
Towards an Efficient Assertion Based Verification of SystemC Designs

AlI Habibi and Sofiine Tahar
Concordia University

1455 de Maisonneuve, West,
Montreal, Quebec H3G 1M8

Email: { habibi,tahar} @ece .concordia.ca

AbstPorr-IIn this paper, we present an approach to verify
emciently assertions added on top of the SystemC library and
based on the Property Specification Language (EL) . In order
to improve the assertion coverage, we also propose an approach
based on both static code analysis and genetic algorithms. Static
code analysis will help generate a dependency relation between
inputs and assertion parameters as well as define the ranges of
inputs affecting the assertion, The genetic algorithm will optimize
the test generation to get more efficient coverage of the assertion.
Experimental results illustrate the efficiency or our approach
compared to random simulation.

I. IKTRODUCTION
SystemC [7] is among a group of system level design

languages proposed to raise the abstraction level for System-
on-a-Chip (SoC) design and verification. It is expected to
make a stronger effect in the areas of system architecture,
co-design and integration of hardware and software [7j. The
verification of SystemC designs is a serious bottleneck in the
design cycle. Going further in complexity and considering
hardwarekofware systems will be out of the range of the
used simulation based techniques. In fact, classical verification
techniques when used with SystemC will face several prob-
lems related to the object-oriented (00) aspect of this library
and to the coniplexity of its simulation environment.

The main trends in defining new SoC verification method-
ologies are considering a hybrid combination of formal, semi-
formal and simulation techniques. Assertions are set to be the
next big breakthrough that will enable engineers to continue
to design and verify larger and more coniplex designs. The
Accellera Property Specification Languaze (PSL.) [I] was
developed in this respect to address the lack of information
about properties and design characteristics in RTL modeling. It
provides means of specifying design properties using a concise
syntax with clearly defined formal semantics.

In this paper, we propose to augment the SysremC language
to support the syntax and semantics of PSL. These latter are
translated into external SystemC modules coMected as read-
only monitors (objects) io the original design, Every monitor is
composed of a set of input signals (involved in the assertions)
and a verification process (representing the code to verify the
assertion itself).

The objective of the verification process is not only to
write assertions but to verify them. Ths latter task is usualIy
performed using test vectors gemation tools mostly based
on random processes. This kind of blind simulation does
not guarantee that the assertion will be covered during the

test execution. Therefore, it is very important to consider a
smarter and more efficient test vector generation approach.
To do sa, we propose first to use static code analysis to
extract a dependency relation between the design inputs and
the variables considered in the assertion. This analysis will also
define for every input the range of possible values that may
affect the assertion which provides very useful information to
improve the assertion’s coverage.

In order to enhance the coverage even more, we also propose
to use a genetic algorithm based on a community of random
generators having a variety of DNA information [4], This latter
will help defining the list of variables considered in the test
generation, their possible values and a weighted probability
over the previous range. The DNA updateimutation rules will
be defined according to the coverage each generator offers. At
the end of the genetic procedure, we expect the final DNA
to provide an identification of a generator that offers a better
coverage than a random one.

The rest of this paper is organized as follows: Section I1
describes our approach to extend SystemC by PSL. Section 111
presents our methodology to improve the assertion coverage.
Section IV illustrates DUT methodology on a Masredslave Bus
case study taken from the SystemC library. Section V discusses
the related work. Finally, Section VI concludes the paper.

II. EXTENDING SYSTEMC BY PSL
SystemC is a set of C t t class definitions and a methodology

for using these classes [7]. SystemC introduces channels, inter-
faces, and events to enable communication and synchroniza-
tion between modules or processes. An interface specifies a set
of access methods to be implemented within a channel, where
channels provide the implementation for these interfaces. An
event is a flexible synchronization primitive that is used to
construct other forms of synchronization. Events in SystemC
occur at a given simulation time.

PSL is an implementation independent language to define
properties. It does not replace, bur complements existing ver-
ification methodologies like VHDL and Verilog test benches.
The syntax of PSL is very declarative and structural which
leads to sustainable verification environnients, PSL consists
of four layers based on the functionality [I]: modeling, veri-
fication, temporal and Boolean layers.

PSL is a hierarchical language, where every layer is built on
top of the layer below. This approach allows the expressing of
complex properties from simple primitives. A property (also

0-7803-8714-7/04$20.00 02004 IEEE 19

called assertion) is composed from three types of building
blocks: Boolean expressions, sequences, which are themselves
built from Boolean expressions, and finally subordinate prop-
erties. Sequences, referred to as SEREs (Sequential Extended
Regular Expressions), are used to describe a single- or multi-
cycle behavior built from Boolean expressions.

To add PSL assertions to SystemC two options are possible,
namely, integrate the PSL as part of the library, or on top of
the library. The former approach presents a radical change
of SystemC requiring the addition of new constructors to the
library (assert for example). Besides, the SystemC simulator
and semantics must be updated in order to manage and
verify the assertions correctly. Considering the 00 aspect of
SystemC and its modular structure, it is easier, yet probably
more efficient, to add assertions on top of SystemC. In fact,
any assertion can be seen as a monitor keeping track of some
of the design signals, performing a verification operation and
giving as output a status flag. The open question with this latter
approach is how to update the design in order to connect the
assertion’s monitors.

I 4
I r Assertion

L 1 .--*------_______-- _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ ~
SyslemC updated design conlainlng

the assertion’s mnilor

Fig. 1 . Methodology of extending SystrmC with PSL.

Figure 1 shows the proposed methodology to construct
and integrate PSL into SystemC designs. We first start by
collecting the information about the environment from the
SystemC compiled code. We therefore, consider the symbol
file generated from the Gnu-C-Compiler (GCC). This step is
needed in order to localize which signals belong to which
modules. Then, the assertion is validated and compiled. The
validation phase verifies the syntax of the assertion while
the compilation phase performs the link between the design
variables and the assertion parameters.

In order to connect the assertion monitor to the design,
this latter also needs to be updated. In fact, the signals
involved in the assertion must be transformed to output signals
in order to feed them to the assertion monitor. The list of
signals required to extract from the design is generated by
the assertion compiler then given to the design updater, which
performs the required modifications to the original SystemC
design. These modifications will not affect the behavior of the
design since they will only get some signals connected to the
assertion monitor as re.ead-ody. This latter is then connected
to the updated design. When executed, the resulting code will
therefore consider the assertion monitor as part of the design.

111. ASSERTIONS’ COVERAGE ENHANCEMENT

Our goal is to define a test generation approach that offers
better coverage of the assertions. To do so, we first start by
statically analyzing the design in order to define a dependency
relation between the system inputs and the assertions variables.
Such a relation is very useful to omit the inputs that are not
affecting the assertion. It serves also identifying the required
inputs and the range of their possible values that may affect
the assertion. We also identify whch processes need to be
activated in order to get the assertion fired. Figure 2 gives an
overview of our methodology, including the following steps:
1. Static Anolysi$: We apply a static analysis technique to
generate an abstract representation of the design modeled as
graph, called lppergraph [IO], that will include a represen-
tation of both the program’s environment and the process’s
environment.
2. Dependency check: From the hypergraph representation, we
extract the dependency graph and the range of inputs that may
affect the assefiion.
3. PH Program generator: Using the abstract program (mod-
eled as a hypergraph structure) and the dependency graph, we
generate a reduced model containing o d y the units involved
in the assertion.
4. Itlitid DNA generarion: Considering the list of input vari-
ables of interest for the assertion and their ranges, we create a
DNA structure that will serve as starting point for the genetic

5. RNA evaluation/update: Using the initial DNA, the algo-
rithm will update the generators’ community starting from the
initial DNA to obtain an optimal DNA using the assertion
coverage as selection criteria.

algorithm.

check
1 Dependency

relations I
I 2 Inpus ranges:

!

I

Fig. 2. Enhancing the Assertion’s Coverage,

A. Static Code ArraEysis

In order to analyze SystemC designs statically and extract
the required information to generate the “inputslassertions
variables” dependency relation, we considered an approach
based on abstract interpretation [3]. Abstract interpretation is
a formal technique that has proven to be efficient with object-
oriented languages and large programs.

At the end of the analysis, the program is represented as
a hypergraph [lo], which can be interpreted as a general

20

automata connecting its states by branches (also cdled hyper-
branches). These branches can be seen as an extension to
Binary Decision Diagrams (BDDs), but more adapted to
programs representation. We augmented this work to support
the SystemC library and simulator in the form of specific
classes to extract information related to SystemC processes
and events from the design [SI.

L

A2 8 42 93
A3 12 32 85
A4 11 37 89
A5 14 41 87 B. Genetic A igorithm

Genetic algorithms belong to a family of computational
models inspired by evolution [6] . They encode a potential so-
lution to a specific problem on a simple chromosomes like data
structure and apply recombination operators to these structures
to preserve critical information. Since their introduction by
Holland [6j, genetic algorithms have been applied to a broad
range of learning and optimization problems [SI. Typically,
a genetic algorithm starts with a random population of en-
coded candidate solutions (test generators for our case), called
chromosomes. The objective is to maximize the likelihood of
generating an optimal solution. This can be guaranteed by: (1)
evaluating thejifness of each candidate solution in the current
population; (2) selecting the fittest candidate solutions to act
as parents of the next generation of candidate solutions; and
(3) selected parents are recombined and mutated to generate
offsprings.

In our context, the search space to be explored is the
state space of the system that may trigger the assertion(s)
under verification. Candidate solutions are finite sequences of
input ranges and probability weights. Each candidate solution
is encoded by a chromosome (a finite string of bits). The
information encoded in Ihe DNA includes: (1) the list of input
variables, (2) their ranges @ossible values,), and (3) a weighted
probability to their random generation. The aIgorithm evalu-
ates the fitness of the candidate by executing a test generation
based on the information embedded in the corresponding
chromosome. A coverage report is then generated to senre
in the fitness evaluation phase.

The chromosome encoding is the most important aspect of
our algorithm. During the static analysis phase, we obtain
the list of variables of the program and their types. Each
variable is given a unique identifier Each type is also given
a space of possible values [for the type char for example
the range is [0..255]). The chromosome encodes the list of
variables, their types and a weight relation over the range
of possible values. This latter varies according to the type
and its interpretation. For every basic type, we defined a
Iist of possible weight relations, e g., for Inreger., we use the
following window relation:

I < -50 or 1 > 50 tu = 0.2
w = 0.8

This relation states that the integer variable I is generated
randomly in the interval [-50, 501 with a probability of 80%
and 20% inside and outside rhe interval, respectively.

The proposed fitness function serves to guide the genetic
search towards finng the assertion’s variables. Its intuitive idea

-50 5 I 5 50

A6 I 16

TABLE I
ASSERTIONS’ COVERAGE AXALYSIS

46 91
A7 I 10 41 I 94
A8
A9

A 10

17 33 83
16 31 82
14 45 97

A8 I 17 33 83

is to reduce the range of possible values of the input variables
and to find the best probability distribution of the random test
generation that will modify the assertion’s variables. This way,
we maximize the assertion evaluations, since the evahation of
the chromosomes is defined as an award bonus proportional
to the number of assertion evaluations. In order to improve
the efficiency of the algorithm, we keep track of the best and
worst chromosome fitness in each generation; if both fitness
values become equal, we increase the mutation rate, in order
to help the genetic evolution get out of local maxima. Once
there is an improvement in the overall fitness, we restore the
original mutation rate to continue the evolution normally.

A9
A10

IV. MASTEWSLAVE Bus CASE STUDY

I 16 31 I 82
I 14 45 97

To illustrate the proposed SystemC verification methodol-
ogy, we consider in this section a MastedSlave bus structure
model taken from the SystemC library I .

Masbr 1 Master 2

Fig. 3. MastedSlave bus structure.

Figure 3 shows the overa11 structure of the MastedSlave
bus. Multiple masters can be connected io the bus via a
communication interface. Each master is identified by a unique
priority represented by an unsigned integer number. This
structure includes several SystenC components and nicely
takes advantage of the principles of using SystemC at the
transactional level.

In order to evaluate the proposed genetic algorithm, we

’ A more detailed description of this case study including all the source
code is available at: http://hvf.ece.concordia.calRessarch/SoCiGencticAlEo/.
Other case studies are also available at the same web URL.

21

http://hvf.ece.concordia.calRessarch/SoCiGencticAlEo

considered a set of 10 assertions2. Table I compares the
assertion coverage results obtained: (a) in the initialization
phase of the genetic algorithm (CA), i.e., just after the first
DNA was generated from the static analysis phase; 0) after 35
generations of the GA; and (c) with a blind random generation.
We used lo9 simulation cycles for every generation. The
coverage is measuring the portion of complete state space of
the assertion covered by the test. We clearly notice that the
static analysis phase already offers a better initial state than
starting with totally random generation.

_lil

0 5 10 15 20 25 30 35

Generation

Fig. 4. Assertion coverage evolution as fimction of the Population Generation.

Figure 4 gives more details about the evolution of the
algorithm for the three assertions (Al, A2 and A3). Typically,
a genetic algorithm makes relatively quick progress in the
beginning stages of evolution. We noted that there exist some
phases, where the algorithm hits local maxima before mutating
further, which improves its performance. We even noticed that
the coverage sometimes decreases slowly from generation to
generation (for e.g., generation 20 for A3). This is due to the
fact that the evaluation of the assertion is based on weighted
random generation. In other terms, since the number of tests
is f i n k , a generator may have two different coverage results
for two different lest trials.

v. RELATED WORK

Genetic algorithms have already been used for a broad range
of applications. The most related work to ours is the one of
Godefroid et al. [4], which in contrast to other approaches,
addressed in particular the exploration of large state spaces of
concurrent reactive systems as defined for model checking.
Nevertheless, this work was restricted to simple Boolean
assertions and was based on BDDs which is not suitable
for high level languages like SystemC. We added to [4] a
static analysis phase of the code before applying the genetic
algorithm. We also considered a chromosome-encoding based
on weighted probability over the space of the possible values
of the program variables.

There exist a variety of very efficient EDA tools for test and
assertion coverage, e.g., Specman Elite [l 13 from the Verisity,
TestBuilder [2] from Cadence and TestBencher Pro [9] from

?Due to the lack of space in the paper, we refer the reader to
http:/~~~g.ece.concordia.calResearchiSoC/Gene~icAl~o/ in order lo get a de-
tailed description of the assertions.

SynaptiCAD. They use a user-defined constrained random
simulation in order to perform higher functional coverage,
Nevertheless, these tools do not take advantage from the design
specific properties. Besides, they relate the coverage to the
number of times the assertion was executed while a correct
evaluation has to consider what portion of the assertion’s state
space was covered. For instance, actual tools were defined
for low HDL level designs (using VeriIog and VHDL) and
do not define coverage metrics for PSL assertions when
used with SystemC. We are not aware of any other work
where genetic algorithms have been combined with static code
analysis to optimize test vector generator in order to improve
PSL assertions coverage with SystemC. As future work, we
consider to implement our benchmarks in Verilog in order to
be able to evaluate partially the performances of our approach
in comparison to existent testbench tools.

VI. CONCLUSION
In this paper, we presented a methodology to integrate PSL

with the SystemC language. We proposed to translate PSL
into SystemC monitors connected to the design in order to
verify some assertions during simulation. Our approach takes
advantage from the 00 nature of the C t t language and the
events concept of the SystemC library. In order to verify
efficiently assertions in SystemC, we hrther apply a static
code analysis technique based on abstract interpretation. This
phase generates an abstracted version of the initial design
modeled as a hypergraph that helps defining the dependency
between the system inputs and the assertion’s variables, as well
as restricting the possible vaIues of the inputs to certain ranges
that may update the assertion. Although experiments showed
that this approach improves the assertion’s coverage, we pro-
posed to use a genetic algorithm that optimizes the probability
distribution of the inputs over the space of their possible
values. Our genetic algorithm showed an improvement of the
assertions coverage by a factor of eight in comparison to the
random case. As hture work, we target to optimize the genetic
algorithm to improve various coverage metrics.

REFERENCES
Accellera Organization. Properv Spec2fication Langiluge Rqfmaice
Mm1uaZ. 2003.
Cadence Design Systems. Cadence Vkrflcfication Eumsiora. I:’ 5.0. 2003.
P. COUMI and R Cousot. Abstract interpretation frameworks. Jotmial
of Logic and Conipiiiation, 2(4):511-547? Augusl 1992.
P. Godefroid and S. Khurshid Exploring veIy targe state spaces using
genetic algorithms. In Tools and .4lgorithms for Cortstrucrioii ond
Analysis of Syslenls, 2002.
A. Babibi and S. Tahar. Abstract interpretation of systemc designs.
Technical report, Department of Electrical and Computer Engineering,
Concordia University, June 2004.
J. Holland Adupration in Natural mid Arr$ciul Systems. The University
of Michigan Press, 1975.
Open SystemC Initiative. Website: http://R.ww.systemc.og, 2004.
H. Rudin, Protocol development success stones: Part i. In 12th IFIP
IC% 6. f Bitenrational @niposiuni on Protocol Spec flcarioti, Eslirig, mid
Vw$cficntion, Florida, USA, June 1992.
SynaptiCAD Inc. Website: http://ww.syncad.comi, 2004.
F. Vederine. Analyses torules de prograninies pur interprctution ab-
snaire. PhD thesis, Ecole Polytechnique, Pans, France, 2000.
Verisity Ltd. Website: http:l/www.oerisity.cod, 2004.

22

http://R.ww.systemc.og
http://ww.syncad.comi
http:l/www.oerisity.cod

