

on an abstract counter introduced in [6]. Figure 2 shows the transformation
procedure for the above property. The property contains two Next let formulas

N1 ≡ (state = fetch st & input = inc2)

and

N2 ≡ (LET (v = pc)IN(XXX(state = fetch st & pc = inc(inc(v)))))).

The circuit descriptions for N1 and N2, shown in the middle of the figure, are
derived by applying the rules described in the previous section. Thereafter, the
property G(< N1 >→ F < N2 >) is transformed into G(p = 1 → F(q = 1)),
which is translated by Wring into the GBA, shown on the right side of the figure.

The generated GBA consists of a state transition graph (ASM) and a set of
acceptance (fairness) conditions, which will be used by the language emptiness
checking algorithm described in the next section.
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5 Language Emptiness Checking Algorithm

5.1 Generic SCC Hull Algorithm

The GSH algorithm is based on the following definitions described by
the µ−calculus [16,17].

E p U q = µZ. q ∨ (p ∧ EXZ), E p S q = µZ. q ∨ ( p ∧ EY Z)
EG p = νZ. p ∧ EX Z, EH p = νZ. p ∧ EY Z

EF p = E true Up, EP p = E true Sp,

where µZ.τ (τ stands for the µ−calculus formula) denotes the least fixpoint of
τ , νZ. τ is its greatest fixpoint, EX Z denotes the direct predecessors (images)
of states in the set Z and EY Z denotes the direct successors of Z.

Let G = (V, E) be a graph and CL = {C1, · · · , Cm} ⊆ V a set of Büchi
fairness conditions, and TF = {ES1, · · · , ESm, EY } be a set of forward operators
over V , where ESi is defined as λZ. E Z S(Z ∧ ci) and EY as λZ. Z ∧ EY Z.
Similarly, let TB = {EU1, · · · , EUm, EX} be a set of backward operators over
V , where EUi is defined as λZ.E Z U (Z ∧ ci) and EX as λZ. Z ∧ EX Z.
The GSH algorithm first computes the set of reachable states from the initial
states, and then recursively removes the states that cannot be reached by fair
SCCs as well as those that cannot reach fair SCCs until it reaches a fixpoint.

The GSH algorithm can be summarized as follows:

Step 1) Calculate the set of states Z reachable from the initial states.
Step 2) Fairly pick an operator τ from TF ∪TB . Apply τ to Z, and let Z = τ(Z).
Step 3) Check if Z is a fixpoint of all the operators in TF ∪ TB . If yes, stop;

otherwise, go to Step 2.
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Remark 1. In Step 2, “fairly pick” means the operator τ is selected under two
restrictions: The operator ES (or EU) cannot be selected again unless other
operators in TF (TB) make changes to Z, and operator EX (or EY ) cannot be
selected again if it makes no changes to Z unless other operators in the set TF

(or TB) make changes to Z.

Remark 2. The forward operators in TF remove the states that cannot be
reached by the fair cycles, where ESi removes the states that cannot be reached
from the accepting set Ci within the current set, and EY deletes the set of states
that cannot be reached from a cycle within the set. The backward operators TB

remove the states that cannot reach any fair cycles, where EUi removes the
states that cannot reach the accepting set Ci within the current set, and EX
deletes states that cannot reach a cycle within the set.

5.2 EL and EL2 Algorithms

The EL [8], EL2[9], and HH [12] algorithms have been proposed as the instances
of the GSH algorithm by specifying a particular order to pick operators, namely:

ES1, ES2, · · · , ESm, EY, · · · , EY, ES1, ES2, · · · (EL2)
ES1, EY, ES2, EY, · · · , ESm, EY, ES1, EY, · · · (EL)

EU1, ES1, · · · , EUm, ESm, EX, EY, EX, EY, · · · , EU1, ES1, · · · (HH).

In the following, we will focus on EL and EL2 algorithms, which can be imple-
mented with only forward operators.

5.3 MDG Implementation of EL and EL2 Algorithms

Two main operators are needed for the implementation of the EL and EL2 algo-
rithms, namely, image computation and fixpoint computation. Image computa-
tion (forward operator) is sufficient since the GSH algorithm can be implemented
by using only forward operators [17]. Furthermore, since in the MDG package
there is no conjunction operation with the same abstract primary variables, the
operators ESi and λZ.Z ∧EY Z cannot be applied either. A deeper observation
reveals that under the assumption of Z is forward-closed the operators ESi and
λZ.Z ∧ EY Z can be replaced by EPi and λZ. EY Z, respectively, where EPi

is defined by2

EPi Z = λZ. (E true S (Z ∧ Ci))

Following the above argument, the operators in the GSH algorithm can be
replaced with TF = {EP1, EP2, · · · , EPm, λZ.EY Z} if only forward operators
are used in the GSH algorithm. Below, we will focus on how to implement the
above operators in the MDG package. Note that in the above definition EPi

2 A complete proof can be found in [20].
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still contains a conjunction operation Z ∧ Ci. However, since Z and Ci do not
share any abstract variables (in fact Ci does not use any abstract variables),
this conjunction operation is feasible with MDGs.

Image Computation (EY ) - Relational Product (Relp)

The operator EY which computes the direct successors of a set of state of Z
can be implemented by the MDG operator Relp. The arguments of Relp are {I,
Z, FT }, (X ∪ Y ), and Y � → Y , where the MDG I represents the set of inputs,
Z represents the current set, and the MDG FT represents the transition relation.

Fixpoint Computation (EP ) - Reachability Analysis (ReAn)

Given a state transition graph G = �T, I�, the EP operator mainly im-
plements the computation of the set of all reachable states from a given set.
Therefore,

EPZ = Etrue S Z = µY.Z ∨ (true ∧ EY Y ) ≡ Z ∨ EY Z ∨ EY 2(Z) ∨ · · · .
In the MDG package, the procedure ReAn(G,C) has been developed for im-

plicit state enumeration that tests if an invariant condition C is true at the
output of every set. The operator EP is implemented by ReAn(G, true).

The procedure ReAn(G, true), takes a state transition graph G =
(X, Y, FI , FT ), returns the set of reachable states from the initial states FI for
any interpretation ψ. In the rest of the paper, we will use ReAn(G) as a short
form for ReAn(G, True).

Remark 3. The ReAn(G) may be non-terminating when a set of states cannot
be represented by a finite MDG due mainly to the presence of abstract variables
and uninterpreted functions. Several solutions do exist to alleviate this problem,
for example, the initial state generalization [1].

MDG EL/EL2 Algorithms

The MDG based EL and EL2 algorithms take as its arguments a state tran-
sition graph G = (X, Y, FI , FT ), where X and Y are sets of input and state
variables, respectively. FI is the set of initial states, FT is the transition rela-
tion, and CL = {C1, ..., Cm} is a set of acceptance Büchi acceptance conditions
Ci, represented by MDGs consisting of concrete variables.

The algorithms work as follows: First compute the set of states Z reachable
from the initial states FI , and then iteratively apply the operators EP1, EP2, . . . ,
EPm, λZ.EY Z, · · · , λZ.EY Z (EL2) or the operators EP1, λZ.EY Z, EP2,
λZ.EY Z, . . . , EPm, λZ.EY Z (EL) until no changes to Z can be made. If
the fixpoint is empty, the algorithm returns “Succeed”; otherwise, it returns
“Failed”. The EL algorithm can be described as follows, where ζ, C, Z, I are
sets and K is an integer.
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1 MDG EL Algorithm (G = (X, Y, FI , FT ), CL = {C1, C2, . . . , Cm} )
2 ζ:= ∅; K : = 0;
3 Z := ReAn(G);
4 Do {
5 ζ := Z;
6 For C ∈ CL {
7 FI = Conj(Z,C); /* update the set of initial states */
8 Z := ReAn(G);
9 K := K+1;
10 I :=NewInputs(K);
11 Z :=RelP({I, Z, FT }, X ∪ Y, Y � → Y )
12 }
13 If (Z = ∅) then return “Succeed”
14 } until (Pbys(ζ, Z) = F)
15 return “Failed”

In the above algorithm, line 3 computes the set of reachable states. In fact,
in this step ReAn(G) performs the operation EP (FI). Lines 4 - 14 represent
the main body of the algorithm. Lines 7 - 8 compute the set of states reached
by Z ∧ Ci, i ≤ m. Lines 9 - 11 compute the image of Z, where RelP essentially
performs operation EY (Z). The operations are iteratively applied to Z until no
changes are made to it. Obviously, in each loop, Z1 ⊆ Z and Z ⊆ ζ, since the
operations ReAn, Conj and Relp remove some states from the set Z. Therefore,
it is sufficient to test ζ ⊆ Z for the fixpoint ζ = Z. Pbys is used for these tests
at line 12.

1 MDG EL2 Algorithm (G = (X, Y, FI , FT ), CL = {C1, C2, . . . , Cm})
2 ζ:= ∅; K :=0;
3 Z := ReAn(G);
4 Do {
5 ζ := Z;
6 For C ∈ CL {
7 FI = Conj(Z,C); /* update the set of initial states */
8 Z := ReAn(G);
9 }
10 K := K+1;
11 I :=NewInputs(K);
12 Z1 :=RelP({I, Z, FT }, X ∪ Y, Y � → Y );
13 While (Pbys(Z, Z1) �= F) Do{
14 Z := Z1;
15 K:= K+1;
16 I :=NewInputs(K);
17 Z1 :=RelP({I, Z, FT }, X ∪ Y, Y � → Y );
18 }
19 If (Z = ∅) then return “Succeed”
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20 } until (Pbys(ζ, Z) = F)
21 return “Failed”;

In the above algorithm, line 3 computes the set of reachable states by using
ReAn(G). Lines 4 - 20 compose the main body of the algorithm. Lines 6 - 9
compute the set of states reached by all Z ∧Ci, i ≤ m. Lines 10 - 18 compute the
image of Z until the fixpoint is reached. It is obvious that Z1 ⊆ Z and Z ⊆ ζ
in each iteration, since the operations ReAn, Conj and Relp remove some states
from the set Z. Therefore, it is sufficient to test Z ⊆ Z1 for Z1 = Z and ζ ⊆ Z
for ζ = Z. Pbys is used for these tests at the lines 13 and 20.

Remark 4. As pointed out in Remark 3, ReAn(G) is non-terminating, which may
lead to the non-terminating of the EL and EL2 algorithms. We can apply the
same approaches to solve the problem.

6 Case Study

We have implemented the proposed MDG algorithm in Prolog and integrated it
into the MDG package. We have conducted a number of experiments with small
benchmark designs as well as with larger case studies to test the performance of
our tool. In this section, we present the experimental results of the verification
of an Asynchronous Transfer Mode (ATM) switch fabric as case study. The
experiments were carried out on a Sun Ultra-2 workstation with 296MHZ CPU
and 768MB of memory.

The ATM switch we consider is part of the Fairisle network designed and
used at the Computer Laboratory of Cambridge University [15].The ATM switch
consists of an input controller, an output controller and a switch fabric. In each
cycle, the input port controller synchronizes incoming data cells, appends control
information, and sends them to the fabric. The fabric strips off the headers from
the input cells, arbitrates between cells destined to the same port, sends success-
ful cells to the appropriate output port controller, and passes acknowledgments
from the output port controller to the input port controller.

We use an RTL design of this ATM switch fabric with 4 inputs and 4
outputs defined as 8 variables of abstract sort (n-bit) modeled in MDG-HDL
[18]. In the following we discuss five sample properties, P1-5. P1 and P2 are
properties checking the acknowledgment procedure, involving no data signals,
while P3,P4, and P5 are properties checking the data switching signals. P1, P2
and P5 are safety properties, while P3 and P4 are liveness properties. Details
about the ATM switch fabric model as well as the specification of the above
properties can be found in [20]

The experimental results of the verification of these properties with the LEC
are summarized in Table 1, including CPU time, memory usage and number
of MDG nodes generated. To compare our approach with BDD based language
emptiness checking methods, we also conducted experiments on the same ATM
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Table 1. Experimental Results with MDG LEC using EL and EL2

MDG LEC (EL) MDG LEC (EL2)
Time Memory # MDG Time Memory # MDG
(sec) (MB) Nodes (sec) (MB) Nodes

P1 300 30 100325 312 32 100325
P2 288 32 100382 280 32 100382
P3 254 41 129782 338 52 157739
P4 314 42 131132 346 54 159325
P5 340 47 139255 329 46 131775

switch fabric using the ltl model check option of the VIS tool [2]. Since VIS re-
quires a Boolean representation of the circuit, we modeled the data input and
output as Boolean vectors of 4-bit (which stores the minimum header informa-
tion), 8-bit, and 16-bit. Experimental results (see Tables 2 and 3) show that the
verification of P4 (8-bit) as well as the properties P3 - 5 (16-bit) did not termi-
nate (indicated by a “*”), while our MDG LEC was able to verify both in a few
minutes for n-bit (abstract) data. It is to be noted that VIS uses very powerful
cone-of-influence [14] model reduction algorithms, while our MDG LEC does not
perform any reduction on the model. When we turned off this model reduction
VIS failed to verify any of the properties on 4-bit, 8-bit and 16-bit models.

Table 2. Experimental Results with VIS using EL algorithm

GSH 4-bit GSH 8-bit GSH 16-bit
Time Memory # BDD Time Memory # BDD Time Memory # BDD
(sec) (MB) Nodes sec) (MB) Nodes (sec) (MB) Nodes

P1 27.2 52 3095941 31.2 52 3081297 36.8 52 3064133
P2 11.7 45 1670014 14.0 45 1659550 21.8 46 1699964
P3 12.4 40 1356704 899.8 629 98706620 * * *
P4 533.1 167 32770721 * * * * * *
P5 14.7 44 1596773 321.8 137 35106376 * * *

7 Conclusion

In this paper, we introduced a new application of the MDG tool set, which imple-
ments a first-order LTL model checking algorithm. The tool, MDG LEC, accepts
abstract state machines (ASM) as system models, and properties specified in a
new defined first-order logic (LMDG∗), which extends a previously developed
language (LMDG). We developed rules enabling the transformation of LMDG∗

properties into generalized Büchi automata (GBA) making use of the Wring pro-
cedure. For the language emptiness checking, we adapted two instances (EL and
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Table 3. Experimental Results with VIS using EL2 algorithm

GSH 4-bit GSH 8-bit GSH 16-bit
Time Memory # BDD Time Memory # BDD Time Memory # BDD
(sec) (MB) Nodes sec) (MB) Nodes (sec) (MB) Nodes

P1 27.1 52 3095941 29.5 52 3081297 36.8 52 3064191
P2 11.5 45 1670014 14.1 45 1659550 21.7 46 1699964
P3 12.5 40 1356704 899 628 98706620 * * *
P4 533 166 32770721 * * * * * *
P5 13.8 44 1596773 317.6 137 35198884 * * *

EL2) of the generic SCC-hull (GSH) algorithm using MDG operators. Exper-
imental results have shown that, thanks to the support of abstract data and
uninterpreted functions, our MDG LEC tool outperforms existing BDD based
LTL model checkers implementing EL and EL2 in VIS.

At present, we are investigating the generation of counter-examples, which,
unlike BDD based approaches, is not straight forward since MDG does not sup-
port backward trace operators. We are also looking into ways to integrate model
reduction algorithms (e.g., cone-of-influence) in order to improve the overall per-
formance of the tool.
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