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Abstract. This paper addresses the formal specification and verifica-
tion of fast Fourier transform (FFT) algorithms at different abstraction
levels based on the HOL theorem prover. We make use of existing theo-
ries in HOL on real and complex numbers, IEEE standard floating-point,
and fixed-point arithmetics to model the FFT algorithms. Then, we de-
rive, by proving theorems in HOL, expressions for the accumulation of
roundoff error in floating- and fixed-point FFT designs with respect to
the corresponding ideal real and complex numbers specification. The
HOL formalization and proofs are found to be in good agreement with
the theoretical paper-and-pencil counterparts. Finally, we use a classical
hierarchical proof approach in HOL to prove that the FFT implementa-
tions at the register transfer level (RTL) implies the corresponding high
level fixed-point algorithmic specification.

1 Introduction

The fast Fourier transform (FFT) [6, 9] is a highly efficient method for com-
puting the discrete Fourier transform (DFT) coefficients of a finite sequence of
complex data. Because of the substantial time saving over conventional methods,
the fast Fourier transform has found important applications in a number of di-
verse fields such as spectrum analysis, speech and optical signal processing, and
digital filter design. FFT algorithms are based on the fundamental principle of
decomposing the computation of the discrete Fourier transform of a finite-length
sequence of length N into successively smaller discrete Fourier transforms. The
manner in which this principle is implemented leads to a variety of different
algorithms, all with comparable improvements in computational speed. There
are two basic classes of FFT algorithms for which the number of arithmetic
multiplications and additions as a measure of computational complexity is pro-
portional to N log N rather than N2 as in the conventional methods. The first
proposed by Cooley and Tukey [10], called decimation-in-time (DIT), derives its
name from the fact that in the process of arranging the computation into smaller
transformations, the input sequence (generally thought of as a time sequence) is
decomposed into successively smaller subsequences. In the second general class
of algorithms proposed by Gentleman and Sande [13], the sequence of discrete
Fourier transform coefficients is decomposed into smaller subsequences, hence its
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name, decimation-in-frequency (DIF). In a theoretical analysis of the fast Fourier
transform, we generally assume that signal values and system coefficients are rep-
resented with real numbers expressed to infinite precision. When implemented
as a special-purpose digital hardware or as a computer algorithm, we must rep-
resent signals and coefficients in some digital number system that must always
be of finite precision. There is an inherent accuracy problem in calculating the
Fourier coefficients, since the signals are represented by a finite number of bits
and the arithmetic operations must be carried out with an accuracy limited by
this finite word length. Among the most common types of arithmetic used in the
implementation of FFT systems are floating- and fixed-point. Here, all operands
are represented by a special format or assigned a fixed word length and a fixed
exponent, while the control structure and the operations of the ideal program
remain unchanged. The transformation from real to floating- and fixed-point
is quite tedious and error-prone. On the implementation side, the fixed-point
model of the algorithm has to be transformed into the best suited target de-
scription, either using a hardware description or a programming language. This
design process can be aided by a number of specialized CAD tools such as SPW
(Cadence) [27], CoCentric (Synopsys) [8], Matlab-Simulink (Mathworks) [22],
and FRIDGE (Aachen UT) [20].
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Fig. 1. FFT specification and verification methodology

In this paper, we describe a methodology for the formal specification and
verification of FFT algorithms based on shallow embedding technique [5] using
the HOL theorem proving environment [14]. The overall methodology is depicted
in the commutating diagram shown in Figure 1. We first focus on the transition
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from real to floating- and fixed-point levels. Here, we model the ideal real spec-
ification of the FFT algorithms and the corresponding floating- and fixed-point
implementations as predicates in higher-order logic. For this, we make use of ex-
isting theories in HOL on the construction of real [15] and complex [18] numbers,
the formalization of IEEE-754 standard based floating-point arithmetic [16, 17],
and the formalization of fixed-point arithmetic [1, 2]. We use valuation functions
to find the real values of the floating- and fixed-point FFT outputs and define
the error as the difference between these values and the corresponding output of
the ideal real specification. Then we establish fundamental lemmas on the error
analysis of floating- and fixed-point roundings and arithmetic operations against
their abstract mathematical counterparts. Finally, based on these lemmas, we
derive, for each of the two canonical forms of realization, expressions for the ac-
cumulation of roundoff error in floating- and fixed-point FFT algorithms using
recursive definitions and initial conditions. While theoretical work on computing
the errors due to finite precision effects in the realization of FFT algorithms with
floating- and fixed-point arithmetics has been extensively studied since the late
sixties [19], this paper contains the first formalization and proof of this analysis
using a mechanical theorem prover, here HOL. The formal results are found to
be in good agreement with the theoretical ones.

After handling the transition from real to floating- and fixed-point levels, we
turn to the HDL representation. At this point, we use well known techniques to
model the FFT design at the RTL level within the HOL environment. The last
step is to verify this level using a classical hierarchical proof approach in HOL
[23]. In this way, we hierarchically prove that the FFT RTL implementation im-
plies the high level fixed-point algorithmic specification, which has already been
related to the floating-point description and the ideal real specification through
the error analysis. The verification can be extended, following similar manner,
down to gate level netlist either in HOL or using other commercial verification
tools as depicted in Figure 1, which is not covered in this paper.

The rest of this paper is organized as follows: Section 2 reviews some related
work. Section 3 describes the details of the error analysis in HOL of the FFT
algorithms at the real, floating-, and fixed-point levels. Section 4 describes the
verification of the FFT algorithms in the transition from fixed-point to register
transfer levels. Finally, Section 5 concludes the paper.

2 Related Work

Analysis of errors in FFT realizations due to finite precision effects has tradi-
tionally relied on paper-and-pencil proofs and simulation techniques. The round-
off error in using the FFT algorithms depends on the algorithm, the type of
arithmetic, the word length, and the radix. For FFT algorithms realized with
fixed-point arithmetic, the error problems have been studied extensively. For in-
stance, Welch [30] presented an analysis of the fixed-point accuracy of the radix-2
decimation-in-time FFT algorithm. Tran-Thong and Liu [28] presented a general
approach to the error analysis of the various versions of the FFT algorithm when
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fixed-point arithmetic is used. While the roundoff noise for fixed-point arithmetic
enters into the system additively, it is a multiplicative component in the case of
floating-point arithmetic. This problem is analyzed first by Gentleman and Sande
[13], who presented an upper bound on the mean-squared error for floating-point
decimation-in-frequency FFT algorithm. Weinstein [29] presented a statistical
model for roundoff errors of the floating-point FFT. Kaneko and Liu [19] pre-
sented a detailed analysis of roundoff error in the FFT decimation-in-frequency
algorithm using floating-point arithmetic. This analysis is later extended by the
same authors to the FFT decimation-in-time algorithm [21]. Oppenheim and
Weinstein [26] discussed in some detail the effects of finite register length on
implementations of digital filters, and FFT algorithms.

In order to validate the error analysis, most of the above work compare the
theoretical results with experimental simulation. In this paper, we show how
the above error analyses for the FFT algorithms can be mechanically performed
using the HOL theorem prover, providing a superior approach to validation by
simulation. Our focus will be on the process of translating the hand proofs into
equivalent proofs in HOL. The analysis we develop is mainly inspired by the work
done by Kaneko and Liu [19], who proposed a general approach to the error anal-
ysis problem of the decimation-in-frequency FFT algorithm using floating-point
arithmetic. Following a similar idea, we have extended this theoretical analysis
for the decimation-in-time and fixed-point FFT algorithms. In all cases, good
agreements between formal and theoretical results were obtained.

Prior work on error analysis and theorem proving was done by Harrison [17],
who verified floating-point algorithms against their abstract mathematical coun-
terparts using the HOL Light theorem prover. His error analysis is very similar
to the type of analysis performed for DSP algorithms. The major difference,
however, is the use of statistical methods and mean square error analysis for
DSP algorithms which is not covered in the error analysis of the mathematical
functions used by Harrison. To perform such an analysis in HOL, we need to
develop a mechanized theory on the properties of random processes. This type
of analysis is not addressed in this paper and is a part of our work in progress.

Related work on the formalization and mechanical verification of the FFT
algorithm was done by Gamboa [12] using the ACL2 theorem prover. The author
formalized the FFT as a recursive data-parallel algorithm, using the powerlist
data structure. He also presented an ACL2 proof of the correctness of the FFT
algorithm, by translating the hand proof taken from Misra’s seminal paper on
powerlists [24] into a mechanical proof in ACL2. In the same line, Capretta [7]
presented the formalization of the FFT using the type theory proof tool Coq.
To facilitate the definition of the transform by structural recursion, Capretta
used the structure of polynomial trees which is similar to the data structure of
powerlists introduced by Misra. Finally, he proved its correctness and the cor-
rectness of the inverse Fourier transform (IFT).

Bjesse [4] described the verification of FFT hardware at the netlist level with
an automatic combination of symbolic simulation and theorem proving using the
Lava hardware development platform. He proved that the sequential pipelined
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implementation of the radix-4 decimation-in-time FFT is equivalent to the corre-
sponding combinational circuit. He also proved that the abstract implementation
of the radix-2 and the radix-4 FFT are equivalent for sizes that are an exponent
of four. While [12] and [7] prove the correctness of the high level FFT algo-
rithm against the DFT, the verification of [4] is performed at the netlist level.
In contrast, our work tries to close this gap by formally specifying and verifying
the FFT algorithm realizations at different levels of abstraction based on differ-
ent data types. Besides, the definition used for the FFT in [12, 7] is based on
the radix-2 decimation-in-time algorithm. We cover both decimation-in-time and
decimation-in-frequency algorithms, and radices other than 2. The methodology
we propose in this paper is, to the best of our knowledge, the first project of its
kind that covers the formal specification and verification of integrated FFT algo-
rithms at different abstraction levels starting from real specification to floating-
and fixed-point algorithmic descriptions, down to RT and netlist gate levels.

3 Error Analysis of FFT Algorithms in HOL

In this section, the principal results for roundoff accumulation in FFT algorithms
using HOL theorem proving are derived and summarized. For the most part, the
following discussion is phrased in terms of the decimation-in-frequency form of
radix-2 algorithm. The results, however, are applicable with only minor modifi-
cation to the decimation-in-time form. Furthermore, most of the ideas employed
in the error analysis of the radix-2 algorithms can be utilized in the analysis
of other algorithms. In the following, we will first describe in detail the theory
behind the analysis and then explain how this analysis is performed in HOL.

The discrete Fourier transform of a sequence {x(n)}N−1
n=0 is defined as [25]

A(p) =
N−1∑

n=0

x(n) (WN )np, p = 0, 1, 2, . . . , N − 1 (1)

where WN = e−j2π/N and j =
√−1. The multiplicative factors (WN )np are

called twiddle factors. For simplicity, our discussion is restricted to the radix-2
FFT algorithm, in which the number of points N to be Fourier transformed
satisfy the relationship N = 2m, where m is an integer value. The results
can be extended to radices other than 2. By using the FFT method, the Fourier
coefficients {A(p)}N−1

p=0 can be calculated in m = log2 N iterative steps. At each
step, an array of N complex numbers is generated by using only the numbers
in the previous array. To explain the FFT algorithm, let each integer p, p =
0, 1, 2, . . . , N − 1, be expanded into a binary form as

p = 2m−1p0 + 2m−2p1 + · · · + 2pm−2 + pm−1, pk = 0 or 1 (2)

and let p∗ denote the number corresponding to the reverse bit sequences of p,
i.e.,

p∗ = 2m−1pm−1 + 2m−2pm−2 + · · · + 2p1 + p0 (3)
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Let {Ak(p)}N−1
p=0 denote the N complex numbers calculated at the kth step.

The decimation-in-frequency FFT algorithm can then be expressed as [19]

Ak+1(p) =
{

Ak(p) + Ak(p + 2m−1−k) if pk = 0
[Ak(p − 2m−1−k) − Ak(p)] wk(p) if pk = 1 (4)

where wk(p) is a power of WN given by wk(p) = (WN )zk(p), where

zk(p) = 2k (2m−1−kpk + 2m−2−kpk+1 + · · · + 2pm−2 + pm−1) − 2m−1pk (5)

Equation (4) is carried out for k = 0, 1, 2, . . . , m − 1, with A0(p) = x(p). It
can be shown [13] that at the last step {Am(p)}N−1

p=0 are the discrete Fourier
coefficients in rearranged order. Specifically, Am(p) = A(p∗) with p and p∗ ex-
panded and defined as in equations (2) and (3), respectively.

There are three common sources of errors associated with the FFT algo-
rithms, namely [19]:

1. input quantization: caused by the quantization of the input signal {xn}
into a set of discrete levels.

2. coefficient accuracy: caused by the representation of the coefficients
{wk(p)} by a finite word length.

3. round-off accumulation: caused by the accumulation of roundoff errors
at arithmetic operations.

Therefore, the actual array computed by using equation (4) is in general
different from {Ak(p)}N−1

p=0 . We denote the actual floating- and fixed-point com-
puted arrays by {A′

k(p)}N−1
p=0 and {A′′

k(p)}N−1
p=0 , respectively. Then, we define the

corresponding errors of the pth element at step k as

ek(p) = A′
k(p) − Ak(p) (6)

e′k(p) = A′′
k(p) − Ak(p) (7)

e′′k(p) = A′′
k(p) − A′

k(p) (8)

where ek(p) and e′k(p) are defined as the error between the actual floating- and
fixed-point implementations and the ideal real specification, respectively. e′′k(p)
is the error in transition from floating- to fixed-point levels.

In analyzing the effect of floating-point roundoff, the effect of rounding will be
represented multiplicatively. Letting ∗ denote any of the arithmetic operations
+, -, × , /, it is known [11, 31] that, if p represents the precision of the floating-
point format, then

fl (x ∗ y) = (x ∗ y)(1 + δ), where |δ| ≤ 2−p (9)

The notation fl (.) is used to denote that the operation is performed us-
ing floating-point arithmetic. The theorem relates the floating-point arithmetic
operations such as addition, subtraction, multiplication, and division to their
abstract mathematical counterparts according to the corresponding errors.
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While the rounding error for floating-point arithmetic enters into the system
multiplicatively, it is an additive component for fixed-point arithmetic. In this
case the fundamental error analysis theorem for fixed-point arithmetic opera-
tions against their abstract mathematical counterparts can be stated as

fxp (x ∗ y) = (x ∗ y) + ε, where |ε| ≤ 2−fracbits (X) (10)

and fracbits is the number of bits that are to the right of the binary point in
the given fixed-point format X. The notation fxp (.) is used to denote that the
operation is performed using fixed-point arithmetic. We have proved equations
(9) and (10) as theorems in higher-order logic within HOL. The theorems are
proved under the assumption that there is no overflow or underflow in the oper-
ation result. This means that the input values are scaled so that the real value of
the result is located in the ranges defined by the maximum and minimum repre-
sentable values of the given floating-point and fixed-point formats. The details
can be found in [3].

In equation (4) the {Ak(p)} are complex numbers, so their real and imaginary
parts are calculated separately. Let

Bk(p) = Re [Ak(p)] Ck(p) = Im [Ak(p)]
Uk(p) = Re [wk(p)] Vk(p) = Im [wk(p)] (11)

where the notations Re [.] and Im [.] denote, respectively, the real and imaginary
parts of the quantity inside the bracket [.]. Equation (4) can be rewritten as

Bk+1(p) = Bk(p) + Bk(q)
Ck+1(p) = Ck(p) + Ck(q)

}
if pk = 0 (12)

Bk+1(p) = [Bk(r) − Bk(p)] Uk(p) − [Ck(r) − Ck(p)] Vk(p)
Ck+1(p) = [Ck(r) − Ck(p)] Uk(p) + [Bk(r) − Bk(p)] Vk(p)

}
if pk = 1

where q = p + 2m−1−k and r = p − 2m−1−k. Similarly, we can express the real
and imaginary parts of A′

k+1(p), B′
k+1(p) and C′

k+1(p), and A′′
k+1(p), B′′

k+1(p)
and C′′

k+1(p), using the floating- and fixed-point operations, respectively. The
corresponding error flowgraph showing the effect of roundoff error using the
fundamental floating- and fixed-point error analysis theorems according to the
equations (9) and (10), respectively, is given in Figure 2, which also indicates
the order of the calculation.

Formally, a flowgraph consists of nodes and directed branches. Each branch
has an input signal and an output signal with a direction indicated by an ar-
rowhead on it. Each node represents a variable which is the weighted sum of
the variables at the originating nodes of the branches that terminate on that
node. The weights, if other than unity, are shown for each branch. Source nodes
have no entering branches. They are used to represent the injection of the ex-
ternal inputs or signal sources into the flowgraph. Sink nodes have only entering
branches. They are used to extract the outputs from the flowgraph [25, 3].

The quantities γ′
k,p, γ′′

k,p, δ′k,p, δ′′k,p, ε′k,p, ε′′k,p, ζ′k,p, ζ′′k,p, η′
k,p, η′′

k,p, λ′
k,p, and

λ′′
k,p in Figure 2 are errors caused by floating-point roundoff at each arithmetic
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step. The corresponding error quantities for fixed-point roundoff are γk,p, γ′′′
k,p,

δk,p, δ′′′k,p, εk,p, ε′′′k,p, ζk,p, ζ′′′k,p, ηk,p, η′′′
k,p, λk,p, and λ′′′

k,p. Thereafter, the actual
real and imaginary parts of the floating- and fixed-point outputs A′

k+1(p) and
A′′

k+1(p), respectively are seen to be given explicitly by

B′′
k(q)

C ′
k(p)

C ′′
k (p)

C ′
k(q)

C ′′
k (q)

1 + ε′′k,pεk,p

Uk −Vk Uk Vk

pk = 1

1 + ζ ′′k,p 1 + η′′
k,p

λk,p 1 + λ′
k,p λ′′′

k,p

B′
k(q)

γ ′′′
k,p 1 + γ ′′

k,p

B′
k+1(p) C ′

k+1(p)

γk,p 1 + γ ′
k,p

pk = 0

C ′′
k+1(p)B′′

k+1(p)

B′
k(p)

B′′
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k,p

−1

B′
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B′′
k(r)

B′
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k(p)

C ′′
k (p)

B′
k(r)

B′′
k(r)

B′
k(p)

B′′
k(p)

−1

B′
k+1(p) C ′
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Fig. 2. Error flowgraph for decimation-in-frequency FFT

B′
k+1(p) = [B′

k(p) + B′
k(q)](1 + γ′

k,p)
C′

k+1(p) = [C′
k(p) + C′

k(q)](1 + γ′′
k,p)

}
if pk = 0 (13)

B′
k+1(p) = [B′

k(r) − B′
k(p)] Uk(p)(1 + δ′k,p)(1 + ζ′k,p)(1 + λ′

k,p)
− [C′

k(r) − C′
k(p)] Vk(p)(1 + δ′′k,p)(1 + ζ′′k,p)(1 + λ′

k,p)
C′

k+1(p) = [C′
k(r) − C′

k(p)] Uk(p)(1 + ε′k,p)(1 + η′
k,p)(1 + λ′′

k,p)
+ [B′

k(r) − B′
k(p)] Vk(p)(1 + ε′′k,p)(1 + η′′

k,p)(1 + λ′′
k,p)





if pk = 1

and
B′′

k+1(p) = [B′′
k (p) + B′′

k (q)] + γk,p

C′′
k+1(p) = [C′′

k (p) + C′′
k (q)] + γ′′′

k,p

}
if pk = 0 (14)

B′′
k+1(p) = [B′′

k (r) − B′′
k (p) + δk,p] Uk(p) + ζk,p−

([C′′
k (r) − C′′

k (p) + δ′′′k,p] Vk(p) + ζ′′′k,p) + λk,p

C′′
k+1(p) = [C′′

k (r) − C′′
k (p) + εk,p] Uk(p) + ηk,p+

([B′′
k (r) − B′′

k (p) + ε′′′k,p] Vk(p) + η′′′
k,p) + λ′′′

k,p





if pk = 1

The errors ek(p), e′k(p), and e′′k(p) defined in equations (6), (7), and (8) are
complex and can be rewritten as
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ek(p) = B′
k(p) − Bk(p) + j[C′

k(p) − Ck(p)] (15)
e′k(p) = B′′

k (p) − Bk(p) + j[C′′
k (p) − Ck(p)] (16)

e′′k(p) = B′′
k (p) − B′

k(p) + j[C′′
k (p) − C′

k(p)] (17)
k = 1, 2, . . . , m, p = 0, 1, . . . , N − 1

with
e0(p) = e′0(p) = e′′0(p) = 0, p = 0, 1, . . . , N − 1 (18)

From equations (12), (13), (14), (15), (16), and (17), we derive the following
error analysis cases:

1. FFT Real to Floating-Point:

ek+1(p) =
{

ek(p) + ek(q) + fk(p) if pk = 0
[ek(r) − ek(p)] wk(p) + fk(p) if pk = 1 (19)

where fk(p) is given by

fk(p) =






γ′
k,p[B

′
k(p) + B′

k(q)]+jγ′′
k,p[C

′
k(p) + C′

k(q)] if pk = 0
[(1 + δ′k,p)(1 + ζ′k,p)(1 + λ′

k,p) − 1][B′
k(r) − B′

k(p)]Uk(p)
−[(1 + δ′′k,p)(1 + ζ′′k,p)(1 + λ′

k,p) − 1][C′
k(r) − C′

k(p)]Vk(p)
+j[(1 + ε′k,p)(1 + η′

k,p)(1 + λ′′
k,p) − 1][C′

k(r) − C′
k(p)]Uk(p)

+j[(1 + ε′′k,p)(1 + η′′
k,p)(1 + λ′′

k,p) − 1][B′
k(r) − B′

k(p)]Vk(p)
if pk = 1

(20)

2. FFT Real to Fixed-Point:

e′k+1(p) =
{

e′k(p) + e′k(q) + f ′
k(p) if pk = 0

[e′k(r) − e′k(p)] wk(p) + f ′
k(p) if pk = 1 (21)

where f ′
k(p) is given by

f ′
k(p) =






γk,p + jγ′′′
k,p if pk = 0

δk,pUk(p) + ζk,p − δ′′′k,pVk(p) − ζ′′′k,p + λk,p+
j(εk,pUk(p) + ηk,p + ε′′′k,pVk(p) + η′′′

k,p + λ′′′
k,p) if pk = 1

(22)

3. FFT Floating- to Fixed-Point:

e′′k+1(p) =
{

e′′k(p) + e′′k(q) + f ′
k(p) − fk(p) if pk = 0

[e′′k(r) − e′′k(p)] wk(p) + f ′
k(p) − fk(p) if pk = 1 (23)

where fk(p) and f ′
k(p) are given by equations (20) and (22).

The accumulation of roundoff error is determined by the recursive equations
(19), (20), (21), (22), and (23), with initial conditions given by equation (18). In
HOL, we first constructed complex numbers on reals similar to [18]. We defined
in HOL a new type for complex numbers, to be in bijection with R × R. The
bijections are written in HOL as complex : R2 → C and coords : C → R2.
We used convenient abbreviations for the real (Re) and imaginary (Im) parts



46 Behzad Akbarpour and Sofiène Tahar

of a complex number, and also defined arithmetic operations such as addition,
subtraction, and multiplication on complex numbers. We overloaded the usual
symbols (+,−,×) for C and R. Similarly, we constructed complex numbers on
floating- and fixed-point numbers. Then we defined the principal N -roots on
unity (e−j2π/N = cos (2πn/N) − j sin (2πn/N)), and its powers (OMEGA)
as a complex number using the sine and cosine functions available in the tran-
scendental theory of the HOL reals library [15]. We specified expressions in HOL
for expansion of a natural number into a binary form in normal and rearranged
order according to the equations (2) and (3). The above enables us to specify the
FFT algorithms in real (REAL FFT ), floating- (FLOAT FFT ), and fixed-point
(FXP FFT ) abstraction levels using recursive definitions in HOL as described
in equation (4). Then we defined the real and imaginary parts of the FFT algo-
rithm (FFT REAL, FFT IMAGE) and powers of the principal N -roots on unity
(OMEGA REAL,OMEGA IMAGE) according to the equation (11). Later, we
proved in separate lemmas that the real and imaginary parts of the FFT algo-
rithm in real, floating-, and fixed-point levels can be expanded as in equation
(12). Then we proved lemmas to introduce an error in each of the arithmetic
steps in real and imaginary parts of the floating- and fixed-point FFT algorithms
according to the equations (13), and (14). We proved these lemmas using the
fundamental error analysis lemmas for basic arithmetic operations [3] accord-
ing to the equations (9) and (10). Then we defined in HOL the error of the
pth element of the floating- (REAL TO FLOAT FFT ERROR) and fixed-point
(REAL TO FXP FFT ERROR) FFT algorithms at step k, and the correspond-
ing error in transition from floating- to fixed-point (FLOAT TO FXP FFT ERR
OR), according to the equations (6), (7), and (8). Thereafter, we proved lemmas
to rewrite the errors as complex numbers using the real and imaginary parts
according to the equations (15), (16), and (17). Finally, we proved lemmas to
determine the accumulation of roundoff error in floating- and fixed-point FFT al-
gorithms by recursive equations and initial conditions according to the equations
(18), (19), (20), (21), (22), and (23).

4 FFT Design Implementation Verification

In this section, we describe the verification of the transition from fixed-point
specification to RTL implementation for FFT algorithms. We have chosen the
case study of a radix-4 pipelined 16-point complex FFT core available as a VHDL
RTL model in the Xilinx Coregen library [32]. Figure 3 shows the overall block
diagram of the design. The basic elements are memories, delays, multiplexers,
and dragonflies. In general, the 16-point pipelined FFT requires the calculation of
two radix-4 dragonfly ranks. Each radix-4 dragonfly is a successive combination
of a radix-4 butterfly with four twiddle factor multipliers. The FFT core accepts
naturally ordered data on the input buses in a continuous stream, performs
a complex FFT, and streams out the DFT samples on the output buses in a
natural order. These buses are respectively the real and imaginary components
of the input and output sequences. An internal input data memory controller
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orders the data into blocks to be presented to the FFT processor. The twiddle
factors are stored in coefficient memories. The real and imaginary components
of complex input and output samples and the phase factors are represented as
16-bit 2’s complement numbers. The unscrambling operation is performed using
the output bit-reversing buffer.
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CONTROLCONTROL

Memory
Buffer
Input

Bitreverse

Output
Buffer

D

OUTPUTINPUT

CONTROL
Memory

Coefficient
Memory

Coefficient
CONTROL

D

STAGE 2

X
U
M

Y
A
L
E

X
U
M

Y
A
L
E

Dragonfly
Radix_4 

Dragonfly
Radix_4 

Fig. 3. Radix-4 16-point pipelined FFT implementation

To define the radix-4 FFT algorithm [6, 25], we represent the indices p and
n in equation (1) in a base 4 (quaternary number system) as

p = 4p1 + p0, p1, p0 = 0, 1, 2, 3 (24)
n = 4n1 + n0, n1, n0 = 0, 1, 2, 3 (25)

It is easy to verify that as n0 and n1 take on all possible values in the range
indicated, n goes through all possible values from 0 to 15 with no values repeated.
This is also true for the frequency index p. Using these index mappings, we can
express the radix-4 16-point FFT algorithm recursively as

A1(p0, n0) =
3∑

n1=0

x(n1, n0) (W16)4p0n1 (26)

A2(p0, p1) =
3∑

n0=0

A1(p0, n0) (W16)(4p1+p0)n0 (27)

The final result can be written as

A(p1, p0) = A2(p0, p1) (28)

Thus, as in the radix-2 algorithm, the results are in reversed order. Based
on equations (26), (27), and (28) we can develop a signal flowgraph for the
radix-4 16-point FFT algorithm as shown in Figure 4, which is an expanded
version of the pipelined implementation of Figure 3. The graph is composed of
two successive radix-4 dragonfly stages. To alleviate confusion in this graph we
have shown only one of the radix-4 butterflies in the first stage. Also, we have
not shown the multipliers for the radix-4 butterflies in the second stage since
they are similar to the representative butterfly of the first stage. Figure 4 also
illustrates the unscrambling procedure for the radix-4 algorithm.
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Fig. 4. Signal flowgraph of radix-4 16-point FFT

In HOL, we first modeled the RTL description of a radix-4 butterfly as a
predicate in higher-order logic. The block takes a vector of four complex in-
put data and performs the operations as depicted in the flowgraph of Figure
4, to generate a vector of four complex output signals. The real and imagi-
nary parts of the input and output signals are represented as 16-bit Boolean
words. We defined separate functions in HOL for arithmetic operations such as
addition, subtraction, and multiplication on complex two’s complement 16-bit
Boolean words. Then, we built the complete butterfly structure using a proper
combination of these primitive operations. Thereafter, we described a radix-4
dragonfly block (DRAGONFLY RTL) as a conjunction of a radix-4 butterfly
and four 16-bit twiddle factor complex multipliers as shown in Figure 4. Finally,
we modeled the complete RTL description of the radix-4 16-point FFT struc-
ture (DIF FFT RTL) in HOL. The FFT block is defined as a conjunction of
8 instantiations of radix-4 dragonfly blocks according to Figure 4, by applying
the proper time instances of the input and output signals to each block. Fol-
lowing similar steps, we described a fixed-point radix-4 16-point FFT structure
(DIF FFT FXP) in HOL using complex fixed-point data types and arithmetic
operations.
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For the formal verification, we first proved that the FFT RTL description
implies the corresponding fixed-point model.

�thm ∀ N Xr Xi Wr Wi Ar Ai.
DIF FFT RTL N Xr Xi Wr Wi Ar Ai =⇒
DIF FFT FXP N FXP V ECT COMPLEX (Xr, Xi)

FXP V ECT COMPLEX (Wr , Wi)
FXP V ECT COMPLEX (Ar, Ai)

(29)

The proof of the FFT block is then broken down into the corresponding proof
of the dragonfly block, which itself is broken down to the proof of butterfly and
primitive arithmetic operations.

�thm ∀ N Ar Ai Wr Wi Qr Qi.
DRAGONFLY RTL N Ar Ai Wr Wi Qr Qi =⇒

DRAGONFLY FXP N FXP (Ar) FXP (Ai)
FXP (Wr) FXP (Wi) FXP (Qr) FXP (Qi)

(30)

We used the data abstraction functions FXP and FXP VECT COMPLEX
to convert a complex vector of 16-bit two’s complement Boolean words into
the corresponding fixed-point vector. We have also described the radix-4 16-
point fixed-point FFT algorithm (FXP FFT ALGORITHM ) using the defining
equations (26), (27), and (28). Then we proved that the expanded fixed-point
description based on the flowgraph of Figure 4 implies the corresponding closed
form fixed-point algorithmic description.

�thm ∀ N X W A.
DIF FFT FXP N X W A =⇒
∀ p. A (p) = FXP FFT ALGORITHM N X W p

(31)

In this way we completed the verification of the RTL implementation to
fixed-point algorithmic specification of a radix-4 16-point FFT algorithm.

5 Conclusions

In this paper, we described a comprehensive methodology for the verification of
generic fast Fourier transform algorithms using the HOL theorem prover. The
approach covers the two canonical forms (decimation-in-time, and decimation-
in-frequency) of realization of the FFT algorithm using real, floating-, and fixed-
point arithmetic as well as their RT implementations, each entirely specified in
HOL. We proved lemmas to derive expressions for the accumulation of roundoff
error in floating- and fixed-point implementations compared to the ideal real
specification. As a future work, we plan to extend these lemmas to analyse the
worst-case, average, and variance errors. Then we proved that the FFT RTL
implementation implies the corresponding specification at fixed-point level us-
ing classical hierarchical verification in HOL, hence bridging the gap between
hardware implementation and high levels of mathematical specification. In this
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work we also have contributed to the upgrade and application of established real,
complex real, floating- and fixed-point theories in HOL to the analysis of errors
due to finite precision effects, and applied them on the realization of the FFT al-
gorithms. Error analyses since the late sixties used theoretical paper-and-pencil
proofs and simulation techniques. We believe this is the first time a complete
formal framework has been constructed in HOL for the verification of the fast
Fourier transform algorithms at different levels of abstraction. The methodology
presented in this paper opens new avenues in using formal methods for the veri-
fication of digital signal processing (DSP) systems as complement to traditional
theoretical (analytical) and simulation techniques. We are currently investigat-
ing the verification of complex wired and wireless communication systems, whose
building blocks, heavily make use of several instances of the FFT algorithms.
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