
Poster Session I : System Level Design

Formal Verification of a Bus Structure Modeled in
S y s temC

Ali Habibi. Sofikne Tdhm and Ldzhar Halleh
Department of Electrical and Computer Engineering

Concordia University
1455 de Maisonneuve, West,
Montreal, Quebec H3G IM8

Email: hahibi.tahar,halleh@ece.concordia.ca

Ahslract-In this paper. we present the formal verification of
a bus structure modeled in SystemC. SystemC is an emerging
system level design and verification language based nn C++ object
oriented paradigms. The verification approach is based on both
abstract interpretation (for model reduction) followed by model
checking of some of the bus properties. l n the abstraction phase,
we statically analyze the SystemC model considered as C++ code
augmented hy library constructors, components and entities. We
also provide a graphical representation of the reduced model,
suitahle for debugging m d verification purposes. We use the
Cadence FormalCheck tool to verify designs properties on the
abstracted (reduced) bus model translated into Verilog code.
While the verification of the original model was not possible to
perfurm, we succeeded In checking all properties on the reduced
model.

1. INTROLNCTION

A decade ago, the EDA industry went progressively From
gate level to register-transfer level (R K) abstraction. This
is one of the basic reasons why this process gained a great
increase in the productivity. Nowadays, an important effort is
being spent in order to develop system level languagcs (SLL)
and to define new dcsign and verification methodologics at
this level of abstraction. RTL hardware design is too low as an
abstraction level to start designing multimillion-gate systems.

State-of-the-art SLL proposals can he classilied into three
main classes. First. reusing classical hardware languages such
as extending Verilog to SystemVerilog [6]. Second, readapting
software languages and methodologies (C/C++ [IO], Java [2],
UML 151, etc.). Third, crcating new languages specified for
system level design (Rosetta [1] for examplc).

SysteniC [12] is among a group of design SLLs proposed
to raise the abstraction level for emhedded system design and
verification. It is expected to make a stronger effect in the area
of architecture, the co-design and integration of hardware and
software [I 11.

Il ie verification of a SystemC Design is a more serious
bottleneck in the design cycle. Going further in complexity
and considering hardwarekoftware systems will be out of the
range of the nowadays used simulation based techniques [7].
Classical verification techniques when used with SystemC will
face several problems related to the object-oriented aspect of
this library and to the complexity of its simulation environ-
ment.

For instance, the main trends in defining new verification
methodologies are considering a hybrid combination of formal,
semi-fotmal and simulation techniques. This kind of hybrid
techniques can offer a partial answer to the question: “1s the
verification task complctc’? However. an answer to a question
like “Is a property always true’? can be only answered by
purely formal techniques such us theorem proving [SI and
model checking 191. This latter, despite its problem of state
explosion. is gaining a lot of interest in both areas academic
and industrial. A number of proposals offer to abstract the
system in order to verify some of its properties using model
checkers and then complete the verification process by classi-
cal simulation techniques.

In this paper. we present an approach to verify a bus
structure using model checking. The bus represents a generic
Master/Slave architecture included as part of the SystemC
library, It supports a variety of modes: blocking, direct, non-
blocking. fast memory and slow memory. Our objective is to
abstract the bus’s model in order to verify some of its critical
properties (mainly: livencss and safcty propcrtics).

The rest of this paper is organized as follows: Section 2
presents an approach to verify SystemC designs. Section -3.
describes the bus structure. Section 4 presents the verification
steps of the bus structure and the expcrimenlal rcsults. Section
5. finally, concludcs the paper.

11. VERlFlCATlON APPROACH

We use the verification approach given in Figure 1, where
the static code analyzer gets at its input a SystemC design and
a set of reduction tactics (called abstraction library). It then
generates a reduced hypergraph representation of the design.
This latter is fed into a Hypergraph to Verilog converter. The
conversion is seen as a concretization of the abstracted design
(hypergraph) into the Verilog language. We did select Verilog
because we will use the FormalCheck model checking tool
~31 .

A. SystemC Librury
SystemC is a set of C++ class definitions and a methodology

fur using these classes [l l] . The core language consists of
an event-driven simulator as the base. It works with events
and processes. The other core language elements consist of

0-7803-8322-2/04/$20.00 02004 IEEE.
61

Poster Session I : System Level Design

Design in E ;

Property completed (correct or not
correct) or Failed lo Verify Property

Fig. 1. Cascading Model Checkins w,ilh 4bstracr Inrerprerarion.

modules and ports for reprcscnting structures. Interfaces and
channcls arc used to describe communications. The primitive
channels are built-in channels that have wide use such as
signals. semaphores and FIFOs. SystemC provides data types
for hardware modelling and certain types of software program-
ming as well.

R. SystemC Absrruction

As a solution to the SystctnC verification problem we
use an abstract environment. that can bc used for: (I) the
analysis and verification of SystemC programs, (2) abstract
debugging and (3) possible interfacing with model checking
and simulation. TIie analysis of the design is, as defined in
[4]. based on approximate semantics of programs to provide
sound a n w e r s to questions about their run-time behaviors. The
abstract debugging will he possible thanks to the ahstraction
OF the memory (allocation blocks and the stack), the language
simulation manager, component responsible for running Ihe
simulation, the events’ stack and to the code of the program
itself. The program execution environment as wcll as the
simulation environment will he represented in order to allow
abstract exccution of the program.

In order to interface abstract interpretation with model
chccking (i.e. fced the abstractcd codc into a model checkcr)
objects‘ and events’ aspects of SysteniC designs need to he
translated into a procedural like code. Eventually this may
seem to he not always feasible since we are stiuting from an
object-oriented program structure. However, the approach can
still he valid when restricted to some pans of the program to
verify local properties.

In summary, the requirements for our abstract environment
are: . Construct an abstract environment for C++ as an object-

oriented program components. This will include the code
(instructions, expressions, operations, etc.) and memory
(allocation blocks and suck) abstractions.
Define a specific abstraction for the SystemC simula-
tor (events manger and events stack) and For all the
SystemC‘s language specific classes (modules, signals,
channels, etc.)

t Consider some prograni analysis tactics to extract prop-
erties from the abstracted program or to concrctizc it into
a codc that can he fcd into a model checkcr. . Represent the abstract environment in a graphical struc-
ture in order to allow more efficient abstract debugging
and possible test coverape hints.

In order to analyze statically SystemC designs: we consid-
ered an approach based on Ahstract Interpretation [4] which is
a formal technique that has proven to he efficient with ohject-
oriented languages and large programs. The approach consists
O f . Construct collecting semantics: which defines statically

the future domains that will serve for the analysis and
their specific manipulations. . Construct Abstract Semantics: whicli maps a propcrty to
a finite rcprescntation of the property more suitahlc for
the analysis. . Define Analysis Techniques: which analyzes the ahstract
representation of the system in order to extract properties
andlor to reduce the program size.

At the end of the analysis the p r o p u n will he represented in
a graphical format called hypergruph [13]. This latter, can he
seen as a general automata connecting its states by branches
(also called hyper-hranchesj. Theses branches can he seen
as an extension to Binary Decision Diagrams (BDDs) more
adapted to progranis representation. In other terms, they offer
a higher lcvel of abstraction and flcxibility by introducing the
notion of confincd hypcrgraph. This cncapsulation property of
the hypergraphs is vcry suitahlc to SoC wherc a system is a
connection of modules using its input and output ports.

C. Applying Model Checking
Model checking [9] is one of the main lormal verification

techniques used in the EDA industry. It is concerned with
properties verification mainly at the RTL.

Modcl checkers are thc most adequate formal tcchniquc
to be used at thc system lcvel dcsign. With this technique
thcrc arc no corncr cascs. hecausc thc model checkcr examines
100% of the state space without having to simulate anything.
However. we note that model checking is typically used for
small portions of the design only, because the state space in-
creases exponentially with complex properties and on quickly
runs into a “state space explosion”.

For instance, there i s no new model checkers adapted for
system level design. Nevertheless. what is interesting ahout
these techniques is the definition of hierarchical verification
allowing the use of the checkers for small design portions
and guiding the abstraction in order to verify some particular
properties.

111. Bus STRUCTURE MODEL

This bus structure as described in Figure 2 uses an overall
form of synchronization where modules attached to the bus
execute on the rising clock edge, and the bus itself executes
on a falling clock edge. Multiple masters can be connected to
the bus. Each master is identified by a unique priority, that

62

Poster Session I : System Level Design

is represented hp an unsigncd integer number. The lower this
priority number is, tlic inore important thc inastcr is. Each
mastcr communicates with thc bus via an intcrfacc wliicli
describes the communication between masters and the bus;
three modes are possible:

Blocking Mode: Data is moved through the bus i n burst-
modc. The transaction cannot he interrupted by a request
with a higher priority. . Non-Blocking Mode: Read or write a single data
word. After the transaction is completed, the caller
must take care of checking the status of the last
request. The status of the request is one OF: SIM-
PLE.BUSREQUEST (request issued and placed on the
qucue), SIMPLEBUS.WAIT (request being served but
is not completed), SIMPLEBUS.OK (request conipleted
without errors) or SIMPLEBUSERROR (an error oc-
currcd during proccssing of the rcqucst). . Dircct Modc: The direct intcrface functions perform the
data transfer through the bus. but without using the bus
protocol. They are usually used to debug the state of the
memory.

The slave interface describes the communication hetween
the bus and tlie slaves. Multiple slaves can be connected to
the bus. Each slave models some kind of memory thal can he
accessed through the slave interf'dcc. Two modes arc possihle: . Direct interlice: immediate read or writing of data with-

OUL using the bus protocol. . Indirect interface: read or write a single data element,
pointed to by data in or from the slwe's memory. Thc
functions return instantaneously and the caller must check
tlic status of the transfcr.

To the bus more than one mastcr can be connected. Each
master is indcpcndcnt of thc othcrs, so cach niastcr can
issue a bus request at any time. The arbiter selects the most
appropriate request according the following rules: . If the current request is a locked burst request, then it is

always selected.
If the last request had its lock Bas set and is again
'requested'. it is selected from the collection queue and
returned, otherwise: . The request with the highest priority is selected kom the
collection queue and returned.

IV. FORMAL VERIFICATION

In this section we will illustrate the verification approach
on a bus structure offered as pm of the SystemC distribution
1121. In fact, this structure includes several SystemC com-
ponents and showed the principles of using SystcmC at the
transactional Icvel. Besides sonic of the sample properties,
e.g. livcness and safety, cannot he verified using simulation.
They require the usage of formal techniques such as model
checking.

4 . Abstraction
A partial representation of the bus's hypergraph is given in

Figure 3. It shows the first hypergraph generated from the bus

Master1 Master2 Master3 QqJqJ
Clock

T

Fig. 2. Simple Rur Srructure.

code. It includes an events' environment containing sweral
processes: maqters. slaves, clocks, arhiter, etc. In parallel with
the program environment, the events environment includes
the list of all the system processes and their status. For
simplification, we use only two status for each process: activc
(I) and not-active (0).

The simulation manager is presented as a box connected
to the entries of tlie program hypergraph. It can be seen
as a procedure that determines the structure of the system
according to the list of active proccsscs. For example. if the
Master 1 is scnding active. then, only its correspondcnt code
is analyzed. Each small box from the program environment,
(e.g., arbiter()) presents a confined hypergraph that includes
the correspondent object members and methods.

m
L a
9 3.
8
2
3

vi

J
\

3 a
3
F 2.
3
3
0

J

Fig. 3. Hypergrah of the Simple Bus Swcturr.

63

Poster Session I : System Level Design

l'ropeny

PI
P?
Pl

__~
CPU Time Memory (io MU)

659:12 93.59

15:?3:02 lS3.91
17:46:54 293.63

R. Model Checkbig
After applying reductions tactics on the hypergraph of

Figure 2. the generated reduccd hypergraph is concrelized into
a Verilog code. This latter is led in to the Formalcheck tool
[3] i n order to verily some of the design's properties. In fact,
Formalcheck verilies that a design model exhibits specific
behaviors (properties) that are required by the design specifica-
tion. Properties that form the basis of a model checkcr's query
fall into two categories: safe@ and liveness. Safety properties
can be expressed using one of two formats: Thc always format
and the never format. Liveness properties describe behaviors
that are evenfual l~~ exhibited.

For instancc we considered the following properties:

Property 1:
NEVER1 (simple_bus.request==ture)

&&lsimple_bus.status!=BUS_OK) 1

P r o p e r t y 2 :
AFTER (simple-bus.request==true)
&h (simple-bus.request.block==true)
EVENTUALLY (simple_bus.status==BUS_BLOCK)

P r o p e r t y 3 :
EVENTUALLY (simple_bus.status==BUS-OK)

Property I means that a master generates request only when
the bus is ready to handle new requests (i.e. bus status set
to BUS.0K). Property 2 says that if the bus receives a new
hlocking request, then, in the future. its status will change
to blocking (i.e. bus status set to BUSSLOCK). Property 3

Main Menmy 4.0 GB

reducc the codc. Our choice was guided by the well known
performances of this technique when dealing with a variety
of lansuages and complex systems. The reduced code is
represented in a graphical structure, hypergraph, i n order to
allow more flexible yet efficient analysis environment.

We translated the reduced hypergraph structure to Verilog in
order to use model checking in Formalcheck to verily some of
the system's properties. The results obtained on a bus structure
showed (he feasibility of the approach. In future work, we will
investigate (1) the proof of soundness of the concretization of
the hypergraph into a Verilog code and (2) the application of
model checking directly on the hypergraph structure.

REFERENCES

111 P. Alexmdcr, K. Kanl31h and D. Barton. Syalcm SpeciBcarion in Rurah.
In Proc. IEEE Engirieerin~ cf Cmnparer Uusfd Syrr~m Syuposiurn. UK.
April 2000.

121 P. Bellows aid B. Hutchings. JHL)L - An HDL for Keconfigurable
Systems. IEEE Sytn~x~~iunt on FPGAs ,fir Cusrorn Compri,t,q Maciadinrs.
IEEE Computer Society Pres, Los Alarnitos. CA, pp. 175-184. 1998.

[3] Cadence. Formal Verifi calioil Using Affi ma FormalCheck. version 2.4.
Auguest 1999.

[4] P. Cousor and R. Cousol. Abstract interpretation frameworks. b w n a l of
i.ogi<: and Comixtm~im, ?(4):51 1-547. August 1992.

IS1 D B. P. Douplass. Red-Time UML. Addison-Wesley. 2000.
161 IEEE Std. 13s-2001, IEEE Standard for Venlog H w d w a ~ Description

Language 2001. ISBN 0- 7381-2827-9. IEEE Product No. SH94921-TBR.
171 M. Kantrowitn and L. Noack. I'm Done Simulating: Now Wha? Venfi ca-

tion Coverage Analysis and Correctness Checking of the DECchip2l I64
Alpha Microprocessor. In Roc. ACM/IEEL? Dmgn Aerosnriion Cwlfer-
B I I C E . 1Y96.

181 C. Kern and M. Greensueet. Formal Verification in Hardware Dcsign: A
Surne?, ACM Transucriorts on Design A,m,nariorr of E. Swamr. Vol. 4,
Aoril

proves thc bus Status will always return to ready to receive
new requests.

[91 P. C. Pixley. Integrating model checking into the semicandoclor design
&w, Cwnpr,ier- Ues i~n ' s Uectm,ric Swrems ,juumul. pp. 67-74, March
1944

[IO] R. Roth and D. Rainmathan. A High-Level Hardware Design Method-
ology Using C++, In Roc. 41h HiRh Ixwl Design Vnlidaiiori and Teri
Worksbop, San DieCo. pp 73-80, 1999.

[I I] Systemc 2.0.1 language reference manual. open sgstemc iniliarive. 2003.

C. Experimenral Results

to verilog (without abstraction). We modelled the SystemC
We first trans'ating the bus 'Ode from

11 21 sYltemr wuphqire. hnn:/iwwwqvsrpmc "~~~ ~ (~ 1 4 ..., r ~ . =,-.. ~

simulator as a new module. Although this simplification re-
duces effectively the complexity of the code, the verification
of all the previous properties failed after few minutes with the
same problem of' "memory exceeded". Then. when using the
abstracted code all the properties were verified as it can he
seen in Table I. The verification platform is descrihed in 11.

[131 F. Vederine. Analyses totales de programmes pa^ inteqntation abstraite.
PhD thesis, Ecde P ~ l y t = h n i w . Pas. Frdnce. 2mO.

V. CONCLUSION
In this paper, we used an approach based on abstract

interpretation to verify, using model checking, a bus structure
modelled in SystemC. We used abstract interpretation to

64

