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AbstPorr-IIn this paper, we present an approach to verify 
emciently assertions added on top of the SystemC library and 
based on the Property Specification Language (EL) .  In order 
to improve the assertion coverage, we also propose an approach 
based on both static code analysis and genetic algorithms. Static 
code analysis will help generate a dependency relation between 
inputs and assertion parameters as well as define the ranges of 
inputs affecting the assertion, The genetic algorithm will optimize 
the test generation to get more efficient coverage of the assertion. 
Experimental results illustrate the efficiency or our approach 
compared to random simulation. 

I. IKTRODUCTION 
SystemC [7] is among a group of system level design 

languages proposed to raise the abstraction level for System- 
on-a-Chip (SoC) design and verification. It is expected to 
make a stronger effect in the areas of system architecture, 
co-design and integration of hardware and software [7j. The 
verification of SystemC designs is a serious bottleneck in the 
design cycle. Going further in complexity and considering 
hardwarekofware systems will be out of the range of the 
used simulation based techniques. In fact, classical verification 
techniques when used with SystemC will face several prob- 
lems related to the object-oriented (00) aspect of this library 
and to the coniplexity of its simulation environment. 

The main trends in defining new SoC verification method- 
ologies are considering a hybrid combination of formal, semi- 
formal and simulation techniques. Assertions are set to be the 
next big breakthrough that will enable engineers to continue 
to design and verify larger and more coniplex designs. The 
Accellera Property Specification Languaze (PSL.) [ I ]  was 
developed in this respect to address the lack of information 
about properties and design characteristics in RTL modeling. It 
provides means of specifying design properties using a concise 
syntax with clearly defined formal semantics. 

In this paper, we propose to augment the SysremC language 
to support the syntax and semantics of PSL. These latter are 
translated into external SystemC modules coMected as read- 
only monitors (objects) io the original design, Every monitor is 
composed of a set of input signals (involved in the assertions) 
and a verification process (representing the code to verify the 
assertion itself). 

The objective of the verification process is not only to 
write assertions but to verify them. Ths  latter task is usualIy 
performed using test vectors gemation tools mostly based 
on random processes. This kind of blind simulation does 
not guarantee that the assertion will be covered during the 

test execution. Therefore, it is very important to consider a 
smarter and more efficient test vector generation approach. 
To do sa, we propose first to use static code analysis to 
extract a dependency relation between the design inputs and 
the variables considered in the assertion. This analysis will also 
define for every input the range of possible values that may 
affect the assertion which provides very useful information to 
improve the assertion’s coverage. 

In order to enhance the coverage even more, we also propose 
to use a genetic algorithm based on a community of random 
generators having a variety of DNA information [4], This latter 
will help defining the list of variables considered in the test 
generation, their possible values and a weighted probability 
over the previous range. The DNA updateimutation rules will 
be defined according to the coverage each generator offers. At 
the end of the genetic procedure, we expect the final DNA 
to provide an identification of a generator that offers a better 
coverage than a random one. 

The rest of this paper is organized as follows: Section I1 
describes our approach to extend SystemC by PSL. Section 111 
presents our methodology to improve the assertion coverage. 
Section IV illustrates DUT methodology on a Masredslave Bus 
case study taken from the SystemC library. Section V discusses 
the related work. Finally, Section VI concludes the paper. 

II. EXTENDING SYSTEMC BY PSL 
SystemC is a set of C t t  class definitions and a methodology 

for using these classes [7]. SystemC introduces channels, inter- 
faces, and events to enable communication and synchroniza- 
tion between modules or processes. An interface specifies a set 
of access methods to be implemented within a channel, where 
channels provide the implementation for these interfaces. An 
event is a flexible synchronization primitive that is used to 
construct other forms of synchronization. Events in SystemC 
occur at a given simulation time. 

PSL is an implementation independent language to define 
properties. It does not replace, bur complements existing ver- 
ification methodologies like VHDL and Verilog test benches. 
The syntax of PSL is very declarative and structural which 
leads to sustainable verification environnients, PSL consists 
of four layers based on the functionality [I]: modeling, veri- 
fication, temporal and Boolean layers. 

PSL is a hierarchical language, where every layer is built on 
top of the layer below. This approach allows the expressing of 
complex properties from simple primitives. A property (also 
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called assertion) is composed from three types of building 
blocks: Boolean expressions, sequences, which are themselves 
built from Boolean expressions, and finally subordinate prop- 
erties. Sequences, referred to as SEREs (Sequential Extended 
Regular Expressions), are used to describe a single- or multi- 
cycle behavior built from Boolean expressions. 

To add PSL assertions to SystemC two options are possible, 
namely, integrate the PSL as part of the library, or on top of 
the library. The former approach presents a radical change 
of SystemC requiring the addition of new constructors to the 
library (assert for example). Besides, the SystemC simulator 
and semantics must be updated in order to manage and 
verify the assertions correctly. Considering the 00 aspect of 
SystemC and its modular structure, it is easier, yet probably 
more efficient, to add assertions on top of SystemC. In fact, 
any assertion can be seen as a monitor keeping track of some 
of the design signals, performing a verification operation and 
giving as output a status flag. The open question with this latter 
approach is how to update the design in order to connect the 
assertion’s monitors. 

I 4 
I r Assertion 

L 1 .--*------_______-- _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ ~  
SyslemC updated design conlainlng 

the assertion’s mnilor 

Fig. 1 .  Methodology of extending SystrmC with PSL. 

Figure 1 shows the proposed methodology to construct 
and integrate PSL into SystemC designs. We first start by 
collecting the information about the environment from the 
SystemC compiled code. We therefore, consider the symbol 
file generated from the Gnu-C-Compiler (GCC). This step is 
needed in order to localize which signals belong to which 
modules. Then, the assertion is validated and compiled. The 
validation phase verifies the syntax of the assertion while 
the compilation phase performs the link between the design 
variables and the assertion parameters. 

In order to connect the assertion monitor to the design, 
this latter also needs to be updated. In fact, the signals 
involved in the assertion must be transformed to output signals 
in order to feed them to the assertion monitor. The list of 
signals required to extract from the design is generated by 
the assertion compiler then given to the design updater, which 
performs the required modifications to the original SystemC 
design. These modifications will not affect the behavior of the 
design since they will only get some signals connected to the 
assertion monitor as re.ead-ody. This latter is then connected 
to the updated design. When executed, the resulting code will 
therefore consider the assertion monitor as part of the design. 

111. ASSERTIONS’ COVERAGE ENHANCEMENT 

Our goal is to define a test generation approach that offers 
better coverage of the assertions. To do so, we first start by 
statically analyzing the design in order to define a dependency 
relation between the system inputs and the assertions variables. 
Such a relation is very useful to omit the inputs that are not 
affecting the assertion. It serves also identifying the required 
inputs and the range of their possible values that may affect 
the assertion. We also identify whch processes need to be 
activated in order to get the assertion fired. Figure 2 gives an 
overview of our methodology, including the following steps: 
1. Static Anolysi$: We apply a static analysis technique to 
generate an abstract representation of the design modeled as 
graph, called lppergraph [IO], that will include a represen- 
tation of both the program’s environment and the process’s 
environment. 
2. Dependency check: From the hypergraph representation, we 
extract the dependency graph and the range of inputs that may 
affect the assefiion. 
3. PH Program generator: Using the abstract program (mod- 
eled as a hypergraph structure) and the dependency graph, we 
generate a reduced model containing o d y  the units involved 
in the assertion. 
4. Itlitid DNA generarion: Considering the list of input vari- 
ables of interest for the assertion and their ranges, we create a 
DNA structure that will serve as starting point for the genetic 

5. RNA evaluation/update: Using the initial DNA, the algo- 
rithm will update the generators’ community starting from the 
initial DNA to obtain an optimal DNA using the assertion 
coverage as selection criteria. 

algorithm. 

check 
1 Dependency 

relations I 
I 2 Inpus ranges: 

! 

I 

Fig. 2. Enhancing the Assertion’s Coverage, 

A.  Static Code ArraEysis 

In order to analyze SystemC designs statically and extract 
the required information to generate the “inputslassertions 
variables” dependency relation, we considered an approach 
based on abstract interpretation [3]. Abstract interpretation is 
a formal technique that has proven to be efficient with object- 
oriented languages and large programs. 

At the end of the analysis, the program is represented as 
a hypergraph [lo], which can be interpreted as a general 
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automata connecting its states by branches (also cdled hyper- 
branches). These branches can be seen as an extension to 
Binary Decision Diagrams (BDDs), but more adapted to 
programs representation. We augmented this work to support 
the SystemC library and simulator in the form of specific 
classes to extract information related to SystemC processes 
and events from the design [SI. 

L 

A2 8 42 93 
A3 12 32 85 
A4 11 37 89 
A5 14 41 87 B. Genetic A igorithm 

Genetic algorithms belong to a family of computational 
models inspired by evolution [ 6 ] .  They encode a potential so- 
lution to a specific problem on a simple chromosomes like data 
structure and apply recombination operators to these structures 
to preserve critical information. Since their introduction by 
Holland [6j, genetic algorithms have been applied to a broad 
range of learning and optimization problems [SI. Typically, 
a genetic algorithm starts with a random population of en- 
coded candidate solutions (test generators for our case), called 
chromosomes. The objective is to maximize the likelihood of 
generating an optimal solution. This can be guaranteed by: ( 1 )  
evaluating thejifness of each candidate solution in the current 
population; (2) selecting the fittest candidate solutions to act 
as parents of the next generation of candidate solutions; and 
(3) selected parents are recombined and mutated to generate 
offsprings. 

In our context, the search space to be explored is the 
state space of the system that may trigger the assertion(s) 
under verification. Candidate solutions are finite sequences of 
input ranges and probability weights. Each candidate solution 
is encoded by a chromosome (a finite string of bits). The 
information encoded in Ihe DNA includes: (1) the list of input 
variables, (2) their ranges @ossible values,), and (3) a weighted 
probability to their random generation. The aIgorithm evalu- 
ates the fitness of the candidate by executing a test generation 
based on the information embedded in the corresponding 
chromosome. A coverage report is then generated to senre 
in the fitness evaluation phase. 

The chromosome encoding is the most important aspect of 
our algorithm. During the static analysis phase, we obtain 
the list of variables of the program and their types. Each 
variable is given a unique identifier Each type is also given 
a space of possible values [for the type char for example 
the range is [0..255]). The chromosome encodes the list of 
variables, their types and a weight relation over the range 
of possible values. This latter varies according to the type 
and its interpretation. For every basic type, we defined a 
Iist of possible weight relations, e g., for Inreger., we use the 
following window relation: 

I < -50 or 1 > 50 tu = 0.2 
w = 0.8 

This relation states that the integer variable I is generated 
randomly in the interval [-50, 501 with a probability of 80% 
and 20% inside and outside rhe interval, respectively. 

The proposed fitness function serves to guide the genetic 
search towards finng the assertion’s variables. Its intuitive idea 

-50 5 I 5 50 

A6 I 16 

TABLE I 
ASSERTIONS’ COVERAGE AXALYSIS 

46 91 
A7 I 10 41 I 94 
A8 
A9 

A 10 

17 33 83 
16 31 82 
14 45 97 

A8 I 17 33 83 

is to reduce the range of possible values of the input variables 
and to find the best probability distribution of the random test 
generation that will modify the assertion’s variables. This way, 
we maximize the assertion evaluations, since the evahation of 
the chromosomes is defined as an award bonus proportional 
to the number of assertion evaluations. In order to improve 
the efficiency of the algorithm, we keep track of the best and 
worst chromosome fitness in each generation; if both fitness 
values become equal, we increase the mutation rate, in order 
to help the genetic evolution get out of local maxima. Once 
there is an improvement in the overall fitness, we restore the 
original mutation rate to continue the evolution normally. 

A9 
A10 

IV. MASTEWSLAVE Bus CASE STUDY 

I 16 31 I 82 
I 14 45 97 

To illustrate the proposed SystemC verification methodol- 
ogy, we consider in this section a MastedSlave bus structure 
model taken from the SystemC library I .  

Masbr 1 Master 2 

Fig. 3.  MastedSlave bus structure. 

Figure 3 shows the overa11 structure of the MastedSlave 
bus. Multiple masters can be connected io the bus via a 
communication interface. Each master is identified by a unique 
priority represented by an unsigned integer number. This 
structure includes several SystenC components and nicely 
takes advantage of the principles of using SystemC at the 
transactional level. 

In order to evaluate the proposed genetic algorithm, we 

’ A  more detailed description of this case study including all the source 
code is available at: http://hvf.ece.concordia.calRessarch/SoCiGencticAlEo/. 
Other case studies are also available at the same web URL. 
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considered a set of 10 assertions2. Table I compares the 
assertion coverage results obtained: (a) in the initialization 
phase of the genetic algorithm (CA), i.e., just after the first 
DNA was generated from the static analysis phase; 0) after 35 
generations of the GA; and (c) with a blind random generation. 
We used lo9 simulation cycles for every generation. The 
coverage is measuring the portion of complete state space of 
the assertion covered by the test. We clearly notice that the 
static analysis phase already offers a better initial state than 
starting with totally random generation. 

_lil 

0 5 10 15 20 25 30 35 

Generation 

Fig. 4. Assertion coverage evolution as fimction of the Population Generation. 

Figure 4 gives more details about the evolution of the 
algorithm for the three assertions (Al, A2 and A3). Typically, 
a genetic algorithm makes relatively quick progress in the 
beginning stages of evolution. We noted that there exist some 
phases, where the algorithm hits local maxima before mutating 
further, which improves its performance. We even noticed that 
the coverage sometimes decreases slowly from generation to 
generation (for e.g., generation 20 for A3). This is due to the 
fact that the evaluation of the assertion is based on weighted 
random generation. In other terms, since the number of tests 
is f i n k ,  a generator may have two different coverage results 
for two different lest trials. 

v. RELATED WORK 

Genetic algorithms have already been used for a broad range 
of applications. The most related work to ours is the one of 
Godefroid et al. [4], which in contrast to other approaches, 
addressed in particular the exploration of large state spaces of 
concurrent reactive systems as defined for model checking. 
Nevertheless, this work was restricted to simple Boolean 
assertions and was based on BDDs which is not suitable 
for high level languages like SystemC. We added to [4] a 
static analysis phase of the code before applying the genetic 
algorithm. We also considered a chromosome-encoding based 
on weighted probability over the space of the possible values 
of the program variables. 

There exist a variety of very efficient EDA tools for test and 
assertion coverage, e.g., Specman Elite [l 13 from the Verisity, 
TestBuilder [2] from Cadence and TestBencher Pro [9] from 

?Due to the lack of space in the paper, we refer the reader to 
http:/~~~g.ece.concordia.calResearchiSoC/Gene~icAl~o/ in order lo get a de- 
tailed description of the assertions. 

SynaptiCAD. They use a user-defined constrained random 
simulation in order to perform higher functional coverage, 
Nevertheless, these tools do not take advantage from the design 
specific properties. Besides, they relate the coverage to the 
number of times the assertion was executed while a correct 
evaluation has to consider what portion of the assertion’s state 
space was covered. For instance, actual tools were defined 
for low HDL level designs (using VeriIog and VHDL) and 
do not define coverage metrics for PSL assertions when 
used with SystemC. We are not aware of any other work 
where genetic algorithms have been combined with static code 
analysis to optimize test vector generator in order to improve 
PSL assertions coverage with SystemC. As future work, we 
consider to implement our benchmarks in Verilog in order to 
be able to evaluate partially the performances of our approach 
in comparison to existent testbench tools. 

VI. CONCLUSION 
In this paper, we presented a methodology to integrate PSL 

with the SystemC language. We proposed to translate PSL 
into SystemC monitors connected to the design in order to 
verify some assertions during simulation. Our approach takes 
advantage from the 00 nature of the C t t  language and the 
events concept of the SystemC library. In order to verify 
efficiently assertions in SystemC, we hrther apply a static 
code analysis technique based on abstract interpretation. This 
phase generates an abstracted version of the initial design 
modeled as a hypergraph that helps defining the dependency 
between the system inputs and the assertion’s variables, as well 
as restricting the possible vaIues of the inputs to certain ranges 
that may update the assertion. Although experiments showed 
that this approach improves the assertion’s coverage, we pro- 
posed to use a genetic algorithm that optimizes the probability 
distribution of the inputs over the space of their possible 
values. Our genetic algorithm showed an improvement of the 
assertions coverage by a factor of eight in comparison to the 
random case. As hture work, we target to optimize the genetic 
algorithm to improve various coverage metrics. 
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