Poster Session | : System Level Design

SynAbs: Model Reduction Tool for Verilog
Verification

Mohamed Zaki, Yassine Mokhtari and Sofiene Tahar
Electrical and Computer Engineering Dept.
Concordia University
Montreal, Quebec, Canada
Email: {mzaki, mokhtari, tahar} @ece.concordia.ca

Abstract— Current mode] checking tools suffer from the state
space explosion problem due to the large number of generated
states. In general, approaches like compositional verification and
maodel reduction are used to tackle this problem. In this paper,
we present a model reduction tool, called SynAbs, for Verilog
verification. The reduction algerithms implemented are based on
syntactic analysis and are applied prior to model checking. We
have tesied the efficiency of the algorithms using small examples.
We have achieved reduction in both space and time requirements.

[. INTRODUCTION

Meodel checking [6] is a fully automatic approach to verify
a fintte state machine against its temporal specifications. How-
ever, its application is limited by the size of the system under
verification. Current model checking tools [16], [12], [10], [3]
suffer from the state space explosion duc to the large number
of gencrated states. In general, compositional verification [6]
and madel reduction are used to tackle this problem. In com-
positional verification, one can verify separately each module
in the system then composes the local results into a global
property. However. in today’s multi-million-gate designs, the
size of one single module is usually beyond the capability of
a model checking tool. Model reduction approaches are then
used in order to reduce the module size prior to verification.

Model reduction approaches are based on abstract inter-

pretation [7] which allows to reduce a concrete system (M)
under verification to a more abstract and smaller one (M),
Both systems M and M’ are connected by an abstraction
relation which is safe with respect to a given properly o,
namely it preserves the property. This means if the property
holds for the abstract system, it holds for the concrete one as
well. Syntactic abstraction techniques are usually based on the
extensive analysis of the program syntax. They have several
advantages as mentioned in [13]: '

s They are more efficient than symbolic minimization al-
gorithms such as the one described in [4], where explicit
transition graph of the minimized system has to be
constructed. The output of a syntactic abstraction tool
is a text file which can be directly parsed and analyzed
by a model checker.

e Other reduction methods based on BDD or partial reduc-
tion can be applied on the output of the abstraction tool.

Verilog HDL (Hardware Description Language) is a pop-

ular language for hardware specification, design and testing.

(0-7803-8322-2/04/$20.00 ©2004 IEEE.

Verilog programs exhibit a rich variety of behaviors including
event-driven computation and shared variables concurrency. In
this paper, we describe a tool for reducing and abstracting
hardware designs written in Verilog. We will deal with a
synchronous subset of Verilog accepted by the SMV model
checker but without considering concurrency.

The rest of the paper is structured as follows. In Section II,
we present the model reduction ool SynAbs, describing its
implemcntation and its different modules, Some experimental
results are discussed next in Section IIL Section 1V describes
some relevant related works. Finally, section V concludes the
paper.

IT. THE REDUCTION ToOL

SynAbs (Syntactic Abstraction) is a tool implementing
model reduction algorithms based on syntactic analysis.
SynAbs accepts as inpuls two text files: a Verilog file that
includes the design 1o be verified and a property file that in-
cludes the specification described in ACTL [5]). The reduction
algorithms analyze the input Verilog program. based on the
property provided by the user, and generate a reduced Verilog
code. The process is fully automated, i.e, no interaction is
required by the user. The reduced Verilog program file, can
be input to a model checker such as SMV [12] and VIS {16]
for verification.

The structure of SynAbs, as shown in Figure 1, is composed
of several connected modules which will be briefly described
next. The advantage of this modularity is the simplicity of
upgrading the tool architecture by extending the Verilog subset
or enhancing its performance for example.

A. Parser

Upon reading the Verilog and the ACTL temporal properties
files, the parser checks the syntactic correctness of the codes
and builds the parse trec representing the internal format of
these files which is translated into linked structures describing
the control flow and the data dependency graphs (CFG and
DDG) of the program.

The Verilog program structure consists of set of variables
with associated finite domain of values, continuous assignment
statements, initial procedural blocks that specify the initial
state and always procedural blocks that contain a set of state-
ments. The statements supported by SynAbs are blocking and

57

Poster Session | : System Level Design

verllog Program ACTL Property

[e
(parser

ACTL

CFG ond DDG Structure

Abstract Sytem
(Path Sequencea)

Reduced CFG
and DDG

Abtract CFG

A Transic

Reducecd
verilog

Program

Fig. 1. SynAbs Architecture

non-blocking assignments, iffelse statements, case stalements,
wait statements and @(condition) statements.

The control flow graph (CFG) of a Verilog program P
is a graph (N, Initial,w,s, L), where N is a finite set of
nodes labeled by the program counter locations, £ is a finite
set of edges, Imitial, w and ¢ are specific nodes denoting
respectively the beginning of initial blocks, the beginning and
the end of the always procedural blocks. L is a labeling
function that associates to each edge a statementie. L: F —
5. A Verilog example and its CFG are shown in figure 2

moduke exp_ Hin. cul)
input in:

outpan 2] out

neg ((r2f out;
eg [:6] x. v . pet

initial
eein
LH

k1
£

Y
=

id

2

end
always
begin
case(peh
[

begin
if{x< 100

ity == 1007 out = [n:
endcase

<t
endmodile

{a) {b)

Fig. 2. An example Verilog program and its CFG

Data dependency graph (DDG) is a graph which represents
the relationship between state variables, whether it is an

58

assignment or control dependency. DDG of a Verilog program
is a directed graph (D, F}, where D is a set of nodes. each
labeled by a variable and F C I} x D is a set of edges
connecting the nodes based on one or more of the dependency
types. Each edge can he labeled by the types of dependency
between the nodes’ variables.

We consider the temporal logic specification language
ACTL [5]. ACTL is a subset of CTL [18]. where only
universal path quantifier, namely only A is allowed. The set
of well-formed universal computation tree logic (ACTL) are
constructed from a set of atomic propositions AP which
represent properties of individual states, the standard boolean
operators. the temporal operators X, U and V, and the universal
path quantifier A.

B. Yariable Reduction

In order to enhance the reduction of programs prior to
verification, the Cone of Influence algorithm (COI) [17] is
implemented inside SynAbs. Using the set of variables in the
property (of interest), the variables reduction module removes
irrelevant variables to the property and generates reduced CFG
and DDG which are input to the Path Sequence Generator.

The COI set of a certain variable is built by fixpoint iteration
on the CFG; each iteration adds new variables to the list. The
iteration stops when there are no more variables to be added.
After the COI set is created, only edges with variables included
in the set are kept, other edges are removed and a reduced CFG
is created.

C. Values Abstraction

A values abstraction algorithm [15] is implemented in
SynAbs. where we will partition the value domains of the
program variables into active and deactive values which re-
spectively affect and do not aflect the property. The active
values are kept in the program while the deactive values are
replaced by one typical deactive value.

In order to achieve our goal, we will use two semantic
functions adapted from the Floyd proof system [9]:

o The reachability condition RC';, associated with every
path 7 of the CFQ, is a boolean condition under which
this path is traversed.

e The state transformation function ST, computes the
values of the program variables at the end of the path,
provided that this path is traversed.

These functions are obtained by backward induction over
the paths of the CFG. We can represent any path m as 7 :=
RC.(VYAV! = 8T (V).

The domains partition is done first by selecting the nodes
(key nodes) influencing the property. From these key nodes,
backward to the node w constitute the key paths. In addition,
the variables {nodes) that appear along those paths are also
considered as key nodes and hence their paths are also added
to the set of the selected paths. Next, we use the reachability
condition and the state transformation of each path 1o partition
the domain of each variable v into disjoint active domain, writ-
ten ACTIVE (v}, and deactive domain, written DEACTIVE (v).

Poster Session | : System Level Design

The active domain will contain the values affecting directly
the property and will remain unabstracted. while the deactive
domain can be abstracted by using a representative value and
therefore will contain one single value.

We consider the example in Figure 2 and we assume that
our property inciudes the statement out == in. The first path
that influences the specification is 7y = w — N7 — Ng — ¢
where RCy, = pe = 2 Ay = 100 and 5T, = out = in.
Hence. we know that the value 2 and 100 are active values of
the variable pc and y respectively. The variables that appear
along this path are pc, y and out. By considering the other
paths that influence these variables, we will partition the values
as the following: ACTIVE () = {100}, DEACTIVE (y) = {0}.
ACTIVE (x) = {100} and DEACTIVE (2) = {0} for the other
variables their domains have nol changed and are considered
as active values.

After the abstraction, some redundant variables will be
removed ' and the Values Abstraction module creates an
abstract CFG. This module also generates new un-initialized
inputs which will be used 1o implement the non-deterministic
choice.

D. Path Sequence Generator

Sometimes, it is not possible to know statically if a path of
interest will be traversed during the execution. In our example,
we have determined that pe = 2 will lead to a state that will
verify the property which involves out = in. However, it is not
clear if pc will have a value equal to 2 or not. Therefore, we
will refine the analysis by introducing the dependency between
the CFG paths called path sequence. This path sequence will
be provided in case the Values Abstraction module needs to
gather the domain of a certain variable [19}.

The path sequence is a wple (Fy, P, R) where Py € P is
an initial path, P is a set of paths in CFG and R C P x P
such that (71, 72) € R #f RCr, A RCy,[ST;,] is not false,

The path sequence represents another alternative to be used
in the partition but it also provides a static check to ensure
that some state will be reachable. We follow the routine used
in classic static analysis techniques which assumes that a
condition is true as long no information available that prove the
inverse. Figure 3 shows the path sequence of our example in
Figure 2. For example, there is a transition between P; and Py
because RC,,, [STh, | ARC,, is pc = 1Ape+1 = 2Ay # 100
which could be true.

E. Verilog Generator

At the back end of the tool, a transkator [20] generates from
the CFG a reduced Verilog program which can be input to
model checker tools for verification as shown in Figure 4.

!Suppose these two assignments: z = 10 and y = =, and there is a path
from the first assignment 1o the next one and the property to be checked
involves y but not x. Then, the resulted control flow graph witl include the
following assignments 2 = 10 and y = 10. By sending this CFG to the
variable reduction module, statements like &t = 10 can be removed.

e — TN f
TR 5 |
L P
P2 e P3
oD
T S
' ¢ ops
M s
Pir = { {Inidial, |
I't = { (Umega.
psi
P4 = { (Omega, L (N_7. Epsilon}}
PS5 = { (Omega, N_T). (N_7. N_BL (K, 5. Fipsilon)]

Fig. 3. Path Sequence of the Verilog example
ACTL Property Faimess Ejonsfromfs
57
Model
SynAbs Checker
Verllog rReduced SMVAVIS/ YesiNo
ProgiGm Veriog
Program
Fig. 4. SynAbs and model checking

III. EXPERIMENTAL RESULTS

For performance evaluation, we used a modified version
of the example in Figure 2 and with 32-bits registers. The
program is formed of one module, which has two inputs reser
and in, and two ouwtputs owr! and out2. The values of the
outputs are changed depending on conditions on the inputs and
the internal variables. Suppose we want to verify the following
properties

Prop 1: AG(—reset — AF(outl == 01)).

Prop 2: AG{x == 1001 — AF(outl == 01)).

Prop 3: AG(z == 1001 — AF{out2 == 999}).

A comparison between the verification with SMV reduction
and with SynAbs reduction is shown in Table 1. A decrease
is achieved in both the BDD size and the verification time.

IV, RELATED WORK

Many abstraction techniques have been implemented 1o
help the verification of hardware and software designs. The
degree of automation, the degree of abstraction and property
preservation are major factors that affect the implementation
and the usage of the abstraction. Many surveys discussing
thosc issues can be found in the literature [71, [8].

In [13], Namjoshi and Kurshan extended and automated a
syntactic abstraction approach, called predicate abstraction,
which translates a variable with large value domain into a
set of predicates. The produced output model is a reduced
program text. The algorithm proposed was implemented in
a tool called AutoAbs [14]. A similar implementation of
predicate abstraction was applied on VHDL programs in [2].

Yorav and Grumberg [11] proposed two forms of syntactic
abstraction; “path reduction”, which is based on suppressing

59

Poster Session | : System Level Design

Model Checking

With SMV reduction With SynAbs reduction
Example | Property | Status BDDs Time Status | BDD | Tume
E32 (L Verified | 164712 | 11.87 sec || Venfied | 2870 | 0.17 sec
) Verified | 638328 | 281.98 sec i Verified | 2870 | 0.17 sec
(3) Verified | 542553 | 175.59 sec || Verified | 1191 | Q.17 sec
TABLE I

VERIFICATION RESULTS OF SAMPLE PROPERTIES USING SMV

the control flow graph paths that do not affect the property
and “dead-variable reduction”, where some of the successors
of states for which the variables of interest are not used are
excluded. However, the abstraction we proposed in this tool
is more aggressive in the sense that not only the paths not
affecting the variables of interest are removed, but also the
vartables of interest domains are abstracted. Another advantage
of our technique is the absence of termination restriction,
which makes it more suitable for hardware design.

In [1], Bharadwaj and Heitmeyer proposed a syntactic
approach based on variable hiding, where variables only
used on assignment expressions of the variables of interest,
are replaced by their domains. However, such approach is
restricted to a limited subset of the program variables.

Our proposed reduction is also related to other work like
localization reduction [17]. However, our approach is an
extension of it, because we analyze the dependency between
the values of variables in addition to the dependency between
variables, thus the dependency relation is more accurate.

V. CONCLUSION

In this paper, we have presented SynAbs; a tool that applies
model reduction algorithms on Verilog designs. The approach
uses syntactic analysis and generates a smaller program com-
pared to the original one. In order to evaluate the performance
of SynAbs, we verified some examples, using the SMV model
checker, before and after being abstracted by SynAbs. Primary
results were satisfactory. We are now using SynAbs to verify
larger examples.

in our approach, the solution is based on the syntactic
analysis of the program source code. The code reduction can
be combined with other model checking or reduction tools to
improve its reduction efficiency even more. Moreover, since
the size of the source code is usually smaller than that of its
state space or other intermediate forms, this approach uses
little resources (CPU time and memory space). The reduction
approach implemented can be extended for other HDLs like
VHDL.

REFERENCES

[1] R. Bharadwaj and C. L. Heitmeyer. Model checking complete require-
ments specifications using abstraction. Automated Software Engineering:
An International Journal, 6(1):37-68, January 1999.

M. Bourahla and M. Benmohamed. Predicate abstraction and refinement
for modet checking vhdl state machines. In Proc. Seventh International
Workshop on Formal Methods for fndustrial Crirical Systems, University
of Malaga (Spain). July 2002,

60

{2

—

[3] A. Cimati, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A
new symbolic model checker. fnternarional Journal on Software Tools
Jor Techmology Transfer, 2(4):410-425, 2000.

[4] E. M. Clarke, O. Grumberg. S. Jha, Y. Lu. and H. Veith. Counter-
example guided abstraction refirement. In Compuier Aided Verificarion,
volume 1835 of LNCS, pages 154-169. Chicage. IL. USA. Juiy 2000

[5] E. M. Clarke. O. Grumberg, and D. Long. Model checking and ab-
straction, ACM Transacrions on Programming Languages and Sysiems,
Vol 16(No. 3):1512-1542, Sept 1994,

{6] E. M. Clarke, O. Grumberg, and D. Peled. Mode! Checking. MIT Press,
January 2000.

{71 P. Cousot. Abstract interpretation based formal methods and future
chalienges, invited paper. In R. Wilhelm, editor, Informatics. 10 Years
Back, 10 Years Alead. volume 2000 of Lecrure Notes in Compuier
Science, pages t38-156. Springer-Verlag, 2001.

[8F D.Dams. abstraction in software model checking: Principles and
practice. Model Checking of Software, $th International SPIN Workshop,
April 2002.

[9] N. Francez. Program Verification. Addison-Wesley, 1992,

[10] R. P. Kurshan. Formai verification in a commercial setting. In Design
Auromation Conference, pages 258-262, 1997,

K.Yorav and O. Grumberg. Syntax-directed model checking of sequen-
tial programs. Journal of Logic and Algebraic Programming. 52-52:129—
162, 2002.

K. L. McMillan. Symbolic Model Checking. Kluwer, 1993,

K. §. Namjoshi and R. P. Kurshan. Syntactic program transformations
for automatic absteaction. In Compuiter-aided Verification. volume 1855
of LNCS. pages 433—449, Chicago, IL. USA, July "2000"". Springer
Verlag.

K.Namjoshi N.Amla, R.Kurshan.
abstraction. 2002.

H. Peng. Y. Mokhtari. and S. Tahar. Model reduction based on value
dependency. In Proc. of IEEE Internarional ASIC/SOC Conference,
Washigion, DC, USA, September 2001.

R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A.
Aziz, S-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S.
Qadeer, R. K. Ranjan. S. Sarwary. T. R. Shiple. G. Swamy. and T.
Villa. VIS: a system for verification and synthesis. In Compurer Aided
Verification, Lecture Notes in Computer Science, pages 428-432, New
Brunswick. NJ, USA. 1996. Springer Verlag.

R.PKurshan. Computer Aided Verification of Coordinating Processes:
The Automata Theoritic Approach. Princeton University press, 1994.
T. Kropt. Introdiction ro Formal Hardware Verification. Springer. 1999,
M. Zaki, Y. Mokhtari, and S. Tahar. A path dependency graph for
Verilog program analysis. In Proc. First Northeast Workshap on Circuits
and Systems, pages 109-112. Montreal, Quebec, Canada, June 2003.
M, Zaki and 5. Tahar. Syntax code analysis and generation for verilog.
In JEEE Canadian Conference on Elecirical and Computer Engineering,
pages 235- 240, Montreal, Quebec. Canada, May 2003.

(1]

112]
[13]

[14} Autoabs: Syntax-directed program

[15

—

{16]

[171

(18]
{19]

[20

