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Abstract. When a digital filter is realized with floating-point or fixed-
point arithmetics, errors and constraints due to finite word length are
unavoidable. In this paper, we show how these errors can be mechanically
analysed using the HOL theorem prover. We first model the ideal real
filter specification and the corresponding floating-point and fixed-point
implementations as predicates in higher-order logic. We use valuation
functions to find the real values of the floating-point and fixed-point fil-
ter outputs and define the error as the difference between these values
and the corresponding output of the ideal real specification. Fundamen-
tal analysis lemmas have been established to derive expressions for the
accumulation of roundoff error in parametric Lth-order digital filters,
for each of the three canonical forms of realization: direct, parallel, and
cascade. The HOL formalization and proofs are found to be in a good
agreement with existing theoretical paper-and-pencil counterparts.

1 Introduction

Signal processing through digital techniques has become increasingly attractive
with the rapid technological advancement in digital integrated circuits, devices,
and systems. The availability of large scale general purpose computers and spe-
cial purpose hardware has made real time digital filtering both practical and
economical. Digital filters are a particularly important class of DSP (Digital
Signal Processing) systems. A digital filter is a discrete time system that trans-
forms a sequence of input numbers into another sequence of output, by means of
a computational algorithm [13]. Digital filters are used in a wide variety of sig-
nal processing applications, such as spectrum analysis, digital image and speech
processing, and pattern recognition. Due to their well-known advantages, digital
filters are often replacing classical analog filters. The three distinct and most
outstanding advantages of the digital filters are their flexibility, reliability, and
modularity. Excellent methods have been developed to design these filters with
desired characteristics. The design of a filter is the process of determination of
a transfer function from a set of specifications given either in the frequency do-
main, or in the time domain, or for some applications, in both. The design of a
digital filter starts from an ideal real specification. In a theoretical analysis of
the digital filters, we generally assume that signal values and system coefficients
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are represented in the real number system and are expressed to an infinite preci-
sion. When implemented as a special-purpose digital hardware or as a computer
algorithm, we must represent the signals and coefficients in some digital number
system that must always be of a finite precision. Therefore, arithmetic operations
must be carried out with an accuracy limited by this finite word length. There
is a variety of types of arithmetic used in the implementation of digital sys-
tems. Among the most common are the floating-point and fixed-point. Here, all
operands are represented by a special format or assigned a fixed word length and
a fixed exponent, while the control structure and the operations of the ideal pro-
gram remain unchanged. The transformation from the real to the floating-point
and fixed-point forms is quite tedious and error-prone. On the implementation
side, the fixed-point model of the algorithm has to be transformed into the best
suited target description, either using a hardware description or a programming
language. This design process can be aided by a number of specialized CAD
tools such as SPW (Cadence) [3], CoCentric (Synopsys) [20], Matlab-Simulink
(Mathworks) [16], and FRIDGE (Aachen UT) [22].
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Fig. 1. Error analysis approach

In this paper we describe the error analysis of digital filters using the HOL
theorem proving environment [5] based on the commutating diagram shown in
Figure 1. Thereafter, we first model the ideal real filter specification and the
corresponding floating-point and fixed-point implementations as predicates in
higher-order logic. For this, we make use of existing theories in HOL on the
construction of real numbers [7], the formalization of IEEE-754 standard based
floating-point arithmetic [8, 9], and the formalization of fixed-point arithmetic
[1, 2]. We use valuation functions to find the real values of the floating-point and
fixed-point filter outputs and define the errors as the differences between these
values and the corresponding output of the ideal real specification. Then we es-
tablish fundamental lemmas on the error analysis of the floating-point and fixed-
point roundings and arithmetic operations against their abstract mathematical
counterparts. Finally, we use these lemmas as a model to derive expressions for
the accumulation of the roundoff error in parametric Lth-order digital filters, for
each of the three canonical forms of realization: direct, parallel, and cascade [18].
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Using these forms, our verification methodology can be scaled up to any larger-
order filter, either directly or by decomposing the design into a combination of
internal sub-blocks. While the theoretical work on computing the errors due to
finite precision effects has been extensively studied since the late sixties [15], it
is for the first time in this paper, that a formalization and proof of this analysis
for digital filters is done using a mechanical theorem prover, here the HOL. Our
results are found to be in a good agreement with the theoretical ones.

The rest of this paper is organized as follows: Section 2 gives a review of
the related work. Section 3 introduces the fundamental lemmas in HOL for the
error analysis of the floating-point and fixed-point rounding and arithmetic op-
erations. Section 4 describes the details of the error analysis in HOL of the class
of linear difference equation digital filters implemented in the three canonical
forms of realization. Finally, Section 5 concludes the paper.

2 Related Work

Work on the analysis of the errors due to the finite precision effects in the re-
alization of the digital filters has always existed since their early days, however,
using theoretical paper-and-pencil proofs and simulation techniques. For digital
filters realized with the fixed-point arithmetic, error problems have been stud-
ied extensively. For instance, Knowles and Edwards [14] proposed a method for
analysis of the finite word length effects in fixed-point digital filters. Gold and
Radar [6] carried out a detailed analysis of the roundoff error for the first-order
and second-order fixed-point filters. Jackson [12] analyzed the roundoff noise for
the cascade and parallel realizations of the fixed-point digital filters. While the
roundoff noise for the fixed-point arithmetic enters into the system additively, it
is a multiplicative component in the case of the floating-point arithmetic. This
problem is analyzed first by Sandberg [19], who discussed the roundoff error
accumulation and input quantization effects in the direct realization of the filter
excited by a deterministic input. He also derived a bound on the time average
of the squared error at the output. Liu and Kaneko [15] presented a general
approach to the error analysis problem of digital filters using the floating-point
arithmetic and calculated the error at the output due to the roundoff accumula-
tion and input quantization. Expressions are derived for the mean square error
for each of the three canonical forms of realization: direct, cascade, and par-
allel. Upper bounds that are useful for a special class of the filters are given.
Oppenheim and Weinstein [17] discussed in some details the effects of the finite
register length on implementations of the linear recursive difference equation
digital filters, and the fast Fourier transform (FFT) algorithm. Comparisons of
the roundoff noise in the digital filters using the different types of arithmetics
have also been reported in [21].

In order to validate the error analysis, most of the above work compare the
theoretical results with corresponding experimental simulations. In this paper,
we show how the above error analysis can be mechanically performed using the
HOL theorem prover, providing a superior approach to validation by simulation.
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Our focus will be on the process of translating the hand proofs into equivalent
proofs in HOL. The analysis we propose is mostly inspired by the work done
by Liu and Kaneko [15], who defined a general approach to the error analysis
problem of digital filters using the floating-point arithmetic. Following a simi-
lar approach, we have extended this theoretical analysis for fixed-point digital
filters. In both cases, a good agreement between the HOL formalized and the
theoretical results are obtained.

Through our work, we confirmed and strengthened the main results of the
previously published theoretical error analysis, though we uncovered some minor
errors in the hand proofs and located a few subtle corners that are overlooked
informally. For example, in the theoretical fixed-point error analysis it is always
assumed that the fixed-point addition causes no error and only the roundoff
error in the fixed-point multiplication is analyzed [17]. This is under the as-
sumption that there is no overflow in the result and also the input operands
have the same attributes as the output. Using a mechanical theorem prover,
we provide a more general error analysis in which we cover the roundoff errors
in both the fixed-point addition and multiplication operations. On top of that,
for the floating-point error analysis, we have used the formalization in HOL of
the IEEE-754 [8], a standard which has not yet been established at the time of
the above mentioned theoretical error analysis. This enabled us to cover a more
complete set of rounding and overflow modes and degenerate cases which are
not discussed in earlier theoretical work.

Previous work on the error analysis in formal verification was done by Harri-
son [9] who verified the floating-point algorithms such as the exponential function
against their abstract mathematical counterparts using the HOL Light theorem
prover. As the main theorem, he proved that the floating-point exponential func-
tion has a correct overflow behavior, and in the absence of overflow the error
in the result is bounded to a certain amount. He also reported on an error in
the hand proof mostly related to forgetting some special cases in the analysis.
This error analysis is very similar to the type of analysis performed for DSP
algorithms. The major difference, however, is the use of statistical methods and
mean square error analysis for DSP algorithms which is not covered in the error
analysis of the mathematical functions used by Harrison. In this method, the er-
ror quantities are treated as independent random variables uniformly distributed
over a specific interval depending on the type of arithmetic and the rounding
mode. Then the error analysis is performed to derive expressions for the vari-
ance and mean square error. To perform such an analysis in HOL, we need to
develop a mechanized theory on the properties of random variables and random
processes. This type of analysis is not addressed in this paper and is a part of our
work in progress. Huhn et al. [11] proposed a hybrid formal verification method
combining different state-of-the-art techniques to guide the complete design flow
of imprecisely working arithmetic circuits starting at the algorithmic down to
the register transfer level. The usefulness of the method is illustrated with the
example of the discrete cosine transform algorithms. In particular, the authors
have shown the use of computer algebra systems like Mathematica or Maple
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at the algorithmic level to reason about real numbers and to determine certain
error bounds for the results of numerical operations. In contrast to [11], we pro-
pose an error analysis for digital filters using the HOL theorem prover. Although
the computer algebraic systems such as Maple or Mathematica are much more
popular and have many powerful decision procedures and heuristics, theorem
provers are more expressive, more precise, and more reliable [10]. One option
is to combine the rigour of the theorem provers with the power of computer
algebraic systems as proposed in [10].

3 Error Analysis Models

In this section we introduce the fundamental error analysis theorems [23, 4], and
the corresponding lemmas in HOL for the floating-point [8, 9] and fixed-point [1,
2] arithmetics. These theorems are then used in the next sections as a model for
the analysis of the roundoff error in digital filters.

3.1 Floating-Point Error Model

In analyzing the effects of floating-point roundoff, the effects of rounding will be
represented multiplicatively. The following theorem is the most fundamental in
the floating-point rounding-error theory [23, 4].

Theorem 1: If the real number x located within the floating-point range, is
rounded to the closest floating-point number xR, then

xR = x(1 + δ), where |δ| ≤ 2−p (1)

and p is the precision of the floating-point format.
In HOL, we proved this theorem in the IEEE single precision floating-point

format for the case of rounding to nearest as follows:

Lemma 1: FLOAT_ROUND_RELATIVE_ERROR

� normalizes x =⇒ ∃ e. abs (e) < (1 / 2 pow ((fracwidth X) + 1)) ∧
(Val (float (round X To_nearest x)) = x * (1 + e))

where the function normalizes defines the criteria for an arbitrary real number to
be in the normalized range of floating-point numbers [8], fracwidth extracts the
fraction width parameter from the floating-point format X, Val is the floating-
point valuation function, float is the bijection function that converts a triple
of natural numbers into the floating-point type, and round is the floating-point
rounding function [9].

To prove this theorem [4], we first proved the following lemma which locates
a real number in a binade (the floating-point numbers between two adjacent
powers of 2):

Lemma 2: REAL_IN_BINADE

� normalizes x =⇒ ∃ j. j ≤ ((emax X) − 2) ∧
(2 pow (j + 1) / 2 pow (bias X)) ≤ abs x ∧
abs x < (2 pow (j + 2) / 2 pow (bias X))
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where the function emax defines the maximum exponent in a given floating-
point format, and bias defines the exponent bias in the floating-point format
which is a constant used to make the exponent’s range nonnegative. Using this
lemma we can rewrite the general floating-point absolute error bound theorem
(ERROR BOUND NORM STRONG) developed in [9] as follows:

Lemma 3: ERROR_BOUND_NORM_STRONG_NORMALIZE

� normalizes x =⇒
∃ j. abs (error x) ≤ (2 pow j / 2 pow (bias X + fracwidth X))

which states that if the absolute value of a real number is in the representable
range of the normalized floating-point numbers, then the absolute value of the
error is less than or equal to 2j/2(bias X + fracwidth X). The function error, de-
fines the error resulting from rounding a real number to a floating-point value
which is defined as follows [9]:

�def error x = (Val (float (round X To_nearest x)) − x)

Since (2(j+1) / 2(bias X)) ≤ |x| for the real numbers in the normalized region as
proved in Lemma 2, we have (|error x| / |x|) ≤ (2j / 2(bias X + fracwidth X)) /
(2(j+1) / 2(bias X)) or (|error x| / |x|) ≤ (1 / 2((fracwidth X) + 1)). Finally,
defining e = (error x / x) will complete the proof of the floating-point relative
error bound theorem as described in Lemma 1.

Next, we apply the floating-point relative rounding error analysis theorem
(Theorem 1) to the verification of the arithmetic operations. The goal is to
prove the following theorem in which floating-point arithmetic operations such
as addition, subtraction, multiplication, and division are related to their abstract
mathematical counterparts according to the corresponding errors.

Theorem 2: Let ∗ denote any of the floating-point operations +, -, × , /. Then

fl (x ∗ y) = (x ∗ y)(1 + δ), where |δ| ≤ 2−p (2)

and p is the precision of the floating-point format. The notation fl (.) is used to
denote that the operation is performed using the floating-point arithmetic.

To prove this theorem in HOL, we start from the already proved lemmas on
the absolute analysis of rounding error in the floating-point arithmetic operations
(FLOAT ADD) developed in [9]. We have converted these lemmas to the following
relative error analysis version, using the relative error bound analysis of floating-
point rounding (Lemma 1):

Lemma 4: FLOAT_ADD_RELATIVE

� Finite a ∧ Finite b ∧ normalizes (Val a + Val b)

=⇒ Finite (a + b) ∧ ∃ e. abs e ≤ (1 / 2 pow ((fracwidth X) + 1))

∧ (Val (a + b) = (Val a + Val b) * (1 + e))

where the function Finite defines the finiteness criteria for the floating-point
numbers. Note that we use the conventional symbols for arithmetic operations
on floating-point numbers using the operator overloading in HOL.
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3.2 Fixed-Point Error Model

While the rounding error for the floating-point arithmetic enters into the sys-
tem multiplicatively, it is an additive component for the fixed-point arithmetic.
In this case the fundamental error analysis theorem can be stated as follows [23].

Theorem 3: If the real number x located in the range of the fixed-point num-
bers with format X’, is rounded to the closest fixed-point number x′

R, then

x′
R = x + ε, where |ε| ≤ 2−fracbits (X′) (3)

and fracbits is a function that extracts the number of bits that are to the right
of the binary point in the given fixed-point format.

This theorem is proved in HOL as follows [1]:

Lemma 5: FXP_ROUND_ABSOLUTE_ERROR_BOUND

� (validAttr X′) ∧ (representable X′ x) =⇒
abs (Fxp_error X′ x) ≤ (1 / 2 pow (fracbits X′))

where the function validAttr defines the validity of the fixed-point format, rep-
resentable defines the criteria for a real number to be in the representable range
of the fixed-point format, and Fxp error defines the fixed-point rounding error.

The verification of the fixed-point arithmetic operations using the absolute
error analysis of the fixed-point rounding (Theorem 3) can be stated as in the
following theorem in which the fixed-point arithmetic operations are related to
their abstract mathematical counterparts according to the corresponding errors.

Theorem 4: Let ∗ denote any of the fixed-point operations +, -, × , /, with a
given format X’. Then

fxp (x ∗ y) = (x ∗ y) + ε, where |ε| ≤ 2−fracbits (X′) (4)

and the notation fxp (.) is used to denote that the operation is performed using
the fixed-point arithmetic. This theorem is proved in HOL using the following
lemma [1]:

Lemma 6: FXP_ADD_ABSOLUTE

� (Isvalid a) ∧ (Isvalid b) ∧ validAttr (X′) ∧
representable X′ (value a + value b) =⇒ (Isvalid (FxpAdd X′ a b)) ∧
∃ e. abs e ≤ (1 / 2 pow (fracbits X′)) ∧
value (FxpAdd X′ a b) = (value a + value b) + e

where Isvalid defines the validity of a fixed-point number, value is the fixed-point
valuation, and FxpAdd is the fixed-point addition.

4 Error Analysis of Digital Filters in HOL

In this section, the principal results for the roundoff accumulation in digital
filters using the mechanized theorem proving are derived and summarized. We
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shall employ the models for the floating-point and fixed-point roundoff errors in
HOL presented in the previous section. In the following, we will first describe
in details the theory behind the analysis and then explain how this analysis is
performed in HOL.

The class of digital filters considered in this paper is that of linear constant
coefficient filters specified by the difference equation:

wn =
M∑

i=0

bi xn−i −
L∑

i=1

ai wn−i (5)

where {xn} is the input sequence and {wn} is the output sequence. L is the
order of the filter, and M can be any positive number less than L. There are
three canonical forms of realizing a digital filter, namely the direct, parallel, and
cascade forms (Figure 2) [18].
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Fig. 2. Canonical forms of digital filter realizations
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If the output sequence is calculated by using the equation (5), the digital
filter is said to be realized in the direct form. Figure 2 (a) illustrates the direct
form realization of the filter using the corresponding blocks for the addition,
multiplication by a constant operations, and the delay element.

The implementation of a digital filter in the parallel form is shown in Fig-
ure 2 (b) in which the entire filter is visualized as the parallel connection of
the simpler filters Hi of a lower order. In this case, K intermediate outputs
{wi

n}, i = 1,2,. . . ,K are first calculated and then summed to form the total
output {wn}. Therefore, for the input sequence {xn} we have:

wi
n = fixn + gixn−1 − ciw

i
n−1 − diw

i
n−2 (6)

where the parameters fi, gi, ci, and di are obtained from the parameters ai and
bi in equation (5) using the parallel expansion. The output of the entire filter
wn, is then related to wi

n by:

wn = w1
n + w2

n + · · · + wK
n (7)

The implementation of a digital filter in the cascade form is shown in Fig-
ure 2(c) in which the filter is visualized as a cascade of lower filters. From the
input {xn}, the intermediate output {w1

n} is first calculated, and then this is the
input to the second filter. Continuing in this manner, the final output wK

n = wn

is calculated. Since the output of the ith section (wi
n) is the input of the (i+1)th

section, the following equation holds:

wi+1
n = wi

n + kiw
i
n−1 + liw

i
n−2 − ciw

i+1
n−1 − diw

i+1
n−2 (8)

where the parameters ki, li, ci, and di are obtained from the parameters ai and
bi in equation (5) using the serial expansion.

There are three common sources of errors associated with the filter of the
equation (5), namely [15]:

1. input quantization: caused by the quantization of the input signal {xn}
into a set of discrete levels.

2. coefficient inaccuracy: caused by the representation of the filter coeffi-
cients {ak} and {bk} by a finite word length.

3. round-off accumulation: caused by the accumulation of roundoff errors
at arithmetic operations.

Therefore, for the digital filter of the equation (5) the actual computed output
reference is in general different from {wn}. We denote the actual floating-point
and fixed-point outputs by {yn} and {vn}, respectively. Then, we define the
corresponding errors at the nth output sample as:

en = yn − wn (9)
e′n = vn − wn (10)
e′′n = vn − yn (11)
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where en and e′n are defined as the errors between the actual floating-point and
fixed-point implementations and the ideal real specification, respectively. e′′n is
the error in the transition from the floating-point to fixed-point levels.

It is clear from the above discussion that for the digital filter of the equation
(5) realized in the direct form, we have:

yn = fl (
M∑

k=0

bk xn−k −
L∑

k=1

ak yn−k) (12)

and

vn = fxp (
M∑

k=0

bk xn−k −
L∑

k=1

ak vn−k) (13)

The notations fl (.) and fxp (.) are used to denote that the operations are
performed using the floating-point and fixed-point arithmetics, respectively. The
calculation is to be performed in the following manner. First, the output products
ak yn−k, k = 1,2,. . . ,L are calculated separately and then summed. Next, the
same is done for the input products bk xn−k, k = 0,1,. . . ,M. Finally, the output
summation is subtracted from the input one to obtain the main floating-point
output yn. Similar discussion can be applied for the calculation of the fixed-point
output vn. The corresponding flowgraph showing the effect of roundoff error
using the fundamental error analysis theorems (Theorems 2 and 4) according to
the equations (2) and (4), is given by Figure 3, which also indicates the order of
the calculation.

Formally, a flowgraph is a network of directed branches that connect at nodes.
Associated with each node is a variable or node value. Each branch has an input
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Fig. 3. Error flowgraph for Lth-order filter (Direct form)
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signal and an output signal with a direction indicated by an arrowhead on it. In
a linear flowgraph, the output of a branch is a linear transformation of the input
to the branch. The simplest examples are constant multipliers and adders, i.e.,
when the output of the branch is simply a multiplication or an addition of the
input to the branch with a constant value, which are the only classes we con-
sider in this paper. The linear operation represented by the branch is typically
indicated next to the arrowhead showing the direction of the branch. For the
case of a constant multiplier and adder, the constant is simply shown next to
the arrowhead. When an explicit indication of the branch operation is omitted,
this indicates a branch transmittance of unity, or identity transformation. By
definition, the value at each node in a flowgraph is the sum of the outputs of
all the branches entering the node. To complete the definition of the flowgraph
notation, we define two special types of nodes. (1) Source nodes that have no
entering branches. They are used to represent the injection of the external in-
puts or signal sources into a flowgraph. (2) Sink nodes that have only entering
branches. They are used to extract the outputs from a flowgraph [18].

The quantities δn,k, k = 0,1,. . . ,M, εn,k, k = 1,2,. . . ,L, ζn,k, k = 1,2,. . . ,M,
ηn,k, k = 2,3,. . . ,L, and ξn in Figure 3 are errors caused by the floating-point
roundoff at each arithmetic step. The corresponding error quantities for the fixed-
point roundoff (shown in parentheses) are δ′n,k, k = 0,1,. . . ,M, ε′n,k, k = 1,2,. . . ,
L, ζ′n,k, k = 1,2,. . . ,M, η′

n,k, k = 2,3,. . . ,L, and ξ′n. Note that we have used one
flowgraph to represent both the floating-point and fixed-point cases, simultane-
ously. For floating-point errors, the branch operations are interpreted as constant
multiplications, while for fixed-point errors the branch operations are interpreted
as constant additions. We have surrounded the fixed-point error quantities and
output samples by parentheses to distinguish them from their floating-point
counterparts. Therefore, the actual outputs yn and vn are seen to be given ex-
plicitly by:

yn =
M∑

k=0

bk θn,k xn−k −
L∑

k=1

ak φn,k yn−k (14)

where

θn,0 = (1 + ξn)(1 + δn,0)
M∏

i=1

(1 + ζn,i)

θn,j = (1 + ξn)(1 + δn,j)
M∏

i=j

(1 + ζn,i), where j = 1,2,. . . ,M

φn,1 = (1 + ξn)(1 + εn,1)
L∏

i=2

(1 + ηn,i)

φn,j = (1 + ξn)(1 + εn,j)
L∏

i=j

(1 + ηn,i), where j = 2,3,. . . ,L
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and

vn =
M∑

k=0

bk xn−k−
L∑

k=1

ak vn−k+
M∑

k=0

δ′n,k+
M∑

k=1

ζ′n,k+
L∑

k=1

ε′n,k+
L∑

k=2

η′
n,k+ξ′n (15)

For the error analysis, we need to calculate the yn and vn sequences from
the equations (14) and (15), and compare them with the ideal output sequence
wn specified by the equation (5) to obtain the corresponding errors en, e′n, and
e′′n, according to the equations (9), (10), and (11), respectively. Therefore, the
difference equations for the errors between the different levels showing the accu-
mulation of the roundoff error are derived as the following error analysis cases:

1. Real to Floating-Point Error Analysis:

en +
L∑

k=1

ak en−k =
M∑

k=0

bk (θn,k − 1) xn−k −
L∑

k=1

ak (φn,k − 1) yn−k (16)

2. Real to Fixed-Point Error Analysis:

e′n +
L∑

k=1

ak e′n−k =
M∑

k=0

δ′n,k +
M∑

k=1

ζ′n,k +
L∑

k=1

ε′n,k +
L∑

k=2

η′
n,k + ξ′n (17)

3. Floating-Point to Fixed-Point Error Analysis:

e′′n +
L∑

k=1

ak e′′n−k =
M∑

k=0

δ′n,k +
M∑

k=1

ζ′n,k +
L∑

k=1

ε′n,k +
L∑

k=2

η′
n,k + ξ′n− (18)

M∑

k=0

bk (θn,k − 1) xn−k +
L∑

k=1

ak (φn,k − 1) yn−k

Similar analysis is performed for the parallel and cascade forms of realization
based on the error flowgraphs as shown in Figures 4 and 5, respectively.

In HOL, we first specified a parametric Lth-order digital filters at the real,
floating-point, and fixed-point abstraction levels, as predicates in higher-order
logic. The direct form is defined in HOL using the equation (5). For the real spec-
ification, we used the expression sum (m,n) f denoting

∑m+n−1
i = m f(i), which is a

function available in the HOL real library [7] and defines the finite summation
on the real numbers. For the floating-point and fixed-point specifications, we de-
fined similar functions for the finite summations on the floating-point (float sum)
and fixed-point (fxp sum) numbers, using the recursive definition in HOL. For
the parallel form, we first specified the ith parallel path using the equation (6).
Then, we specified the entire output as defined in equation (7), using the finite
summation functions. Finally, we specified the cascade form of realization as de-
fined in equation (8), using recursive definitions in HOL. For the error analysis
of the digital filters in HOL, we first established lemmas to compute the output
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Fig. 4. Error flowgraph for Lth-order filter (Parallel form)
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Fig. 5. Error flowgraph for Lth-order filter (Cascade form)

real values of the floating-point and fixed-point filters according to the equations
(14) and (15), for the direct form of realization. For this, we need to define the
finite product on the real numbers. We defined this function in HOL recursively
as the expression mul (m,n) f denoting

∏m+n−1
i = m f(i). Finally, we defined the er-

rors as the differences between the output of the real filter specification, and the
corresponding real values of the floating-point and fixed-point filter implementa-
tions (Real To Float Error,Real To Fxp Error), and the error in transition from
the floating-point to fixed-point levels (Float To Fxp Error), according to the
equations (9), (10), and (11), respectively. Then, we established lemmas for the
accumulation of the round-off error between the different levels, according to
the equations (16), (17), and (18). Finally, we proved these lemmas using the
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fundamental floating-point and fixed-point error analysis lemmas, based on the
error models presented in Section 3. The lemmas are proved by induction on
the parameters L and M for the direct form of realization. Similar analysis is
performed in HOL for the parallel and cascade realization forms. For these cases,
we proved the corresponding lemmas by induction on the parameter K which is
defined as the number of the internal sub-filters connected in parallel or cascade
forms to generate the final output. The corresponding error analysis lemmas in
HOL for the direct form of realization are listed in Appendix A.

5 Conclusions

In this paper, we describe a comprehensive methodology for the error analysis
of generic digital filters using the HOL theorem prover. The proposed approach
covers the three canonical forms (direct, parallel and cascade) of realization en-
tirely specified in HOL. We make use of existing theories in HOL on real, IEEE
standard based floating-point, and fixed-point arithmetic to model the ideal fil-
ter specification and the corresponding implementations in higher-order logic.
We used valuation functions to define the errors as the differences between the
real values of the floating-point and fixed-point filter implementation outputs
and the corresponding output of the ideal real filter specification. Finally, we
established fundamental analysis lemmas as our model to derive expressions for
the accumulation of the roundoff error in digital filters. Related work did exist
since the late sixties using theoretical paper-and-pencil proofs and simulation
techniques. We believe this is the first time a complete formal framework is con-
sidered using mechanical proofs in HOL for the error analysis of digital filters.
As a future work, we plan to extend these lemmas to analyse the worst-case,
average, and variance errors. We also plan to extend the verification to the lower
levels of abstraction, and prove that the implementation of a digital filter at
the register transfer and netlist gate levels implies the corresponding fixed-point
specification using classical hierarchical verification in HOL, hence bridging the
gap between the hardware implementation and high levels of the mathematical
specification. Finally, we plan to link HOL with computer algebra systems to
create a sound, reliable, and powerful system for the verification of DSP sys-
tems. This opens new avenues in using formal methods for the verification of
DSP systems as a complement to the traditional theoretical (analytical) and
simulation techniques. We are currently investigating the verification of other
DSP algorithms such as the fast Fourier transform (FFT) which is widely used
as a building block in the design of complex wired and wireless communication
systems.
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A Digital Filter Error Analysis Lemmas in HOL

Lemma 7: L_ORDER_FILTER_DIRECT_FORM_REAL_TO_FLOAT_THM

� L_Order_Filter_Direct_Form_Ideal_Spec a b x w M L ∧
L_Order_Filter_Direct_Form_Float_Imp X a′ b′ x′ y M L =⇒
∃ t f.

if (L = 0) then

(Real_To_Float_Error n = sum (0,SUC M) (λ i. Val (b′ i) *

(t i − 1) * Val (x′ (n − i))))

else

((Real_To_Float_Error n + sum (1,L) (λ i. a i *

Real_To_Float_Error (n − i)) = sum (0,SUC M) (λ i. Val (b′ i) *

(t i − 1) * Val (x′ (n − i))) − sum (1,L) (λ i. Val (a′ i) *

(f i − 1) * Val (y (n − i))))) ∧
∃ k d p e z.

(abs k ≤ (1 / 2 pow ((fracwidth X) + 1))) ∧
(∀ i. (i ≤ M) =⇒ (abs (d i) ≤ (1 / 2 pow ((fracwidth X) + 1)))) ∧
(∀ i. (i ≤ M) =⇒ (abs (p i) ≤ (1 / 2 pow ((fracwidth X) + 1)))) ∧
(∀ i. (i ≤ L) =⇒ (abs (e i) ≤ (1 / 2 pow ((fracwidth X) + 1)))) ∧
(∀ i. (i ≤ L) =⇒ (abs (z i) ≤ (1 / 2 pow ((fracwidth X) + 1)))) ∧
(t 0 = (1 + k) * (1 + d 0) * (mul (1,M) (λ i. (1 + p i)))) ∧
(∀ j. (1 ≤ j ∧ j ≤ M) =⇒ (t j = (1 + k) * (1 + d j) *

(mul (j,(M − (j − 1))) (λ j. (1 + p j))))) ∧
(f 1 = (1 + k) * (1 + e 1) * (mul (2,(L − 1)) (λ i. (1 + z i)))) ∧
(∀ j. (2 ≤ j ∧ j ≤ L) =⇒
(f j = (1 + k) * (1 + e j) * (mul (j,(L − j + 1)) (λ j. (1 + z j)))))

Lemma 8: L_ORDER_FILTER_DIRECT_FORM_REAL_TO_FXP_THM

� L_Order_Filter_Direct_Form_Ideal_Spec a b x w M L ∧
L_Order_Filter_Direct_Form_Fxp_Imp X′ a′′ b′′ x′′ v M L =⇒
∃ k′ d′ p′ e′ z′.
abs k′ ≤ (1 / 2 pow (fracbits X′)) ∧
(∀ i. (i ≤ M) =⇒ abs (d′ i) ≤ (1 / 2 pow (fracbits X′))) ∧
(∀ i. (i ≤ M) =⇒ abs (p′ i) ≤ (1 / 2 pow (fracbits X′))) ∧
(∀ i. (i ≤ L) =⇒ abs (e′ i) ≤ (1 / 2 pow (fracbits X′))) ∧
(∀ i. (i ≤ L) =⇒ abs (z′ i) ≤ (1 / 2 pow (fracbits X′))) ∧
if (L = 0) then

(Real_To_Fxp_Error n = sum (0,SUC M) (λ i. d′ i) +

sum (1,M) (λ j. p′ j) + k′)
else

(Real_To_Fxp_Error n + sum (1,L) (λ i. a i * Real_To_Fxp_Error

(n − i)) = sum (0,SUC M) (λ i. d′ i) + sum (1,M) (λ j. p′ j) +

sum (1,L) (λ i. e′ i) + sum (2,(L − 1)) (λ j. z′ j) + k′))
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Lemma 9: L_ORDER_FILTER_DIRECT_FORM_FLOAT_TO_FXP_THM

� L_Order_Filter_Direct_Form_Ideal_Spec a b x w M L ∧
L_Order_Filter_Direct_Form_Float_Imp X a′ b′ x′ y M L ∧
L_Order_Filter_Direct_Form_Fxp_Imp X′ a′′ b′′ x′′ v M L =⇒
∃ t f k′ d′ p′ e′ z′.
if (L = 0) then

(Float_To_Fxp_Error n = sum (0,SUC M) (λ i. d′ i) +

sum (1,M) (λ j. p′ j) + k′ − (sum (0,SUC M)

(λ i. Val (b′ i) * (t i − 1) * Val (x′ (n − i)))))

else

(Float_To_Fxp_Error n + sum (1,L) (λ i. a i * Float_To_Fxp_Error

(n − i)) = sum (0,SUC M) (λ i. d′ i) + sum (1,M) (λ j. p′ j) +

sum (1,L) (λ i. e′ i) + sum (2,(L − 1)) (λ j. z′ j) + k′ −
sum (0, (SUC M)) (λ i. Val (b′ i) * (t i − 1) * Val (x′ (n − i)))

+ sum (1,L) (λ i. Val (a′ i) * (f i − 1) * Val (y (n − i)))))
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