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Ahslract-In this paper. we present the formal verification of 
a bus structure modeled in SystemC. SystemC is an emerging 
system level design and verification language based nn C++ object 
oriented paradigms. The verification approach is based on both 
abstract interpretation (for model reduction) followed by model 
checking of some of the bus properties. l n  the abstraction phase, 
we statically analyze the SystemC model considered as C++ code 
augmented hy library constructors, components and entities. We 
also provide a graphical representation of the reduced model, 
suitahle for debugging m d  verification purposes. We use the 
Cadence FormalCheck tool to verify designs properties on the 
abstracted (reduced) bus model translated into Verilog code. 
While the verification of the original model was not possible to 
perfurm, we succeeded In checking all properties on the reduced 
model. 

1. INTROLNCTION 

A decade ago, the EDA industry went progressively From 
gate level to register-transfer level ( R K )  abstraction. This 
is one of the basic reasons why this process gained a great 
increase in the productivity. Nowadays, an important effort is 
being spent in order to develop system level languagcs (SLL) 
and to define new dcsign and verification methodologics at 
this level of abstraction. RTL hardware design is too low as an 
abstraction level to start designing multimillion-gate systems. 

State-of-the-art SLL proposals can he classilied into three 
main classes. First. reusing classical hardware languages such 
as extending Verilog to SystemVerilog [6]. Second, readapting 
software languages and methodologies (C/C++ [IO], Java [2], 
UML 151, etc.). Third, crcating new languages specified for 
system level design (Rosetta [1] for examplc). 

SysteniC [12] is among a group of design SLLs proposed 
to raise the abstraction level for emhedded system design and 
verification. It is expected to make a stronger effect in the area 
of architecture, the co-design and integration of hardware and 
software [ I  11. 

Il ie verification of a SystemC Design is a more serious 
bottleneck in the design cycle. Going further in complexity 
and considering hardwarekoftware systems will be out of the 
range of the nowadays used simulation based techniques [7]. 
Classical verification techniques when used with SystemC will 
face several problems related to the object-oriented aspect of 
this library and to the complexity of its simulation environ- 
ment. 

For instance, the main trends in defining new verification 
methodologies are considering a hybrid combination of formal, 
semi-fotmal and simulation techniques. This kind of hybrid 
techniques can offer a partial answer to the question: “1s the 
verification task complctc’? However. an answer to a question 
like “Is a property always true’? can be only answered by 
purely formal techniques such us theorem proving [SI and 
model checking 191. This latter, despite its problem of state 
explosion. is gaining a lot of interest in both areas academic 
and industrial. A number of proposals offer to abstract the 
system in order to verify some of its properties using model 
checkers and then complete the verification process by classi- 
cal simulation techniques. 

In this paper. we present an approach to verify a bus 
structure using model checking. The bus represents a generic 
Master/Slave architecture included as part of the SystemC 
library, It supports a variety of modes: blocking, direct, non- 
blocking. fast memory and slow memory. Our objective is to 
abstract the bus’s model in order to verify some of its critical 
properties (mainly: livencss and safcty propcrtics). 

The rest of this paper is organized as follows: Section 2 
presents an approach to verify SystemC designs. Section -3. 
describes the bus structure. Section 4 presents the verification 
steps of the bus structure and the expcrimenlal rcsults. Section 
5. finally, concludcs the paper. 

11. VERlFlCATlON APPROACH 

We use the verification approach given in Figure 1, where 
the static code analyzer gets at its input a SystemC design and 
a set of reduction tactics (called abstraction library). It then 
generates a reduced hypergraph representation of the design. 
This latter is fed into a Hypergraph to Verilog converter. The 
conversion is seen as a concretization of the abstracted design 
(hypergraph) into the Verilog language. We did select Verilog 
because we will use the FormalCheck model checking tool 
~31 .  

A. SystemC Librury 
SystemC is a set of C++ class definitions and a methodology 

fur using these classes [ l l ] .  The core language consists of 
an event-driven simulator as the base. It works with events 
and processes. The other core language elements consist of 
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Fig. 1. Cascading Model Checkins w,ilh 4bstracr Inrerprerarion. 

modules and ports for reprcscnting structures. Interfaces and 
channcls arc used to describe communications. The primitive 
channels are built-in channels that have wide use such as 
signals. semaphores and FIFOs. SystemC provides data types 
for hardware modelling and certain types of software program- 
ming as well. 

R. SystemC Absrruction 

As a solution to the SystctnC verification problem we 
use an abstract environment. that can bc used for: ( I )  the 
analysis and verification of SystemC programs, (2) abstract 
debugging and (3) possible interfacing with model checking 
and simulation. TIie analysis of the design is, as defined in 
[4]. based on approximate semantics of programs to provide 
sound a n w e r s  to questions about their run-time behaviors. The 
abstract debugging will he possible thanks to the ahstraction 
OF the memory (allocation blocks and the stack), the language 
simulation manager, component responsible for running Ihe 
simulation, the events’ stack and to the code of the program 
itself. The program execution environment as wcll as the 
simulation environment will he represented in order to allow 
abstract exccution of the program. 

In order to interface abstract interpretation with model 
chccking (i.e. fced the abstractcd codc into a model checkcr) 
objects‘ and events’ aspects of SysteniC designs need to he 
translated into a procedural like code. Eventually this may 
seem to he not always feasible since we are stiuting from an 
object-oriented program structure. However, the approach can 
still he valid when restricted to some pans of the program to 
verify local properties. 

In summary, the requirements for our abstract environment 
are: . Construct an abstract environment for C++ as an object- 

oriented program components. This will include the code 
(instructions, expressions, operations, etc.) and memory 
(allocation blocks and suck)  abstractions. 
Define a specific abstraction for the SystemC simula- 
tor (events manger and events stack) and For all the 
SystemC‘s language specific classes (modules, signals, 
channels, etc.) 

t Consider some prograni analysis tactics to extract prop- 
erties from the abstracted program or to concrctizc it into 
a codc that can he fcd into a model checkcr. . Represent the abstract environment in a graphical struc- 
ture in order to allow more efficient abstract debugging 
and possible test coverape hints. 

In order to analyze statically SystemC designs: we consid- 
ered an approach based on Ahstract Interpretation [4] which is 
a formal technique that has proven to he efficient with ohject- 
oriented languages and large programs. The approach consists 
O f  . Construct collecting semantics: which defines statically 

the future domains that will serve for the analysis and 
their specific manipulations. . Construct Abstract Semantics: whicli maps a propcrty to 
a finite rcprescntation of the property more suitahlc for 
the analysis. . Define Analysis Techniques: which analyzes the ahstract 
representation of the system in order to extract properties 
andlor to reduce the program size. 

At the end of the analysis the p r o p u n  will he represented in 
a graphical format called hypergruph [13]. This latter, can he 
seen as a general automata connecting its states by branches 
(also called hyper-hranchesj. Theses branches can he seen 
as an extension to Binary Decision Diagrams (BDDs) more 
adapted to progranis representation. In other terms, they offer 
a higher lcvel of abstraction and flcxibility by introducing the 
notion of confincd hypcrgraph. This cncapsulation property of 
the hypergraphs is vcry suitahlc to SoC wherc a system is a 
connection of modules using its input and output ports. 

C. Applying Model Checking 
Model checking [9] is one of the main lormal verification 

techniques used in the EDA industry. It is concerned with 
properties verification mainly at the RTL. 

Modcl checkers are thc most adequate formal tcchniquc 
to be used at thc system lcvel dcsign. With this technique 
thcrc arc no corncr cascs. hecausc thc model checkcr examines 
100% of the state space without having to simulate anything. 
However. we note that model checking is typically used for 
small portions of the design only, because the state space in- 
creases exponentially with complex properties and on quickly 
runs into a “state space explosion”. 

For instance, there i s  no new model checkers adapted for 
system level design. Nevertheless. what is interesting ahout 
these techniques is the definition of hierarchical verification 
allowing the use of the checkers for small design portions 
and guiding the abstraction in order to verify some particular 
properties. 

111. Bus STRUCTURE MODEL 

This bus structure as described in Figure 2 uses an overall 
form of synchronization where modules attached to the bus 
execute on the rising clock edge, and the bus itself executes 
on a falling clock edge. Multiple masters can be connected to 
the bus. Each master is identified by a unique priority, that 
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is represented hp an unsigncd integer number. The lower this 
priority number is, tlic inore important thc inastcr is. Each 
mastcr communicates with thc bus via an intcrfacc wliicli 
describes the communication between masters and the bus; 
three modes are possible: 

Blocking Mode: Data is moved through the bus i n  burst- 
modc. The transaction cannot he interrupted by a request 
with a higher priority. . Non-Blocking Mode: Read or write a single data 
word. After the transaction is completed, the caller 
must take care of checking the status of the last 
request. The status of the request is one OF: SIM- 
PLE.BUSREQUEST (request issued and placed on the 
qucue), SIMPLEBUS.WAIT (request being served but 
is not completed), SIMPLEBUS.OK (request conipleted 
without errors) or SIMPLEBUSERROR (an error oc- 
currcd during proccssing of the rcqucst). . Dircct Modc: The direct intcrface functions perform the 
data transfer through the bus. but without using the bus 
protocol. They are usually used to debug the state of the 
memory. 

The slave interface describes the communication hetween 
the bus and tlie slaves. Multiple slaves can be connected to 
the bus. Each slave models some kind of memory thal can he 
accessed through the slave interf'dcc. Two modes arc possihle: . Direct interlice: immediate read or writing of data with- 

OUL using the bus protocol. . Indirect interface: read or write a single data element, 
pointed to by data in or from the slwe's memory. Thc 
functions return instantaneously and the caller must check 
tlic status of the transfcr. 

To the bus more than one mastcr can be connected. Each 
master is indcpcndcnt of thc othcrs, so cach niastcr can 
issue a bus request at any time. The arbiter selects the most 
appropriate request according the following rules: . If the current request is a locked burst request, then it is 

always selected. 
If the last request had its lock Bas set and is again 
'requested'. it is selected from the collection queue and 
returned, otherwise: . The request with the highest priority is selected kom the 
collection queue and returned. 

IV. FORMAL VERIFICATION 

In this section we will illustrate the verification approach 
on a bus structure offered as pm of the SystemC distribution 
1121. In fact, this structure includes several SystemC com- 
ponents and showed the principles of using SystcmC at the 
transactional Icvel. Besides sonic of the sample properties, 
e.g. livcness and safety, cannot he verified using simulation. 
They require the usage of formal techniques such as model 
checking. 

4 .  Abstraction 
A partial representation of the bus's hypergraph is given in 

Figure 3. It shows the first hypergraph generated from the bus 

Master1 Master2 Master3 QqJqJ 
Clock 

T 

Fig. 2. Simple Rur Srructure. 

code. It includes an events' environment containing sweral 
processes: maqters. slaves, clocks, arhiter, etc. In parallel with 
the program environment, the events environment includes 
the list of  all the system processes and their status. For 
simplification, we use only two status for each process: activc 
( I )  and not-active (0). 

The simulation manager is presented as a box connected 
to the entries of tlie program hypergraph. It can be seen 
as a procedure that determines the structure of the system 
according to the list of active proccsscs. For example. if the 
Master 1 is scnding active. then, only its correspondcnt code 
is analyzed. Each small box from the program environment, 
(e.g., arbiter()) presents a confined hypergraph that includes 
the correspondent object members and methods. 
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Fig. 3. Hypergrah of the Simple Bus Swcturr. 
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R. Model Checkbig 
After applying reductions tactics on the hypergraph of 

Figure 2.  the generated reduccd hypergraph is concrelized into 
a Verilog code. This latter is led in to  the Formalcheck tool 
[3] i n  order to verily some of the design's properties. In fact, 
Formalcheck verilies that a design model exhibits specific 
behaviors (properties) that are required by the design specifica- 
tion. Properties that form the basis of a model checkcr's query 
fall into two categories: safe@ and liveness. Safety properties 
can be expressed using one of two formats: Thc always format 
and the never format. Liveness properties describe behaviors 
that are evenfual l~~ exhibited. 

For instancc we considered the following properties: 

Property 1: 
NEVER1 (simple_bus.request==ture) 

&&lsimple_bus.status!=BUS_OK) 1 

P r o p e r t y  2 : 
AFTER (simple-bus.request==true) 
&h (simple-bus.request.block==true) 
EVENTUALLY (simple_bus.status==BUS_BLOCK) 

P r o p e r t y  3 :  
EVENTUALLY (simple_bus.status==BUS-OK) 

Property I means that a master generates request only when 
the bus is ready to handle new requests (i.e. bus status set 
to BUS.0K). Property 2 says that if the bus receives a new 
hlocking request, then, in  the future. its status will change 
to blocking (i.e. bus status set to BUSSLOCK). Property 3 

Main Menmy 4.0 GB 

reducc the codc. Our choice was guided by the well known 
performances of this technique when dealing with a variety 
of lansuages and complex systems. The reduced code is 
represented in a graphical structure, hypergraph, i n  order to 
allow more flexible yet efficient analysis environment. 

We translated the reduced hypergraph structure to Verilog in 
order to use model checking in Formalcheck to verily some of 
the system's properties. The results obtained on a bus structure 
showed (he feasibility of the approach. In future work, we will 
investigate (1) the proof of soundness of the concretization of 
the hypergraph into a Verilog code and (2) the application of 
model checking directly on the hypergraph structure. 
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simulator as a new module. Although this simplification re- 
duces effectively the complexity of the code, the verification 
of all the previous properties failed after few minutes with the 
same problem of' "memory exceeded". Then. when using the 
abstracted code all the properties were verified as it can he 
seen in Table I. The verification platform is descrihed in 11. 
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V. CONCLUSION 
In this paper, we used an approach based on abstract 

interpretation to verify, using model checking, a bus structure 
modelled in SystemC. We used abstract interpretation to 
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