
Poster Session I : System Level Design

Y s: Model Reduction Tool for Verilog
Verification

Mohamed Zaki. Yassine Mokhtari and Sofiene Tahar
Electrical and Computer Engineering Dept.

Concordia University
Montreal, Quebec, Canada

Email: {mzaki, mokhtari, tahar)@ece.concordia.ca

Abstract-Current model checking tools suffer from the state
space explosion problem due to the large number of generated
states. In general, approaches like compositional verification and
model reduction are used to tackle this prohleni. In this paper,
we present a model reduction tool, called SynAbs, for Verilog
verification. The reduction algorithms implemented are based on
syntactic analysis and are applied prior to model checking. We
have tested the efficiency of the algorithms using small examples.
We have achieved reduction in both space and time requirements.

1. INTROUUCTION
Model checking [h] is a fully automatic approach to verify

a finite state machine against its temporal specifications. How-
ever, its application is limitcd by the size of thc system under
vcrification. Currcnt model chccking tools [16J. 1121. LlOl, [31
suffer froiii thc statc space explosion duc to the large number
of gcncratcd states. In gcncral. compositioiral verification [h]
and inodd reduction are used to tackle this problem. In com-
positional verification, one can verify separately each module
in the system then composes the local results into a global
property. However. in today‘s multi-million-gate designs, the
size of one single module is usually beyond the capability of
a model checking tool. Model reduction approaches are then
used in order to reduce the module size prior to verification.

Model reduction approaches are based on abstract inter-
pretation 171 which allows to reduce a concrete system (114)
under verification to a more abstract and smaller one (M’j.
Both systems 1Vf and .W’ are connected by an abstraction
relation which is sqfr with respect to a given property 9.
namely it preserves the property. This means if the property
holds for the abstract system. it holds for the concrete one as
well. Syntactic abstraction techniques are usually based on the
extensive analysis of the program syntax. They have several
advantages as mentioned in [13]:

They are more efficient than symbolic minimization al-
gorithms such as the one described in [4], where explicit
transition graph of the minimized system has to be
constructed. The output of a syntactic abstraction tool
is a text file which can he directly parsed and analyzed
by a model checker. . Other reduction methods based on BDD or partial reduc-
tion can hc applicd on thc output of the abstraction tool.

Verilog HDL (Hardware Description Language) is a pop-
ular language for hardware specification, design and testing.

Verilog prograins exhibit a rich variety of behaviors including
event-driven computation and shai-ed variables concurrency. In
this paper, we descrihe a tool for reducing and ahstracling
hardware designs written in Verilog. We will deal with a
synchronous subset of Verilog accepted by the SMV model
checker hut without considering concurrency.

Thc rest of the paper is structured as follows. In Section 11,
we present the model reduction tool SynAbs. describing its
implenicntation and its differcnt modules. Somc experimental
results are discusscd ncxt in Section Ill. Scction IV dcscrihcs
some relevant related works. Finally, section V concludes the
paper.

11. THE RBDDCTION TOOL

SynAbs (Syntactic Abstraction) is a tool implementing
model reduction algorithms based on syntactic analysis.
SynAbs accepts as inputs two text files: a Verilog file that
includes the design io he verified and a property file that in-
cludes the specification described in ACTL [SI. The reduction
algorithms analyie the input Verilog program. based on the
property provided by the user, and generate a reduced Verilog
code. The process is fully automated, i.a, no interaction is
rcquircd by the user. The rcduced Vcrilog program file. can
bc input to a model chccker such as SMV 1121 and VIS [I61
for verification.

The structure of SynAbs, as shown in Figure I, is composed
of several connected modules which will he briefly described
next. The advantage of this modularity is the simplicity of
upgrading the tool architecture hy extending the Verilog subset
or enhancing its performance for example.

A. Parser
Upon reading the Verilog and the ACTL temporal properties

files, the parser checks thc syntactic correctness of thc codes
and builds thc parse tree representing thc intcrnal format of
these filcs which is translated into linkcd structures describing
the control flow and the data dependency graphs (CFG and
DDG) of the program.

The Verilog program structure consists of set of variables
with associated finite domain of values, continuous assignment
statements, initial procedural blocks that specify the initial
state and always procedural blocks that contain a set of state-
ments. The statements supported by SynAbs are blocking and

0-7803-8322-2/04/$20.00 02004 IEEE.
57

Poster Session I : System Level Design

verll- Program A C T L Property

I I

Abstract Sytern
(Potn Sequence

Fig. I . SynAbs Architecture

noti-b/ocking assignments, $/else statements, case statements,
wait statements and @(condition) statements.

Thc control flow graph (CFG) of a Vcrilog program P
is a graph (N , I n i t i a l ; - , ~ ; L) , where N is a finite set of
nodes labeled by the program counter locations, E is a finite
set of edges, Initial, (U' and s are specific nodes denoting
respectively the beginning of initial blocks, the beginning and
the end of the always procedural blocks. L is a labeling
function that associates to each edge a statement i.e. L : E -
S. A Verilon examnle and its CFG are shown in figure 2

Fig. 2. An example Vedog program and its CFG

Data dependency graph (DDG) is a graph which represents
the relationship between state variables, whether i t is an

58

assignment or control dependency. DDG of a Verilog program
is 3 directed graph (4; F) , where D is a set of nodes. each
labeled by a variahle and F 2 D x D is a set of edges
connecting the nodes based on one or more of the dependency
types. Each edge can he labeled hy the types of' dependency
between the nodes' variahles.

We consider the temporal logic specification language
ACTL [SI. ACTL is a subset of CTL [I X] . where only
universal path quantifier, namely only A is allowed. The set
of well-formed universal computation tree logic (ACTL) are
constructed from a set of atomic propositions AP which
represen(properties of individual states, the standard boolean
operators. the temporal opcrators X, U and V, and the universal
path quantifier A.

B. Variable Rcdrrction

In order to enhance the reduction of programs prior to
verification, thc Cone of lnfluence algorithm (Co l) [I71 is
implemented inside SynAbs. Using the set of variables in the
property (of interest), the variables reducrion module renio\'es
irrelevant variables to the property and generates reduced CFG
and DDG which are input to the Patli Seqrrerice Gerierator.

The CO1 set of a certain variable is built by fixpoint iteration
on the CFG; each iteration adds new variables to the list. The
iteration stops when there are no more variables to be added.
After the CO1 set is created. only edges with variables included
in the set are kept, other edges are remo\sed and a reduced CFG
is created.

C. Values Abstractiori

A values abstraction algorithm [15] is implemented in
SynAbs. where we will partition the value domains of the
program variables into active and deactive values which re-
spectively affect and do not affect the property. The active
values are kept in the program while the deactive values are
replaced by one typical deactive value.

In order to achieve our goal, we will use two semantic
functions adapted from the Floyd proof system [9] :

The reachability condition RC,. associated with every
path T of the CFG, is a boolean condition under which
this path is traverscd.
The state transformation function ST, computes thc
values of the program variables at the end of the path,
provided that this path is traversed.

These functions are obtained by backward induction over
the paths of the CFG. We can represent any path ?I as K :=
RC, (V) A 1'' = ST,, (V) .

The domains partition is done first by selecting the nodes
(key nodes) influencing the property. From these key nodes,
backward to the node (U' constitute the key paths. In addition,
the variables (nodes) that appeax along those paths are also
considered as key nodes and hence their paths are also added
to the set of the selected paths. Next, we use the reachability
condition and the state transformation of each path to partition
the domain of each variable (i into disjoint active domain, writ-
ten ACTIVE (U). and deactive domain, written DEACTIVE (7)).

Poster Session I : System Level DES

The active domain will conlain the values alfecling directly
the properly and will remain unahstrdcted. while the deactive
domain can be abstracted by using a representative vnlue and
therefore will contain one single value.

Wc consider tlie cxamplc in Fifurc 2 and we assunic that
our property includes the statenient out == in. The first path
that influcnces thc spccihcation is iil = w - iV7 - A$ - E

wherc RC,, = pc = 2 A y = I O U and .ST,, = out = in.
Hence. we know that the value 2 and 100 are active \,slues of
the variable pc and y respectively. The variables that appear
along this path are pc, y and out. By considering the other
paths that influence these variables, we will partition the values
as the following: ACTIVE ({/) = {loo), DEACTlVE (y) = {o}.
A C T I V E (2) = {IOO} and DEACTIVE (3:) = (01 for the other
variables their domains have not changed and are considered
as active values.

After thc abstraction, some redundant variablcs will hc
reniovcd ' and tlic Values Abstraction modulc crcates an
abstract CFG. This module also generates ncw un-initialircd
inputs which will be used to implcment the non-deterministic
choice.

Fig. 3. Path Sequgnce u i t h e Vrdog example

I
Foirneis Constroints ACTL Prope*

SynAbs

Veriiog
Program

1

D. Path Sequence Gerieraror Fig. 4. SynAbs and model checking

Somerimcs. it is not oossible to know staticallv if a oath of

111. EXPEKIMENTAL RESULTS
For performance evaluation, we uscd a modihed version

of the example in Figure 2 and with 32-bits registers. The
program is formed of one module, which has two inputs reset
and in. and two outputs outf and out2. The values of the
outputs are changed depending on conditions on the inputs and
the internal variables. Suppose we want to verify the following
properties

2

interest will h r traversed during the execution. In our example,
we have determined that pc = 2 will lead to a state that will
verify the property which involves out = .in. However, it is not

merefore, we
will retine the analysis by introducing the dependency between
thc CFG paths called path sequence. This path sequence w i l l
he pro,rided in the values Abstraction module needs to
gather the domain of a certain variable 1191.

The path scqucncc is a tuplc (PO; P, R) whcre P<, f P is
an initial path, P is a set of paths in CFG and R P x P
such that (7 i l . i i p) E R iff RC,, A RC,,[STn,] is not false.

The path sequence represents another alternative to be used
in the partition hut it also provides a static check to ensure
that some state will he reachable. We lollow the routine used
in classic static analysis techniques which assumes that a
condition is true as long no information available that prove the
inverse. Figure 3 shows the path sequence of our example in
Figure 2. For example. there is a transition between P3 and P4
because RC,,[ST,,!ARC,, is pc = l ~ p c f l = 2 ~ y # 100
which could be true.

ifpc will have a value equal tu 2 or

prop 4G(77

Prop 3: AG(z == 1001 + AF(orrt2 == 999)).

+ d4F(01Atl == 01)).
== lo"' - AF(outl =="I)).

A comparison bctwcen the vcrification with SMV reduction
and with SynAbs rcduction is shown in Table 1. A decrcase
is achieved in both the BDD size and the verihcation time.

IV. RELATED WORK
Many abstraction techniques have been implemenled to

help the verification 0 1 hardware and software designs. The
degree of automation, the degree of abstraction and property
preservation are major factors chat affect the implementation
and the usage of thc abstraction. Many surveys discussing
thosc issues can he found in the litcrature 171, 181.

In 1131, Nam,josbi and Kurshan extended and automated a
syntactic abstraction approach, called predicate abstraction.
which translates a variable with large value domain into a
set of The produced output mc&l is a reduced
program text. The algorithm proposed was implemented in
a tool called AutoAbs [14]. A similar implementation of
predicate abstraction was applied on VHDL programs in [2].

Yorav and Gmmberg [I I] proposed two forms of syntactic
abstraction; "path reduction':, which is based on suppressing

E. Verilog Generator

At the hack end of the tool, a translator [201 Werates from
the CFG a reduced Verilog program which can be input to
model checker tools for verification as shown in Figure 4.

'Suppose these two asripmenis: I = 10 and p = T, and there is a paih
from the fimr assimment 10 the next one and the P r w w to be checked
involve7 1~ but not z. Then, the resulted control Row graph will include the
following acsignmentr T = 10 and y = in . B~ this CFG to the
variable reduction module. statements like 3: = 10 can hs removed.

59

Poster Session I : System Level Design

Model Checking
I
i

Example 1 i Property
With SMV reduction i1 With SynAbs reduction ~

Spatus I BDDs 1 Time / I Status I BDD i Time ~

E32 ~ i l) ~

the control flow graph paths that do not affect the property
and "dead-variahlc rcduction", where some of thc successors
of states for which thc variables of interest are not used arc
excluded. However, the abstraction we proposed in this tool
is more aggressive in the sense that not only the paths not
affecting the variables of interest are removed, but also the
variables of interest domains are abstracted. Another advantage
of our technique is the absence of termination restriction,
which makes i t more suitable for hardware design.

In [I] , Bharadwaj and Heitmeyer proposed a syntactic
approach based on variable hiding, where variables only
used on assignment expressions of the variables of interest,
arc replaced by their domains. However, such approach is
restricted to a limited subset of the program variables.

Our proposed reduction is also related to other work like
localization reduction [17]. However, our approach is an
extension of it, because we analyze the dependency between
the values of variables in addition to the dependency hetween
variables, thus the dependency relation is more accurate.

V. CONCLUSION

In this paper, we have presented SynAbs; a tool that applies
model reduction algorithms on Verilog designs. The approach
uses syntactic analysis and generates a smaller program com-
pared to the original one. In order to cvaluate the performance
of SynAbs, we verified some examples, using the SMV model
checker, before and after being abstracted by SynAbs. Primary
results were satisfactory. We are now using SynAbs to verify
larger examples.

In our approach, the solution is based on the syntactic
analysis of the program source code. The code reduction can
he combined with other model checking or reduction tools to
improve its reduction efficiency even more. Moreover, since
the size of the source code is usually smaller than that of its
state space or other intermediate forms, this approach uses
little resources (CPU time and memory space). Thc reduction
approach implemented can be extended for other HDLs like
VHDL.

REFERENCES
[I] K. Bhmdwaj and C. L. Hciimcyer. Model chcclting compicte rcquire-

ments specifications using abstraction. Auiomored Sufivore Engineering:
An lnreniurioriul Jurrnial. 6 (1) :3748 , January 1999.

(21 M. Bounhla and M. Benmahamed. Predicate abstraction and refinement
for model checking vhdl state machines. In Pmc. Sevend Inremurionrrl
workshop on T o m d Methud$ jbr Indumrriul Criricul Systents, University
of Malaga (Spain). July 2002.

60

Verified I 164712 I ll.X7 sec 1 1 Verifird ~ 2870 0.17 sec ~

131 A. Cinmtti, E. M. Clarke. F. Giunchi_elia. and M. Roveri. NUSMV A
ncw symbolic model checker. Irmntotioriol Jmmml on S,fwni.ore k ~ l s
jiw T e d r w l o ~ y Tromfer. 2(4):410425. 2000.

141 E. M. Clarkc. 0. Grurnburg. S. Jha. Y. Lu. and H. k i t h . Counlcr~
cxaniple guided abstraction rcfrncment. In Cornparer Aided l'uificorion.
volume 1855 of LACS, pages 154-169. Chicago. IL. USA. July 2000.

[SI E. M. Clarke. 0. Grumberg, and U. Long. Model checking and ab-
straction ACM 7i-unsocri~ms on Pnipwmiri,g Lurrpeoger ond S?siems.
Vol.l6[No. 5):l512-1542. Sepr 1994.

(61 E. M. Clarke. 0. Gmmberg. and U. Peied. rWodel Checkins. MIT Press.
Januaiy 2000.

171 P. Cousot. Abstract interpretation based formill methods and future
challenges, invited paper. In R. Wilhrlm, editor. hqiornmks. IO Yemr
Ruck, IO Yrrrn Al rmd . volume 2000 of Lrcnrrr NOIPS in Cmnpurcr
S ~ i m c e , pages 138-156. Springer-Verlag, 2001

[8] D.Dams. abstraction in software model checking: Principles and
practice. Model Checking o/Sofncore. 9th kremnriorrol SPIN Whrkrhop,
April 2002.

[9] N. Francer. Progrom l@mriom Addison-Wesley, 1992.
[IO] R. P. Kurshan. Formal vcrihcation in il ~omiiier~ial retting. In Design

Aormnurim Corference, pages 258-262, 1997.
[i I] K.Yurm and 0. Grumkrg. Syntax-dircclcd mod4 chccking or scquen~

l id prognins. J o ~ m ~ r d "/Logic and Algebraic Pr~~gruneniny. 52-52: 129-
162, 2002.

{I?] K. L. McMillan. Syibnl ic Model Checking. Kluwer, 1993.
1131 K. S. Namjoshi and R. P. Kurshan Syntactic program tnnsforrnationr

for automatic abstraction. In Cwnpsrer-uidrd Vrr#cii?iurr. ~ o l u m r 1855
of LIVCS. pages 433449, Chicago. IL. USA. July "ZWW. Springer
Verhg.

1141 K.Nninjoshi N.Amla, R.Kurshan. Auroshs: Syntax-directed program
abstraction. 2002.

[I51 H. Pcng. Y. Mokhtari. and S . Tahar. Model reduction based an value
dependency. in Pnrc. oJ' lEEE Imcwurio~wl ASICXOC Cor$~rerice.
Washigon, DC, USA. September 2001.

1161 R. Bmytun, G. Hachtrl, A. Sangioranni-Vinurntrlli, F. Sommzi. A.
Azir. S.-T. Cheng, S. Edwards. S. Khatri, Y. Kukimoio, A. Pardo, S.
Qndrer. R. K. Rmjan. S. Sarwar).. T. R. Shiple. G. Swam).. and T.
Villa. VIS: a system for \.erification and synthcsir. In Cmnpitrer Aided
Ver-i/icurinri, Lccture Nutcs in Computer Sciencc, pages 4281132, New
Brunswick. NJ, USA. 1996. Springer Vcrlq.

[I71 R.P,Kurshan. Cirmpiircr Aided Wrwcoriun of Cuordirrurinn.. Prucesses:
The Auro,naru Theoririr. Apprunch. Princeton University press. 1994.

1181 T, Kropf. Inrrudrrction 10 fomrrrl Hardwaarr Verificoriurz. Springer. 1999.
[I91 M. &ki. Y. Mokhtari, and S. Tahar. A path dependency graph for

Veriiog p r o ~ ~ r a m analysis. In Pmr. Firsr Nonbma NbrkThop on Ciruirr
and S?wmr, pages 109-112. Montreal, Quebec, Canada, June 2003.

1201 M. Wi and S. Tahar. Syntax code analysis and generation for verilog.
In IEEE Canndion Cor!ferent.e on Elecrrical aid Computer. Engirieeri~~g,
Fazes 235- 240, Monrreal, Quebec. Canada. May 2003.

~ ~'

~ (2) 1
~ (3) I

Verified 63x32s 281.98 sec Verifizd 2870 1 0.17 sec i
Verified 542551 175.59 sec Verified 1191 1 0.17 sec ~

