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Abstraa-In this paper, we present an assertion based ver- 
ification approach for SystemC designs based on embedding 
the Property Specification Language (PSL) using Abstract State 
Machines (ASM). Our approach utilizes an existing embedding 
of PSL in ASM in order to enable modeling PSL assertions at the 
ASM level. Here, we  propose to compile PSL assertions into C# 
code, and integrate them with the SystemC design. Assertions 
are then verified by simulating the new model that combines 
the original design and the integrated assertions. This enriches 
the SystemC language with a powerful and expressive assertion 
specification layer, and improves the verification of SystemC 
designs by targeting specific properties during simulation. 

I. INTRODUCTION 
SystemC [8] is a relatively new system level language 

proposed to overcome the problem of the growth in complexity 
and size of systems combining different types of components, 
including microprocessors, DSPs, memories, embedded soft- 
ware, etc. SystemC meets the need for a system level language 
that can fill the gap between hardware description languages 
(HDLs) and traditional software programming languages. Sys- 
temC comprises C+t class libraries and a simulation kemel 
used for creating behavioral and register transfer level (RTL) 
designs. The verification of a SystemC design is a more serious 
bottleneck in the design cycle. Going further in complexity 
and considering hardwarekofhvare systems will be out of the 
range of the nowadays used simulation based techniques. In 
order to improve classical simulation, many proposals offer to 
use assertion based verification. 

In conventional HDL designs, an assertion is a conditional 
statement that checks for specific behavior and displays a 
message if it occurs. Assertions are generally used as monitors 
looking for bad behavior, but may be used to create an alert 
for desired behavior as well. Assertions are added during 
verification to monitor conditions that are otherwise hard 
to check using simulation. They are used to simplify the 
debugging of complex design problems. Assertion monitors 
can be thought of as internal software test points that wait 
for a particular problem to happen and then alert the designer 
when it does. 

In order to provide an efficient language to write assertions, 
the Accellera organization proposed the Property Specification 
Language (PSL) [I], which addresses the lack of information 
about properties and design characteristics. It provides means 

of specifying design properties using a concise syntax with 
clearly defined formal semantics. PSL permits specifying a 
large class of real design properties that range from simple 
to complex ones since it consists of four layers: Boolean, 
temporal, verification and modeling layers. 

In this paper, we provide a framework to verify PSL proper- 
ties as assertions for SystemC designs based on an embedding 
of PSL in Abstract State Machines (ASM) proposed in [3]. 
ASM [2] is a formal specification method for software and 
hardware systems that bas become successful for specifying 
and verifying complex systems. The ASM methodology is 
mathematically precise, yet general enough to be applicable to 
a wide variety of problem areas 151. The ASM thesis asserts 
that any computing system can be described at its natural 
level of abstraction by an appropriate ASM. There are many 
languages that have been developed for ASMs, the recent one 
is AsmL 161, which was developed at Microsoft. This tool 
offers to generate a C# code from the ASM model. We propose 
to model the PSL assertions in ASM and then translate them 
into a C# code using the AsmL tool. Finally, we integrate those 
assertions as monitors in the SystemC design model in order to 
check certain behaviors during simulation. We experimented 
our approach on a number of case studies including a packet 
switch, which we report in this paper, and where a bug in the 
original SystemC code bas been found. 

The rest of this paper is organized as follows: Section 
I1 briefly describes SystemC library and the PSL language. 
Section I11 presents our approach to verify PSL assertion for 
SystemC designs. Section IV illustrates our approach on a 
packet switch case study. Finally, Section V concludes the 
paper. 

11. SYSTEMC AND PSL 

SystemC is a set of C++ class definitions and a methodology 
for using these classes [7]. SystemC introduces channels, inter- 
faces, and events to enable communication and synchroniza- 
tion between modules or processes. An interface specifies a set 
of access methods to be implemented within a channel, where 
channels provide the implementation for these interfaces. An 
event is a flexible synchronization primitive that is used t o  
construct other forms of synchronization. Events in SystemC 
occur at a given simulation time. 
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The core language consists of an event-driven simulator 
as the base. It works with events and processes. The other 
core language consists of modules and ports for rcpresent- 
ing structures. Interfaces and channels are used to describe 
communications. The primitive channels are built-in channels 
such as signals, semaphores and FIFOs. SystemC provides 
data types for hardware modeling and certain types of software 
programming as well. 

PSL is an implementation independent language to define 
properties. It does not replace, but complements existing ver- 
ification methodologies like VHDL and Verilog test benches. 
The syntax of PSL is very declarative and structural which 
leads to sustainable verification environments. PSL consists 
of four layers based on the functionality of interest [I]: 
The modeling layer is used to model behavior of design 
inputs for formal verification tools, and to model auxiliary 
parts of the design that are needed for verification. 
The verification layer is used to tell the verification tool what 
to do with the properties described hy the temporal layer. 
The temporal layer is used to describe properties of the 
design, as well as simple general properties. This layer can 
describe properties that involve complex temporal relations. 
Temporal expressions are evaluated over a series of evaluation 
cycles. 
The Boolean layer is used to build expressions for the other 
layers, specifically the temporal layer. Boolean expressions are 
evaluated in a single evaluation cycle. 

PSL is a hierarchical language, where every layer is built on 
top of the layer below. This approach allows the expressing of 
complex properties from simple primitives. A property (also 
called assertion) is built from three types of building blocks: 
Boolean expressions, sequences, which are themselves built 
from Boolean expressions, and finally subordinate properties. 
Sequences, referred to as SERES (Sequential Extended Regular 
Expressions), are used to describe a single- or multi5ycle 
behavior built from Boolean expressions. 

111. ASSERTION BASED VERIFICATION APPROACH 
To support SystemC, PSL can be either integrated as part 

of SystemC, or put on top of the library. The first approach 
presents a radical change of SystemC requiring the addition of 
new constructors and functionalities to the library (like assert 
and assume). Besides, the SystemC simulator and semantics 
must be updated in order to manage, support and verify the 
assertions and their verification process. Although, this choice 
may seem to be very efficient, considering the object-oriented 
aspect of SystemC and its modular structure, it is easier, yet 
probably more efficient, to add assertions on top of SystemC. 
In fact, any assertion can be seen as a monitor keeping track of 
some of the design signals, performing a verification operation 
and giving a status flag as an output. The open question with 
the second approach is how to update the design in order to 
connect the assertion monitors. 

The classical way to add PSL assertions to SystemC is 
to code them in C++ (similar to [4]). However, this option 
has many drawbacks especially that the C t c  language is 

I List of Updates : 

not adequate to write logical and sequential properties and 
formulas as defined in PSL. Besides, to malm sure that the 
embedding of PSL in C++ is correct, we must put an important 
additional effort to validate the new assertion's layer. It will 
hence be more efficient to model the assertion in a language, 
like ASM, which offers two very important features: ( I )  it can 
model state machines, and (2) it can be translated to a C# code, 
which supports any other language in the .NET framework (in 
particular CW). 

A. PSL Assertions Integration in SystemC 

Figure 1 describes our methodology to integrate and verify 
PSL assertions for SystemC designs, which consists of the 
following three main steps: 

1) Updating the SystemC design to interface to the asser- 

2) Generating the assertion as a C# code from its ASM 

3) Integrating the assertion in the design. 

tion monitor. 

description. 

/I 

PSL 

Jes'gnl I[ (AsmL Compiler) ) 
A - 1  PSL Assenion in WI / ASsenion Integrator ______________................... 

SystemC updated design containing 
the assenion's monitor 

Fig. 1. Methodology to verify PSL assertions for SystemC designs 

Generating the table of symbols from the SystemC design 
is important in order to validate the variables (names and 
types) that are used in the assertion. In fact, while compiling 
the assertion, we are concerned with, first, its syntactical 
correctness, and second, its semantical validity. In this latter, 
we check the type and the naming of the assertion variables. 

Once the assertion's structure verified, we translate it to 
its equivalent ASM code. In our embedding of the assertion 
in ASM, we defined a one to one mapping between the 
PSL assertion and their ASM embedding (see Section III- 
B). Hence, the transformation is purely syntactical, which 
guarantees the correctness of the embedded assertion. 

In the validation phase of the assertion structure, we also 
generate a list of updates required to prepare the design to 
integrate the assertion. For instance, the signals (variables) that 
are used in the assertion must be seen as extemal signals so 
that they can be input to the assertion monitor. So, we provide 
the Design Updater with a list of variables as defined by their 
unique identifier in the table of symbols. Then, the Design 
Updater modifies the SystemC design to make the required 
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variables visible to the monitor. This transformation does not 
affect the behavior of the code as it will only be accessed in 
a read-only mode. 

Once the code is updated and the assertion is generated, 
the Design Integrator will add the required instantiation of the 
assertion to bind it to the existing SystemC design modules. 
The assertion monitor, acting as part of the design, can do 
the following: (1) stop the simulation when the assertion is 
fired; (2) write a report about the assertion status and all its 
variables; and (3) send a waming signal to other modules (if 
required). We note that the intemal code of the assertion is C# 
so the designer can update it or do any other functionalities 
that can be coded in C#. 

B. Embedding PSL in ASM 
We embed PSL properties into the design code itself, where 

all the parameters of PSL properties are defined as objects. 
The objective of the embedding is to reuse PSL properties, 
as embedded in ASM, at lower design levels. In fact, the 
AsmL tool can automatically compile them into a C# or .NET 
code, which can be compiled and executed with the concrete 
SystemC level for example. 

We defined the embedding of PSL properties in a hierar- 
chical way, where all components are defined as objects and 
every PSL layer extends its lower layer using the inheritance 
feature of AsmL. We embedded the first three layers in ASM 
by defining classes for all types and expressions including their 
methods. The embedding of the Boolean layer mainly includes 
(1) the expression type class, which contains the basic types of 
the language, (2) PSL expressions, which constructs properties 
using the implication and equivalence operators, and (3) the 
PSL functions, which include all the functions defined by PSL 
to operate at this layer. The embedding of the temporal layer 
includes SEREs and Properties, which contain the operations 
necessary to create properties from sequential expressions. 
The embedding of the verification layer includes verification 
directives, which are used to specify how the assertion will be 
interpreted (assertion, requirement, restriction or assumption). 
It also includes the verification unit [l], which is a compact 
way to encapsulate several properties together. More details 
about the PSL embedding in ASM can be found in [3]. 

IV. CASE STUDY: PACKET SWITCH 
In this section, we apply the above approach on a packet 

switch design from the SystemC lihrav [8] '. 
A. Packet Switch 

Figure 2 provides a general structure of a 4x4 multi-cast 
packet switch. The switch uses a self routing ring of shift 
registers to transfer cells from one port to another in a 
pipelined fashion, resolving output contention and efficiently 
handling multi-cast cells. Input and output ports have FIFO 
buffers of depth four each. Input and output signals are 16-bit 

'A detailed descnptian of the cax study, SystemC code, ASM code, A m L  
configuration files. and the generated FSMs far the packet switch are available 
at h n p : l / h v g . e c e . e o n c o i ~ . ~ ~ e ~ ~ ~ ~ S ~ C l A S M .  

Fig. 2. Switch structure 

packets. Each input port is connected to a sender process. Each 
output port is connected to a receiver process. The sender and 
receiver processes are given distinguished id numbers during 
instantiations. A sender process, writes a random value to data, 
and sends it to one or more of the four receivers. Sender 
processes send packets at random intervals, varying from 1 to 
4 units of its clock. A receiver process is activated whenever 
a packet arrives. Then, it displays the content of the packet 
and the receiver id. The switch operates on an extemal clock, 
CLK, and an intemal clock, SWCLK, which is four times 
faster. Input and output signals are 16-bit packets with the 
structure given in Figure 3. 

Fig. 3. Packet Structure 

B. Assertions 
For illustration purposes, we consider the following three 

PSL assertions for the packet switch. 
The first assertion, Al, is intended to verify that if there is 

only one recipient for the packet, and the output queue is not 
full, then the register that holds the packet should be free in 
the next intemal clock, and the packet should he received at 
the output queue. 

AssertionAI : 
forall send in {0 ,  1, 2, 3 )  

i f  Reg[send].jree == true and 
Packet.destO and not OutQueue[send]. full  and 
not Packet.dest1 OT Packet.dest2 ur Packet.dest3 

then at next SWCLK : 
Reg[send].free = true 
OutQueue[O] = Reg[send 

The second assertion, A2, is intended to check the shortest 
path when sending from sender i to receiver i, where the input 
queue is not full. This operation should be performed in four 
internal clocks (SWCLK) or equivalently one extemal clock 
(CLK). 

Assertion& : 
forall send i n  {O, 1, 2, 3}, furall rec in  {O, 1 ,  2, 3 )  

i f  send == rec and not InQueue[send]. full and 
Reg[send].free == true and 
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Out&ueue[rec].empty == true then 
OutQueue[rec] = Reg[send] in 4 SWCLK 
and OutQueue[rec] = Reg[send] in 1 CLK 

The third assertion, A3, is intended to check the (worst) 
longest path when sender 0 transmits to receiver 3, input queue 
3 has only one free slot, all other input queues are full, and the 
output queue 0 is full. This assertion is specified as follows: 

i fsend == 3 and rec == 0 
and InQueue[3].site == 3 
and JnQueue[O]. ful l  and InQueue[l].full 
and InQueue[S]. full and OutQueue[O]. full then 

OutQueue[O] == Reg[3] in 8 to 19 SWCLK 

C. Experimental Results 
The AsmL tool is used in order to generate automatically the 

corresponding C# code for the above PSL assertions. Figure 
4 shows, as the example of the integration of the generated 
C# model for assertion A I  with the SystemC model. The 
connection to the existing objects in SystemC model is done 
using read-only signals extracted from the packet main module 
and the switch clock generator. 

The simulation of the new model that combines the original 
design and the integrated PSL properties resulted in snc- 
cessfully verifying the correctness of assertions A2 and A3. 
Assertion AI, however, was violated, indicating a bug in the 
SystemC packet switch model. This bug showed, after further 
inspection of the code, that the switch will free any packet 
coming from senders 0, 2 and 3 and having at least two 
destinations including port 1 before routing it to output port 
(different from port 1). The erroneous code is the following: 

i f  (Rl.val.destll(Rl.val.destl(~R1.val.dest2~~Rl.val.dest3) 
Rl . f r ee  = true; 

where the condition to free the register does not check if the 
packet is having as destination the port 0 and uses a double 
copy of the check about the port 1 (Rl.ual.dest1). The correct 
condition should be: 

if (Rl.val.destO~~Rl.ual.destl~(Rl.val.dest2~~Rl.val.dest3). 

V. CONCLUSION 

In this paper, we introduced a new approach to verify the 
Property Specification Language (PSL) assertions for SystemC 
designs. An assertion is a conditional statement that checks 
for specific behavior and displays a message if it occurs. Our 
approach utilized the embedding of PSL in Abstract Sate  
Machines (ASM) in order to enable modeling PSL assertions 
at the ASM level. These assertions are translated into a 
C# code using the AsmL tool. Finally, we integrated those 
assertions as monitors in the SystemC design model in order 
to check certain behaviors during simulation. 

We applied this approach on a number of case studies, 
including a packet switch from the SystemC library, for which 

Fig. 4. Integrating assertion A1 with SystemC model #of the packet switch 

we defined various PSL assertions in ASM and generated the 
corresponding C# code. Then we simulated the new model that 
combines the original design and the integrated PSL proper- 
ties. We were able to identify a bug in the SystemC packet 
switch model through the violation of one assertion. This 
bug was unknown before and was not caught by traditional 
simulation. 

We believe that this approach improves the verification 
of SystemC design hy targeting specific properties during 
simulation. It also complements other verification techniques, 
such as simulation and formal verification, in particular model 
checking, in order to develop a framework for SystemC 
verification. In such a framework, the same Imguage, namely 
PSL, can be used for defining properties, as!;ertions, or even 
test cases. ASMs represent a very good means to integrate 
these latter with the original SystemC design in order to 
improve the verification process. As a future work, we also 
plan to apply the same approach on other languages such as 
SystemVerilog. 
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