
Assertion Based Verification of PSL for SystemC

Ali Habibi, Amjad Gawanmeb and Sofibne Tabar
Department of Electrical and Computer Engineering

Concordia University
1455 de Maisonneuve, West

Montreal, Quebec, H3G IM8, Canada
Email: {babibi,amjad,tahar}@ece.concordia.ca

Abstraa-In this paper, we present an assertion based ver-
ification approach for SystemC designs based on embedding
the Property Specification Language (PSL) using Abstract State
Machines (ASM). Our approach utilizes an existing embedding
of PSL in ASM in order to enable modeling PSL assertions at the
ASM level. Here, we propose to compile PSL assertions into C#
code, and integrate them with the SystemC design. Assertions
are then verified by simulating the new model that combines
the original design and the integrated assertions. This enriches
the SystemC language with a powerful and expressive assertion
specification layer, and improves the verification of SystemC
designs by targeting specific properties during simulation.

I. INTRODUCTION
SystemC [8] is a relatively new system level language

proposed to overcome the problem of the growth in complexity
and size of systems combining different types of components,
including microprocessors, DSPs, memories, embedded soft-
ware, etc. SystemC meets the need for a system level language
that can fill the gap between hardware description languages
(HDLs) and traditional software programming languages. Sys-
temC comprises C+t class libraries and a simulation kemel
used for creating behavioral and register transfer level (RTL)
designs. The verification of a SystemC design is a more serious
bottleneck in the design cycle. Going further in complexity
and considering hardwarekofhvare systems will be out of the
range of the nowadays used simulation based techniques. In
order to improve classical simulation, many proposals offer to
use assertion based verification.

In conventional HDL designs, an assertion is a conditional
statement that checks for specific behavior and displays a
message if it occurs. Assertions are generally used as monitors
looking for bad behavior, but may be used to create an alert
for desired behavior as well. Assertions are added during
verification to monitor conditions that are otherwise hard
to check using simulation. They are used to simplify the
debugging of complex design problems. Assertion monitors
can be thought of as internal software test points that wait
for a particular problem to happen and then alert the designer
when it does.

In order to provide an efficient language to write assertions,
the Accellera organization proposed the Property Specification
Language (PSL) [I], which addresses the lack of information
about properties and design characteristics. It provides means

of specifying design properties using a concise syntax with
clearly defined formal semantics. PSL permits specifying a
large class of real design properties that range from simple
to complex ones since it consists of four layers: Boolean,
temporal, verification and modeling layers.

In this paper, we provide a framework to verify PSL proper-
ties as assertions for SystemC designs based on an embedding
of PSL in Abstract State Machines (ASM) proposed in [3].
ASM [2] is a formal specification method for software and
hardware systems that bas become successful for specifying
and verifying complex systems. The ASM methodology is
mathematically precise, yet general enough to be applicable to
a wide variety of problem areas 151. The ASM thesis asserts
that any computing system can be described at its natural
level of abstraction by an appropriate ASM. There are many
languages that have been developed for ASMs, the recent one
is AsmL 161, which was developed at Microsoft. This tool
offers to generate a C# code from the ASM model. We propose
to model the PSL assertions in ASM and then translate them
into a C# code using the AsmL tool. Finally, we integrate those
assertions as monitors in the SystemC design model in order to
check certain behaviors during simulation. We experimented
our approach on a number of case studies including a packet
switch, which we report in this paper, and where a bug in the
original SystemC code bas been found.

The rest of this paper is organized as follows: Section
I1 briefly describes SystemC library and the PSL language.
Section I11 presents our approach to verify PSL assertion for
SystemC designs. Section IV illustrates our approach on a
packet switch case study. Finally, Section V concludes the
paper.

11. SYSTEMC AND PSL

SystemC is a set of C++ class definitions and a methodology
for using these classes [7]. SystemC introduces channels, inter-
faces, and events to enable communication and synchroniza-
tion between modules or processes. An interface specifies a set
of access methods to be implemented within a channel, where
channels provide the implementation for these interfaces. An
event is a flexible synchronization primitive that is used t o
construct other forms of synchronization. Events in SystemC
occur at a given simulation time.

0-7803-8558r6/04/$20.00 02004 IEEE 177

The core language consists of an event-driven simulator
as the base. It works with events and processes. The other
core language consists of modules and ports for rcpresent-
ing structures. Interfaces and channels are used to describe
communications. The primitive channels are built-in channels
such as signals, semaphores and FIFOs. SystemC provides
data types for hardware modeling and certain types of software
programming as well.

PSL is an implementation independent language to define
properties. It does not replace, but complements existing ver-
ification methodologies like VHDL and Verilog test benches.
The syntax of PSL is very declarative and structural which
leads to sustainable verification environments. PSL consists
of four layers based on the functionality of interest [I]:
The modeling layer is used to model behavior of design
inputs for formal verification tools, and to model auxiliary
parts of the design that are needed for verification.
The verification layer is used to tell the verification tool what
to do with the properties described hy the temporal layer.
The temporal layer is used to describe properties of the
design, as well as simple general properties. This layer can
describe properties that involve complex temporal relations.
Temporal expressions are evaluated over a series of evaluation
cycles.
The Boolean layer is used to build expressions for the other
layers, specifically the temporal layer. Boolean expressions are
evaluated in a single evaluation cycle.

PSL is a hierarchical language, where every layer is built on
top of the layer below. This approach allows the expressing of
complex properties from simple primitives. A property (also
called assertion) is built from three types of building blocks:
Boolean expressions, sequences, which are themselves built
from Boolean expressions, and finally subordinate properties.
Sequences, referred to as SERES (Sequential Extended Regular
Expressions), are used to describe a single- or multi5ycle
behavior built from Boolean expressions.

111. ASSERTION BASED VERIFICATION APPROACH
To support SystemC, PSL can be either integrated as part

of SystemC, or put on top of the library. The first approach
presents a radical change of SystemC requiring the addition of
new constructors and functionalities to the library (like assert
and assume). Besides, the SystemC simulator and semantics
must be updated in order to manage, support and verify the
assertions and their verification process. Although, this choice
may seem to be very efficient, considering the object-oriented
aspect of SystemC and its modular structure, it is easier, yet
probably more efficient, to add assertions on top of SystemC.
In fact, any assertion can be seen as a monitor keeping track of
some of the design signals, performing a verification operation
and giving a status flag as an output. The open question with
the second approach is how to update the design in order to
connect the assertion monitors.

The classical way to add PSL assertions to SystemC is
to code them in C++ (similar to [4]). However, this option
has many drawbacks especially that the C t c language is

I List of Updates :

not adequate to write logical and sequential properties and
formulas as defined in PSL. Besides, to malm sure that the
embedding of PSL in C++ is correct, we must put an important
additional effort to validate the new assertion's layer. It will
hence be more efficient to model the assertion in a language,
like ASM, which offers two very important features: (I) it can
model state machines, and (2) it can be translated to a C# code,
which supports any other language in the .NET framework (in
particular CW).

A. PSL Assertions Integration in SystemC

Figure 1 describes our methodology to integrate and verify
PSL assertions for SystemC designs, which consists of the
following three main steps:

1) Updating the SystemC design to interface to the asser-

2) Generating the assertion as a C# code from its ASM

3) Integrating the assertion in the design.

tion monitor.

description.

/I

PSL

Jes'gnl I[(AsmL Compiler))
A - 1 PSL Assenion in WI / ASsenion Integrator ______________...................

SystemC updated design containing
the assenion's monitor

Fig. 1. Methodology to verify PSL assertions for SystemC designs

Generating the table of symbols from the SystemC design
is important in order to validate the variables (names and
types) that are used in the assertion. In fact, while compiling
the assertion, we are concerned with, first, its syntactical
correctness, and second, its semantical validity. In this latter,
we check the type and the naming of the assertion variables.

Once the assertion's structure verified, we translate it to
its equivalent ASM code. In our embedding of the assertion
in ASM, we defined a one to one mapping between the
PSL assertion and their ASM embedding (see Section III-
B). Hence, the transformation is purely syntactical, which
guarantees the correctness of the embedded assertion.

In the validation phase of the assertion structure, we also
generate a list of updates required to prepare the design to
integrate the assertion. For instance, the signals (variables) that
are used in the assertion must be seen as extemal signals so
that they can be input to the assertion monitor. So, we provide
the Design Updater with a list of variables as defined by their
unique identifier in the table of symbols. Then, the Design
Updater modifies the SystemC design to make the required

178

variables visible to the monitor. This transformation does not
affect the behavior of the code as it will only be accessed in
a read-only mode.

Once the code is updated and the assertion is generated,
the Design Integrator will add the required instantiation of the
assertion to bind it to the existing SystemC design modules.
The assertion monitor, acting as part of the design, can do
the following: (1) stop the simulation when the assertion is
fired; (2) write a report about the assertion status and all its
variables; and (3) send a waming signal to other modules (if
required). We note that the intemal code of the assertion is C#
so the designer can update it or do any other functionalities
that can be coded in C#.

B. Embedding PSL in ASM
We embed PSL properties into the design code itself, where

all the parameters of PSL properties are defined as objects.
The objective of the embedding is to reuse PSL properties,
as embedded in ASM, at lower design levels. In fact, the
AsmL tool can automatically compile them into a C# or .NET
code, which can be compiled and executed with the concrete
SystemC level for example.

We defined the embedding of PSL properties in a hierar-
chical way, where all components are defined as objects and
every PSL layer extends its lower layer using the inheritance
feature of AsmL. We embedded the first three layers in ASM
by defining classes for all types and expressions including their
methods. The embedding of the Boolean layer mainly includes
(1) the expression type class, which contains the basic types of
the language, (2) PSL expressions, which constructs properties
using the implication and equivalence operators, and (3) the
PSL functions, which include all the functions defined by PSL
to operate at this layer. The embedding of the temporal layer
includes SEREs and Properties, which contain the operations
necessary to create properties from sequential expressions.
The embedding of the verification layer includes verification
directives, which are used to specify how the assertion will be
interpreted (assertion, requirement, restriction or assumption).
It also includes the verification unit [l], which is a compact
way to encapsulate several properties together. More details
about the PSL embedding in ASM can be found in [3].

IV. CASE STUDY: PACKET SWITCH
In this section, we apply the above approach on a packet

switch design from the SystemC lihrav [8] '.
A. Packet Switch

Figure 2 provides a general structure of a 4x4 multi-cast
packet switch. The switch uses a self routing ring of shift
registers to transfer cells from one port to another in a
pipelined fashion, resolving output contention and efficiently
handling multi-cast cells. Input and output ports have FIFO
buffers of depth four each. Input and output signals are 16-bit

'A detailed descnptian of the cax study, SystemC code, ASM code, A m L
configuration files. and the generated FSMs far the packet switch are available
at h n p : l / h v g . e c e . e o n c o i ~ . ~ ~ e ~ ~ ~ ~ S ~ C l A S M .

Fig. 2. Switch structure

packets. Each input port is connected to a sender process. Each
output port is connected to a receiver process. The sender and
receiver processes are given distinguished id numbers during
instantiations. A sender process, writes a random value to data,
and sends it to one or more of the four receivers. Sender
processes send packets at random intervals, varying from 1 to
4 units of its clock. A receiver process is activated whenever
a packet arrives. Then, it displays the content of the packet
and the receiver id. The switch operates on an extemal clock,
CLK, and an intemal clock, SWCLK, which is four times
faster. Input and output signals are 16-bit packets with the
structure given in Figure 3.

Fig. 3. Packet Structure

B. Assertions
For illustration purposes, we consider the following three

PSL assertions for the packet switch.
The first assertion, Al, is intended to verify that if there is

only one recipient for the packet, and the output queue is not
full, then the register that holds the packet should be free in
the next intemal clock, and the packet should he received at
the output queue.

AssertionAI :
forall send in {0 , 1, 2, 3)

i f Reg[send].jree == true and
Packet.destO and not OutQueue[send]. full and
not Packet.dest1 OT Packet.dest2 ur Packet.dest3

then at next SWCLK :
Reg[send].free = true
OutQueue[O] = Reg[send

The second assertion, A2, is intended to check the shortest
path when sending from sender i to receiver i, where the input
queue is not full. This operation should be performed in four
internal clocks (SWCLK) or equivalently one extemal clock
(CLK).

Assertion& :
forall send i n {O, 1, 2, 3}, furall rec in {O, 1 , 2, 3)

i f send == rec and not InQueue[send]. full and
Reg[send].free == true and

179

Out&ueue[rec].empty == true then
OutQueue[rec] = Reg[send] in 4 SWCLK
and OutQueue[rec] = Reg[send] in 1 CLK

The third assertion, A3, is intended to check the (worst)
longest path when sender 0 transmits to receiver 3, input queue
3 has only one free slot, all other input queues are full, and the
output queue 0 is full. This assertion is specified as follows:

i fsend == 3 and rec == 0
and InQueue[3].site == 3
and JnQueue[O]. ful l and InQueue[l].full
and InQueue[S]. full and OutQueue[O]. full then

OutQueue[O] == Reg[3] in 8 to 19 SWCLK

C. Experimental Results
The AsmL tool is used in order to generate automatically the

corresponding C# code for the above PSL assertions. Figure
4 shows, as the example of the integration of the generated
C# model for assertion A I with the SystemC model. The
connection to the existing objects in SystemC model is done
using read-only signals extracted from the packet main module
and the switch clock generator.

The simulation of the new model that combines the original
design and the integrated PSL properties resulted in snc-
cessfully verifying the correctness of assertions A2 and A3.
Assertion AI, however, was violated, indicating a bug in the
SystemC packet switch model. This bug showed, after further
inspection of the code, that the switch will free any packet
coming from senders 0, 2 and 3 and having at least two
destinations including port 1 before routing it to output port
(different from port 1). The erroneous code is the following:

i f (Rl.val.destll(Rl.val.destl(~R1.val.dest2~~Rl.val.dest3)
Rl . f r ee = true;

where the condition to free the register does not check if the
packet is having as destination the port 0 and uses a double
copy of the check about the port 1 (Rl.ual.dest1). The correct
condition should be:

if (Rl.val.destO~~Rl.ual.destl~(Rl.val.dest2~~Rl.val.dest3).

V. CONCLUSION

In this paper, we introduced a new approach to verify the
Property Specification Language (PSL) assertions for SystemC
designs. An assertion is a conditional statement that checks
for specific behavior and displays a message if it occurs. Our
approach utilized the embedding of PSL in Abstract Sate
Machines (ASM) in order to enable modeling PSL assertions
at the ASM level. These assertions are translated into a
C# code using the AsmL tool. Finally, we integrated those
assertions as monitors in the SystemC design model in order
to check certain behaviors during simulation.

We applied this approach on a number of case studies,
including a packet switch from the SystemC library, for which

Fig. 4. Integrating assertion A1 with SystemC model #of the packet switch

we defined various PSL assertions in ASM and generated the
corresponding C# code. Then we simulated the new model that
combines the original design and the integrated PSL proper-
ties. We were able to identify a bug in the SystemC packet
switch model through the violation of one assertion. This
bug was unknown before and was not caught by traditional
simulation.

We believe that this approach improves the verification
of SystemC design hy targeting specific properties during
simulation. It also complements other verification techniques,
such as simulation and formal verification, in particular model
checking, in order to develop a framework for SystemC
verification. In such a framework, the same Imguage, namely
PSL, can be used for defining properties, as!;ertions, or even
test cases. ASMs represent a very good means to integrate
these latter with the original SystemC design in order to
improve the verification process. As a future work, we also
plan to apply the same approach on other languages such as
SystemVerilog.

REFERENCES
[l] Accellera Organization. Accellera Properly Specification Language Ref-

erence Manual, version 1.01. http:llw.accellera.arg, 2004.
[2] Y. Gurevich. Evolving Algebras 1993: Lipan Guide. In E. Bbrger, editor,

Specification and Yolidotion Methods, pages 9-36. Oxford University
Press, 1995.

131 A. Habibi, A. Gawanmeh, and S . T h . Embedding of PSL in ASM with
an Application to SystemC Verification. Technical Report, Department of
Electtical and Computer Engineering, Cancardia University, May 2004.

[4] A. Habibi and S. Thhar. On the Extension of SystemC by SystemVerilog
Assertions. In IEEE Canadian Conference on Eleclricnl and Computer
Engineering, IEEE, Niagara Falls, Ontario, Canada, May 2004.

[5] J. Huggins. Abstract State Machines. http:llwvnv.eecs.umich.edu/gasm,
2003.

[6] Microsoft Corporation. AsmL for Miemsoft .Net Framework (version
2.1 S.7). h n p : l l w w w . r e s e a r c h . m i c " i f o u n d a t i ~ ~ ~ ~ m l , 2004.

[7] Open SystemC Initiative. SysremC 2.0.1 lnnguoge mfemnce mnnunl.
2003.

[SI Open SystemC Initiative. http:llwww.systemc.org, 2004

180

http:llw.accellera.arg
http:llwvnv.eecs.umich.edu/gasm
http:llwww.systemc.org

