
Design for Verification of a PCI Bus in SystemC 
Karim Oumalou, Ali Habibi, and Sofikne Tahar 
Department of Electrical and Computer Engineering 

Concordia University 
1455 de Maisonneuve, West 

Montreal, Quibec, H3G I M8, Canada 
Email: {rimka,habibi,tahar}@ece.concordia,ca 

Abshaef-In this paper, we present an approach to design 
and verify SystemC intellectual properties (IPS). We considered 
as illustrative case a PCI bus modeled us a monitor module 
that can he interfaced to existent SystemC IPS. We defined 
three design steps where we first model the bus in UML; then, 
design it completely with Abstract State Machines (ASM); and, 
finally, translate the ASM code to SystemC. We considered an 
intermediate ASM representation in order to extract the finite 
state machine of the bus that can be used to for model checking of 
PSL properties. The final SystemC monitor block can be seen as 
a stand-alone PCI IP as well as a verification module to validate 
other SystemC PCI compatible devices. Besides, our design offers 
a Eexihle and easy to configure IP that supports a large number 
of masterlslave devices. 

I. INTRODUCTION 

SystemC [9] is a relatively new system level language for 
embedded system design and verification. It is expected to 
make a strong effect in the area of architecture, co-design and 
integration of hardware and software [PI. The SystemC library 
of classes and simulation kernel extend C t c  to enable the 
modeling of System-on-a-Chip (SoC). The extensions include 
support for concurrent behavior, a notion of time sequential 
operations, data types for describing hardware, shucture hier- 
archy and simulation. 

In order for SystemC to model complex yet real SoC, it 
must be equipped by a library of Intellectual Properties (IP) 
including in particular bus structures, which will be used to 
to interconnect devices such as processors, memories, etc. In 
this paper, we present a design methodology to implement 
a PCI (Peripheral Component Interconnect) [lo] Local Bus 
in SystemC as a stand-alone monitor. The PCI bus is a 
high performance bus for interconnecting chips, expansion 
boards, and processor/memory subsystems. It was adopted as 
an industry standard administered by the PCI Special Interest 
Group (PCI SIG) [IO]. 

The verification of SystemC designs is a serious bottleneck 
in the system design flow. Classical simulation does not 
guarantee the absence of errors. On the other hand, formal 
techniques, in particular model checking cannot handle nei- 
ther the object-oriented (00) nature of the libraty nor the 
complexity of its simulator. In order to overcome these two 
problems, we propose to use an intermediate level in the 
design flow, where we model the system in terms of Abstract 
State Machines (ASMs) [7]. At the ASM level, it is possible 
to check formally a set of the properties of the design that 

guarantee its correctness when translated to SystemC. The 
proposed approach is illustrated through the PCI bus. 

An ASM model by definition encodes only those aspects of 
the system's structure that affect the behavior being modeled. 
ASM provides a variety of feaNreS that allow the description 
of the relevant state of a system in a very economical, bigh- 
level way. Each abstract state machine represents a particular 
view of the distinct operational steps that occur in the real 
system being modeled. 

AsmL [7] is the language used to model systems in ASM. 
It is integrated with Microsoft's software development envi- 
ronment including Visual Studio, MS Word, and Component 
Object Model (COM), where it can be compiled and connected 
to C# or to the .NET framework 171. 

As related work to ours, we cite the approach proposed 
by Bmschi ef al. [2] to design a PCI bus in SystemC and 
the work of Kanna et al. [ I  I] to implement a PCI bus as a 
Verilog monitor and to verify its properties using SMV 161. 
In [2], the design was directly defined in a synthesible subset 
of SystemC, which made the bus structure look more like a 
Verilog module rather than a high level design. Besides, there 
was no verification of the functionalities of the bus which does 
not guarantee the correctness of the design. In [l I], the bus 
was implemented in Verilog with all the properties embedded 
as part of the code. This makes its modification or upgrade a 
very complex task. Besides, the Verilog model they verified 
includes only 2 agents (one master and one slave), which does 
not allow the verification of the properties related to the bus 
arbitration. 

The rest of the paper is organized as follows: Section 
11 describes the PCI bus. Section 111 presents our approach 
to design and verify the PCI bus. Section IV presents the 
experimental results. Finally, Section V concludes the paper. 

11. THE PCI BUS 

The PCI bus boasts a 32-bit data path, 33MHz clock speed 
and a maximum data transfer rate of 132MB/sec. A 64-bit 
specification exists for future PCI designs, which will double 
data transfer performance to 264MBisec. In Figure 1, we show 
a generic structure of the PCI bus with a single master and a 
slave. We added also an external monitor module that will be 
used to track the signals at the input and output ports of the 
bus in order to validate the good functioning of the bus. 

0-7803-8558-6/04/$20.00 02004 IEEE. 201 



our ASM model into a SystemC implementation. 

Fig. 1. PCI Bus Stmhxe. 

Each PCI master has a pair of arbitration lines that connect 
it directly to the PCI bus arbiter. When a master requires the 
use of the PCI bus, it asserts its device specific REQ# line to 
the arbiter. When the arbiter has determined that the requesting 
master should be granted control of the PCI bus, it asserts the 
GNT# (grant) line specific to the requesting master. In the 
PCI environment, bus arbitration can take place while another 
master is still in control of the bus. 

In PCI terminology, data is transferred between an initiator, 
which is the bus master, and a target, which is the bus slave. 
The initiator, drives the C/BE[3:O]# signals (Figure 1) during 
the address phase to signal the type of transfer (memory read, 
memory write, VO read, U 0  write, etc.). During data phases, 
the C/BE[3:0]# signals serve as byte enable to indicate which 
data bytes are valid. Both the initiator and target may insert 
wait states into the data transfer by de-asserting the IRDY# 
and TRDY# signals. Valid data transfers occur on each clock 
edge in which both IRDY# and TRDY# are asserted. A target 
may terminate a bus transfer by asserting STOP#. When the 
initiator detects an active STOP# signal, it must terminate 
the current bus transfer and re-arhitrate for the bus before 
continuing. If STOP# is asserted without any data phases 
completing, the target has issued a retry. If STOP# is asserted 
after one or more data phases have successfully completed, 
the target has issued a disconnect. 

111. DESIGN FOR VERIFICATION APPROACH 

Our approach is shown in Figure 2, where we start with 
an informal specification for the intended design, developed 
in UML. This step provides a better view of the design com- 
ponents and their interactions. We also specify the properties 
on the system under verification. Based on the UML model 
(class diagram, sequence diagram, etc.), we derive an ASM 
model, which will enable the verification of the design using 
formal verification tools (model checkers for our case). When 
the verification results show an error, we go back to the UML 
specification, update it and redo the verification at the ASM 
level. Finally, when the verification passes, we directly map 

Class Diagram 
Sequence Diagram 

PCI Modeled in ASM 

A” Taol 
SystemC Semantics 

in ASM 

Bus Properties in 

R a p e m  Veded 

I 

Fig. 2. PCI Bus Design and Verificalion Methodology 

A .  UML Specifcation 

In order to design the PCI bus in UML, we considered a 
structure based on four classes: bus, arbiter, slave and master. 
What is specific in our design approach is the definition of 
two classes to model a master and a slave. This way the bus 
can he used in two different modes: . A stand-alone IP: the master and slave classes provide an 

interface to connect external devices to the bus. . A testing monitor module: to validate other PCI IPS by 
checking the state of the signals at the inputs and outputs 
of the bus and comparing them to the expected values (as 
described in Figure 1). 

B. Properties Specifcation 

In order to model the bus properties we used and embedding 
of the Accellera Property Specification Language (PSL) [l]  
in ASM [5]. PSL was developed to address the lack of 
information about properties and design characteristics in RTL 
modeling. It provides means of specifying design properties 
using a concise syntax with clearly defined formal semantics. 
PSL permits specifying a large class of real design properties 
that range from simple to complex ones since it consists of four 
layers: Boolean, temporal, verification and modeling layers. It 
is intended to be used for functional specification to capture 
requirements regarding the overall behavior of a design in one 
hand, and as an input to verification tools using simulation or 
formal verification on the other hand. 

In addition to the properties defined in [I I], we considered 
several other more complex properties, which define a com- 
plete sequence of transactions over the bus. In what follows 
are presented three sample properties: 

Property PI : 
forall Master in {MasterO, . . . , Masterl} 

eventually (!Master.GNT == true) 
if (!Master.REQ == true)  then 

202 



meaning that if a master requests the bus (!Master.REQ == 
true) it will get access to it in the future (!Master.GNT == 
true), which guarantees that no master will use the bus 
indefinitely. 

Property Pz ; 

forall  Master in {MasterO, . . . , Master4) 
forall Slave in {SlaveO, . . . Slave4) 

i f  (!Masim.GNT == true) and 
(!Master.DEST == Slave.lD) 

then eventually (!Bus.FRAME == true) and 
(!Master.TRDY == true) and 
(!Slave[lD].TRDY == true) and 
(!Master.GNT == false) 

meaning that if a master is selected by the arbiter, then it will 
be able to get access to the bus by setting !Bus.FRAME. 
Thereafter, its destination slave will be activated by setting its 
!Slave.TRDY. Finally, the master will release the bus once 
!hfaster.GNT is set to false. 

Property P3 : 

forall Master i n  {MasterO, . . . , Master4) 
if (!Master.STOP == true) and 

(!Master.GNT == true) then 
evenlually{(!Bzls.FRAME == false) and 
forall Slave in {SlaveO, . . . Slave4) 
(!Slawe.TRDY == fa lse)  and 
(Slave.lDSEL == false)} 

meaning that if a master stops a request, then the bus and all 
the slaves will be released. 

C. ASM Model 

In order to model the bus shucture in ASM, we used 
an existing embedding of SystemC in ASM [ 3 ] .  The bus 
properties (in PSL) are added directly to the ASM model using 
an embedding of PSL in ASM [5]. We then compiled the ASM 
model, including both the design and the properties, using 
the AsmL tool and generate its Finite State Machine (FSM). 
This FSM is translated into the input language of the model 
checking tool, which will verify the correctness of the model. 
Similarly, the AsmL compiler can generate test scenarios in 
the form of .NET or C# models for verification by simulation. 

The generation of the FSM from ASM is performed using 
the algorithm given in [4]. Unfortunately, this algorithm is not 
openly available as the AsmL tool is provided as a black- 
box. To solve this problem, we embed the state of every 
property (as Boolean) in every system's state. Therefore, once 
the FSM is generated, it will include, by conshuction, a 
Boolean state variable giving the state of the property. The 
last step in the verification process is to translate the FSM to 
a format supported by a model checker. Note that there is no 
restriction on the model checker as the final FSM is concrete 
and includes only Boolean variables to represent the state of 
the PSL properties. 

D. Model Checking 
As shown in Figure 2, the bus verification is performed 

using a model checking tool. In fact, we translate the FSM 
representation, output of the AsmL tool, into a code supported 
by the model checker (SMV [6] here). All the model checker is 
required to do is to make a state exploration of all the possible 
states of the system and to verify that the embedded properties 
are always true. In case an error is found, the model checker 
generates a counter-example that can be used to localize the 
error and to guide the needed changes on the UML model. 

E. Translation to SysfemC 
The translation of the ASM code to SystemC is a critical 

path in our approach. In fact, all properties are being verified at 
the ASM level. Therefore, the SystemC code must be identical 
to the verified ASM code otherwise additional errors could be 
added to the final SystemC design. We were able to solve 
this problem thanks to a deep embedding of the SystemC 
library in ASM [ 3 ] ,  where we defined a one to one mapping 
between the SystemC library components (modules, signals, 
etc.) and their embedding in ASM. For now, we are doing the 
direct translation manually, however, as a future work we are 
planning to build a tool to perform this task automatically. 

IV. EXPERIMENTAL RESULTS 
In following, we describe our results on the verification of 

the PCI bus using the proposed methodology. All experiments 
were performed on a 2.4 GHz Pentium IV and 512 MB of 

RAM (PC 2700). 

A. FSM Generation 
Figure 3, shows the FSM of a bus structure including a 

single master and two slaves. State SI is used to initialize 
the parameters of the bus. States S2 and SI7 illustrate the 
non-determinism of the machine as the master may send to 
any slave randomly. The FSM displays a symmetry property 
because the scenario of sending to one slave is exactly identical 
to sending to the other slave. 

The CPU times required for the generation of the FSM for 
different numbers of masters and slaves are given in Table I. 
We note that the numbers of states and transitions increase 
exponentially as a function of the numbers of masters and 
slaves connected to the bus. This is due, for instance, to the 
FSM generation algorithm used internally by the AsmL tool 
~ 7 1 .  

B. Model Checking 
We used the SMV model checker in order to verify the bus 

properties. We combined the three properties PI, Pz and P3 
in a single property, P, defined as: PI and PZ and P3. Table 
I1 shows the model checking time and the number of BDDs 
as function of the number of slaves and masters connected to 
the bus. 

'The UML design, SystemC code, ASM code, AsmL configura- 
tion files, and the generated FSMs for the PCI Bus are available at 
h t t p : l l h v g . ~ e . c o n c o r ~ ~ . c a / R e s e a r c h / S o  

203 



Number of 
Masters I Slaves 

C. Simulation 

Table 111 shows a simulation evaluation of the PCI bus when 
implemented in SystemC. We display the average execution 
time per clock cycle as a function of the number of masters 
and slaves connected to the bus. 

, V. CONCLUSION 
In this paper, we presented a design and verification ap- 

proach using UML and ASM to create SystemC Ips. We used 
the PCI bus as illustrative case. We first defined a model of the 
bus in UML that we translated to ASM in order to verify, using 
model checking, a set of PSL properties of the bus. Finally, 
we mapped the verified ASM code to SystemC. Experimental 
results showed a short verification time for the properties (less 
than a few minutes for all the properties). Besides, the final 

CPU Number of FSM 
Time (s) Nodes I Transitions 

~ 

Num 
Masters 

1 
1 

3 
2 
2 
3 
3 

~ 

- - 

~ 

TABLE II 
MODEL CHECKING RESULTS. 

of I Model Checkinp 
Slaves I CPU Time (s) I BDDs Allocated 

1 1  0.125 I 7699 
9.406250 27916 
11.40625 49008 
12.875 52777 1 50.484375 1 68491 

85.015625 110662 
155.125 253420 

TABLE Ill 
SIMULATION RESULTS. 

I Number of Average Execution I 

29.32 
29.766 
30.891 
32.744 

3 2 34.032 
3 3 36.828 

PCI SystemC IP was deeply and formally verified, which 
makes it very suitable for use as external monitor to validate 
existent PCI compatible IPS. We believe that our approach 
improves the design and verification methodologies used for 
SystemC models by integrating formal methods as part of the 
design flow. 

REFERENCES 
[I] Accellera Organization. Accellera Propeay Specification Language 

Reference Manual, version 1.01. http:/lm.aceellera.org, 2004. 
[21 F. Bruschi and F. Ferrandi. Synthesis of Complex Convol Smctures 

from Behavioral SystemC Models. In Pmc. Design, Automalion and 
Test in Eumpe, pages 20112-20119, Munich, Germany, March 2003. 

[3] A. Gawanmeh, A. Hahihi, and S. Tahar. An Executable Operational 
Semantics for SystemC using Abstract State Machines. Technical 
repor& Depamnent of Electrical and Computer Engineering, Concordia 
University, March 2004. 

[41 W. Grieskamp, Y. Gurevicb W. Schulte, and M. Veanes. Generating 
Finite State Machines from Abstract State Machines. SoJiinre En@- 
needng Nores, 27(4):112-122, 2002. 

[5] A. Habihi, A. Gawanmeh, and S. Tahar Embedding of PSL in ASM with 
an Application to SystemC Verification. Technical report, Department of 
Electrical and Computer Engineering, Concordla University, May 2004. 

[6] K.L. McMillan. Symbolic Model Checkg. Kluwer Academic Puhlish- 
ers, 1993. 

[7] Microsoft Corporation. AsmL far Microsoft .Net Framework (version 
2.1.5.7). http:llm.research.microsoft.eamifoundati~~~as~, 2004 

[8] @en SystemC Initiative. SystemC 2.0.1 Language Refernee Manual. 
2003. 

[Y] Open SystemC Initiative. http:/lm.systemc.org, 2004. 
[IO] PCI-Sig. PCI Special Interest Group. http:I/www.pcisig.com, 2004. 
[ I l l  K. Shimizu, D. L. Dill, and A. J. Hu. Monitor-Based Formal Speci- 

fication of PCI. In Pme. Fomnl Merhods in Computer-Aided Derign, 
pages 335-353, Austin, Texas, USA, November 2000. 

204 

http:/lm.aceellera.org
http:/lm.systemc.org
http:I/www.pcisig.com

