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Abstract-Current model checking tools suffer from the state 
space explosion problem due to the large number of generated 
states. In general, approaches like compositional verification and 
model reduction are used to tackle this prohleni. In this paper, 
we present a model reduction tool, called SynAbs, for Verilog 
verification. The reduction algorithms implemented are based on 
syntactic analysis and are applied prior to model checking. We 
have tested the efficiency of the algorithms using small examples. 
We have achieved reduction in both space and time requirements. 

1. INTROUUCTION 
Model checking [h] is a fully automatic approach to verify 

a finite state machine against its temporal specifications. How- 
ever, its application is limitcd by the size of thc system under 
vcrification. Currcnt model chccking tools [16J. 1121. LlOl, [31 
suffer froiii thc statc space explosion duc to the large number 
of gcncratcd states. In gcncral. compositioiral verification [h] 
and inodd reduction are used to tackle this problem. In com- 
positional verification, one can verify separately each module 
in the system then composes the local results into a global 
property. However. in today‘s multi-million-gate designs, the 
size of one single module is usually beyond the capability of 
a model checking tool. Model reduction approaches are then 
used in order to reduce the module size prior to verification. 

Model reduction approaches are based on abstract inter- 
pretation 171 which allows to reduce a concrete system (114) 
under verification to a more abstract and smaller one (M’j. 
Both systems 1Vf and .W’ are connected by an abstraction 
relation which is sqfr with respect to a given property 9. 
namely it preserves the property. This means if  the property 
holds for the abstract system. it holds for the concrete one as 
well. Syntactic abstraction techniques are usually based on the 
extensive analysis of the program syntax. They have several 
advantages as mentioned in [13]: 

They are more efficient than symbolic minimization al- 
gorithms such as the one described in [4], where explicit 
transition graph of the minimized system has to be 
constructed. The output of a syntactic abstraction tool 
is a text file which can he directly parsed and analyzed 
by a model checker. . Other reduction methods based on BDD or partial reduc- 
tion can hc applicd on thc output of the abstraction tool. 

Verilog HDL (Hardware Description Language) is a pop- 
ular language for hardware specification, design and testing. 

Verilog prograins exhibit a rich variety of behaviors including 
event-driven computation and shai-ed variables concurrency. In 
this paper, we descrihe a tool for reducing and ahstracling 
hardware designs written in Verilog. We will deal with a 
synchronous subset of Verilog accepted by the SMV model 
checker hut without considering concurrency. 

Thc rest of the paper is structured as follows. In Section 11, 
we present the model reduction tool SynAbs. describing its 
implenicntation and its differcnt modules. Somc experimental 
results are discusscd ncxt in  Section Ill. Scction IV dcscrihcs 
some relevant related works. Finally, section V concludes the 
paper. 

11. THE RBDDCTION TOOL 

SynAbs (Syntactic Abstraction) is a tool implementing 
model reduction algorithms based on syntactic analysis. 
SynAbs accepts as inputs two text files: a Verilog file that 
includes the design io he verified and a property file that in- 
cludes the specification described in ACTL [SI. The reduction 
algorithms analyie the input Verilog program. based on the 
property provided by the user, and generate a reduced Verilog 
code. The process is fully automated, i.a, no interaction is 
rcquircd by the user. The rcduced Vcrilog program file. can 
bc input to a model chccker such as SMV 1121 and VIS [I61 
for verification. 

The structure of SynAbs, as shown in Figure I, is composed 
of several connected modules which will he briefly described 
next. The advantage of this modularity is the simplicity of 
upgrading the tool architecture hy extending the Verilog subset 
or enhancing its performance for example. 

A. Parser 
Upon reading the Verilog and the ACTL temporal properties 

files, the parser checks thc syntactic correctness of thc codes 
and builds thc parse tree representing thc intcrnal format of 
these filcs which is translated into linkcd structures describing 
the control flow and the data dependency graphs (CFG and 
DDG) of the program. 

The Verilog program structure consists of set of variables 
with associated finite domain of values, continuous assignment 
statements, initial procedural blocks that specify the initial 
state and always procedural blocks that contain a set of state- 
ments. The statements supported by SynAbs are blocking and 
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Fig. I .  SynAbs Architecture 

noti-b/ocking assignments, $/else statements, case statements, 
wait statements and @(condition) statements. 

Thc control flow graph (CFG) of a Vcrilog program P 
is a graph ( N , I n i t i a l ; - , ~ ; L ) ,  where N is a finite set of 
nodes labeled by the program counter locations, E is a finite 
set of edges, Initial, (U' and s are specific nodes denoting 
respectively the beginning of initial blocks, the beginning and 
the end of the always procedural blocks. L is a labeling 
function that associates to each edge a statement i.e. L : E - 
S.  A Verilon examnle and its CFG are shown in figure 2 

Fig. 2. An example Vedog program and its CFG 

Data dependency graph (DDG) is a graph which represents 
the relationship between state variables, whether i t  is an 
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assignment or control dependency. DDG of a Verilog program 
is 3 directed graph (4; F ) ,  where D is a set of nodes. each 
labeled by a variahle and F 2 D x D is a set of edges 
connecting the nodes based on one or more of the dependency 
types. Each edge can he labeled hy the types of' dependency 
between the nodes' variahles. 

We consider the temporal logic specification language 
ACTL [SI. ACTL is a subset of CTL [ I X ] .  where only 
universal path quantifier, namely only A is allowed. The set 
of well-formed universal computation tree logic (ACTL) are 
constructed from a set of atomic propositions AP which 
represen( properties of individual states, the standard boolean 
operators. the temporal opcrators X, U and V, and the universal 
path quantifier A. 

B. Variable Rcdrrction 

In order to enhance the reduction of programs prior to 
verification, thc Cone of lnfluence algorithm (Co l )  [I71 is 
implemented inside SynAbs. Using the set of variables in the 
property (of interest), the variables reducrion module renio\'es 
irrelevant variables to the property and generates reduced CFG 
and DDG which are input to the Patli Seqrrerice Gerierator. 

The CO1 set of a certain variable is built by fixpoint iteration 
on the CFG; each iteration adds new variables to the list. The 
iteration stops when there are no more variables to be added. 
After the CO1 set is created. only edges with variables included 
in the set are kept, other edges are remo\sed and a reduced CFG 
is created. 

C. Values Abstractiori 

A values abstraction algorithm [15] is implemented in 
SynAbs. where we will partition the value domains of the 
program variables into active and deactive values which re- 
spectively affect and do not affect the property. The active 
values are kept in the program while the deactive values are 
replaced by one typical deactive value. 

In order to achieve our goal, we will use two semantic 
functions adapted from the Floyd proof system [9 ] :  

The reachability condition RC,. associated with every 
path T of the CFG, is a boolean condition under which 
this path is traverscd. 
The state transformation function ST, computes thc 
values of the program variables at the end of the path, 
provided that this path is traversed. 

These functions are obtained by backward induction over 
the paths of the CFG. We can represent any path ?I as K := 
RC, (V) A 1'' = ST,, ( V )  . 

The domains partition is done first by selecting the nodes 
(key nodes) influencing the property. From these key nodes, 
backward to the node (U' constitute the key paths. In addition, 
the variables (nodes) that appeax along those paths are also 
considered as key nodes and hence their paths are also added 
to the set of the selected paths. Next, we use the reachability 
condition and the state transformation of each path to partition 
the domain of each variable (i into disjoint active domain, writ- 
ten ACTIVE (U). and deactive domain, written DEACTIVE (7)). 
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The active domain will conlain the values alfecling directly 
the properly and will remain unahstrdcted. while the deactive 
domain can be abstracted by using a representative vnlue and 
therefore will contain one single value. 

Wc consider tlie cxamplc in Fifurc 2 and we assunic that 
our property includes the statenient out == in. The first path 
that influcnces thc spccihcation is iil = w - iV7 - A$ - E 

wherc RC,, = pc = 2 A y = I O U  and .ST,, = out = in. 
Hence. we know that the value 2 and 100 are active \,slues of 
the variable pc and y respectively. The variables that appear 
along this path are pc, y and out. By considering the other 
paths that influence these variables, we will partition the values 
as the following: ACTIVE ({/) = {loo), DEACTlVE (y) = {o}. 
A C T I V E  (2) = {IOO} and DEACTIVE (3:)  = (01 for the other 
variables their domains have not changed and are considered 
as active values. 

After thc abstraction, some redundant variablcs will hc 
reniovcd ' and tlic Values Abstraction modulc crcates an 
abstract CFG. This module also generates ncw un-initialircd 
inputs which will be used to implcment the non-deterministic 
choice. 

Fig. 3. Path Sequgnce u i t h e  Vrdog example 
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D. Path Sequence Gerieraror Fig. 4. SynAbs and model checking 

Somerimcs. it is not oossible to know staticallv if a oath of 

111. EXPEKIMENTAL RESULTS 
For performance evaluation, we uscd a modihed version 

of the example in Figure 2 and with 32-bits registers. The 
program is formed of one module, which has two inputs reset 
and in. and two outputs outf and out2. The values of the 
outputs are changed depending on conditions on the inputs and 
the internal variables. Suppose we want to verify the following 
properties 

2 

interest will h r  traversed during the execution. In our example, 
we have determined that pc = 2 will lead to a state that will 
verify the property which involves out = .in. However, it is not 

merefore, we 
will retine the analysis by introducing the dependency between 
thc CFG paths called path sequence. This path sequence w i l l  
he pro,rided in the values Abstraction module needs to 
gather the domain of a certain variable 1191. 

The path scqucncc is a tuplc (PO; P, R)  whcre P<, f P is 
an initial path, P is a set of paths in CFG and R P x P 
such that ( 7 i l . i i p )  E R iff RC,, A RC,,[STn,] is not false. 

The path sequence represents another alternative to be used 
in the partition hut it also provides a static check to ensure 
that some state will he reachable. We lollow the routine used 
in classic static analysis techniques which assumes that a 
condition is true as long no information available that prove the 
inverse. Figure 3 shows the path sequence of our example in 
Figure 2. For example. there is a transition between P3 and P4 
because RC,,[ST,,!ARC,, is pc  = l ~ p c f l  = 2 ~ y  # 100 
which could be true. 

ifpc will have a value equal tu  2 or 

prop 4G(77 

Prop 3: AG(z == 1001 + AF(orrt2 == 999)). 

+ d4F(01Atl == 01)). 
== lo"' - AF(outl =="I)). 

A comparison bctwcen the vcrification with SMV reduction 
and with SynAbs rcduction is shown in Table 1. A decrcase 
is achieved in both the BDD size and the verihcation time. 

IV. RELATED WORK 
Many abstraction techniques have been implemenled to 

help the verification 0 1  hardware and software designs. The 
degree of automation, the degree of abstraction and property 
preservation are major factors chat affect the implementation 
and the usage of thc abstraction. Many surveys discussing 
thosc issues can he found in the litcrature 171, 181. 

In 1131, Nam,josbi and Kurshan extended and automated a 
syntactic abstraction approach, called predicate abstraction. 
which translates a variable with large value domain into a 
set of The produced output mc&l is  a reduced 
program text. The algorithm proposed was implemented in 
a tool called AutoAbs [14]. A similar implementation of 
predicate abstraction was applied on VHDL programs in [2]. 

Yorav and Gmmberg [I I ]  proposed two forms of syntactic 
abstraction; "path reduction':, which is based on suppressing 

E. Verilog Generator 

At the hack end of the tool, a translator [201 Werates from 
the CFG a reduced Verilog program which can be input to 
model checker tools for verification as shown in Figure 4. 

'Suppose these two asripmenis: I = 10 and p = T, and there is a paih 
from the fimr assimment 10 the next one and the P r w w  to be checked 
involve7 1~ but not z. Then, the resulted control Row graph will include the 
following acsignmentr T = 10 and y = in .  B~ this CFG to the 
variable reduction module. statements like 3: = 10 can hs removed. 
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the control flow graph paths that do not affect the property 
and "dead-variahlc rcduction", where some of thc successors 
of states for which thc variables of interest are not used arc 
excluded. However, the abstraction we proposed in this tool 
is more aggressive in the sense that not only the paths not 
affecting the variables of interest are removed, but also the 
variables of interest domains are abstracted. Another advantage 
of our technique is the absence of termination restriction, 
which makes i t  more suitable for hardware design. 

In [I] ,  Bharadwaj and Heitmeyer proposed a syntactic 
approach based on variable hiding, where variables only 
used on assignment expressions of the variables of interest, 
arc replaced by their domains. However, such approach is 
restricted to a limited subset of the program variables. 

Our proposed reduction is also related to other work like 
localization reduction [17]. However, our approach is an 
extension of it, because we analyze the dependency between 
the values of variables in addition to the dependency hetween 
variables, thus the dependency relation is more accurate. 

V. CONCLUSION 

In this paper, we have presented SynAbs; a tool that applies 
model reduction algorithms on Verilog designs. The approach 
uses syntactic analysis and generates a smaller program com- 
pared to the original one. In order to cvaluate the performance 
of SynAbs, we verified some examples, using the SMV model 
checker, before and after being abstracted by SynAbs. Primary 
results were satisfactory. We are now using SynAbs to verify 
larger examples. 

In our approach, the solution is based on the syntactic 
analysis of the program source code. The code reduction can 
he combined with other model checking or reduction tools to 
improve its reduction efficiency even more. Moreover, since 
the size of the source code is usually smaller than that of its 
state space or other intermediate forms, this approach uses 
little resources (CPU time and memory space). Thc reduction 
approach implemented can be extended for other HDLs like 
VHDL. 
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