Poster Session | : System Leve! Design

Formal Verification of a Bus Structure Modeled in
SystemC

All Habibi. Sofigne Tahar and Lazhar Halleb
Department of Electrical and Computer Engineering
Concordia University
1455 de Maisonneuve, West,

Montreal, Quebec H3G 1MS8
Email: habibi.tahar,halleb@ece.concordia.ca

Abstract—1n this paper, we present the formal verification of
a bus structure modeled in SystemC, SystemC is an emerging
system level design and verification language based on C++ object
oriented paradigms. The verification approach is based on both
abstract interpretation (for model reduction) followed by model
checking of some of the bus properties. In the abstraction phase,
we slatically analyze the SystemC model considered as C++ code
augmented by library constructors, components and entities. We
also provide a graphical representation of the reduced model,
suitable for debugging and verification purposes. We use the
Cadence FormalCheck tool to verify designs properties on the
abstracted (reduced) bus model translated into Verilog code.
While the verification of the original model was not possible to
perform, we succeeded in checking all properties on the reduced
model.

1. INTRODUCTION

A decade ago, the EDA industry went progressively from
gate level to register-transfer level (RTL) abstraction. This
is one of the basic reasons why this process gained a great
increase in the productivity. Nowadays, an important effort is
being spent in order to develop system level languages (SLL)
and to define new design and verification methodologies at
this level of abstraction. RTL hardware design is too low as an
abstraction level to start designing multimillion-gate systems.

State-of-the-art SLL proposals can be classified into three
main classes. First, reusing classical hardware languages such
as extending Verilog to SystemVertlog [6]. Second, readapting
software languages and methodologies {(C/C++ [10], Java [2],
UML [5], etc.). Third, creating new languages specified for
system level design (Rosetta [1] for example).

SystemC [12] is among a group of design SLLs proposed
1o raise the abstraction level for embedded system design and
verification. It is expecled to make a stronger effect in the area
of architecture, the co-design and integration of hardware and
software {11].

The verification of a SystemC Design is a more serious
bottleneck in the design cycle. Going further in complexity
and considering hardware/software systems will be out of the
range of the nowadays used simulation based techniques [7].
Classical verification technigues when used with SystemC will
face several problems related to the object-oriented aspect of
this library and to the complexity of its simulation environ-
ment.

0-7803-8322-2/04/320.00 ©2004 IEEE.

For instance, the main trends in defining new verification
methodologies are considering a hybrid combination of formal,
semi-formal and simulation techniques. This kind of hybrid
techniques can offer a partial answer to the question; “Is the
verification task complete?” However, an answer to a question
like “Is a property always true?” can be only answered by
purely formal techniques such us theorem proving [8] and
model checking [9]. This latier, despite its problem of state
explosion, is gaining a lot of interest in both areas academic
and industrial. A number of proposals offer to abstract the
system in order to verify some of its properties using model
checkers and then complete the verification process by classi-
cal simulation techniques.

In this paper, we present an approach to verify a bus
structure using model checking. The bus represents a genevic
Master/Slave archilecture included as part of the SystemC
library. Tt supports a variety of modes: blocking, direct, non-
blocking, fast memory and slow memory. Our objective is to
abstract the bus’s mode! in order to verify some of its critical
properties {mainly: liveness and safcty properties).

The rest of this paper is organized as follows: Section 2
presents an approach to verify SystemC designs. Section 3.
describes the bus structure. Section 4 presents the verification
steps of the bus structure and the experimental results. Section
5, finally, concludes the paper.

II. VERIFICATION APPROACH

We use the verification approach given in Figure 1, where
the static code analyzer gets at its input a SystemC design and
a set of reduction tactics (called abstraction library). It then
generates a reduced hypergraph representation of the design.
This latter is fed intc a Hypergraph to Verilog converter. The
conversion is seen as a concretization of the abstracted design
(hypergraph) into the Verilog language. We did select Verilog
because we will use the FormalCheck model checking tool

{31
A. SystemC Library

SystemC is a set of C-++ class definitions and a methodology
for using these classes [11]. The core language consists of
an event-driven simulator as the base, It works with events
and processes. The other core language elements consist of

61

Poster Session | : System Level Design

SystemC
Design [T
i} Abstraction
Library
USER

! i
? :
! }
E Design in E
i :
: ;

¥ Verilo
Model Checker User Def_med
{Formalcheck) Properties
Property completed (correct or not
correct) or Failed to Verify Property

Fig. 1. Cascading Modei Checking with Abstract Interpretation.

modutes and ports for representing structures. Interfaces and
channels are used to describe communications. The primitive
channels are built-in channels that have wide use such as
signals, semaphores and FIFOs. SystemC provides data types
for hardware modelling and certain types of software program-
ming as well.

B. SystemC Abstraction

As a solution to the SystemC verification problem we
use an abstract environment.that can be used for: (1) the
analysis and verification of SystemC programs, (2) abstract
debugging and (3) possible interfacing with model checking
and simulation. The analysis of the design is, as defined in
{4], based on approximate semantics of programs to provide
sound answers to questions about their run-time behaviors. The
abstract debugging will be possible thanks to the abstraction
of the memory (allocation blocks and the stack), the language
simulation manager, component responsible for running the
simulation, the events’ stack and to the code of the program
itself. The program cxecution environment as well as the
simulation environment will be represented in order to allow
abstract execution of the program.

In order io interface abstract interpretation with model
checking (i.e. feed the abstracted code inte a model checker)
objects” and events’ aspects of SystemC designs need to be
translated into a procedural like code. Eventually this may
seem to be not always feasible since we are starting from an
object-oriented program structure. However, the approach can
still be valid when restricted to some parts of the program to
verify local properties.

In summary, the requirements for our abstract environment
are:

= Construct an abstract environment for C++ as an object-
oriented program components. This will include the code
(instructions, expressions, operations, etc.) and memory
(allocation blocks and stack) abstractions.

o Define a specific abstraction for the SystemC simula-
tor {events manger and events slack) and for all the
SystemC's language specific classes (modules, signals,
channels, etc.)

62

+ Consider some program analysis tactics to extract prop-
erties from the abstracted program or to concretize it into
a code that can be fed into a model checker.

« Represent the abstract environment in a graphical struc-
ture in order to allow more efficient abstract debugging
and possible test coverage hints.

In order to analyze statically SystemC designs, we consid-
ered an approach based on Abstract Interpretation [4] which is
a formal technique that has proven Lo be efficient with object-
oriented languages and large programs. The approach consists
of:

» Construct collecting semantics: which defines statically
the future domains that will serve for the analysis and
their specific manipulations.

o Construct Abstract Semantics: which maps a property to
a finite representation of the property more suitable for
the analysis.

« Define Analysis Technigues: which analyzes the abstract
representation of the system in order to extract properties
and/or to reduce the program size.

At the end of the analysis the program will be represented in

a graphical format called Avpergraph [13]. This latter, can be
seen as a general automata connecting its states by branches
(also called hyper-branches). Theses branches can be seen
as an extension to Binary Decision Diagrams (BDDs) more
adapted to programs representation. In other terms, they offer
a higher level of abstraction and flexibility by introducing the
notion of confined hypergraph. This encapsulation property of
the hypergraphs is very suitable to SoC where a system is a
connection of modules using its input and output ports.

C. Applving Model Checking

Model checking [9] is one of the main formal verification
techniques used in the EDA industry, It is concerned with
properties verification mainly at the RTL.

Model checkers are the most adequate formal technique
to be used at the system level design. With this technique
there arc no corner cases, becausc the model checker examines
100% of the state space without having to simulate anything.
However, we note that model checking is typically used for
small portions of the design only, because the state space in-
creases exponentially with complex properties and on quickly
runs into a “state space explosion”.

For instance, there is no new model checkers adapted for
system level design. Nevertheless. what is interesting about
these techniques is the definition of hierarchical verification
allowing the use of the checkers for small design portions
and guiding the abstraction in order to verify seme particular
properties,

1711. Bus STRUCTURE MODEL

This bus structure as described in Figure 2 uses an overall
form of synchronization where modules attached to the bus
execute on the rigsing clock edge, and the bus itself executes
on a falling clock edge. Multiple masters can be connected to
the bus. Each master is identified by a unique priority, that

Poster Session | : System Level Design

is represented by an unsigned integer number. The lower this
priority number is, the more important the master is. Each
master communicaies with the bus via an interface which
describes the communication between masters and the bus;
three modes are possible:

o Blocking Mode: Data is moved through the bus in burst-
mode. The transaction cannot be interrupted by a request
with a higher priority.

« Non-Blocking Mode: Read or write a single data
word. After the transaction is completed, the caller
must take care of checking the status of the last
request. The status of the request is one of: SIM-
PLE_.BUS_REQUEST (request issued and placed on the
queue), SIMPLE.BUS_WAIT (request being served but
is not completed), SIMPLE BUS_OK (request completed
without errors) or SIMPLE-BUS_ERROR (an error oc-
curred during processing of the request).

¢ Direct Mode: The direct interface functions perform the
data transfer through the bus, but without using the bus
protocol. They are usually used to debug the state of the
MEIOTY.

The slave interface describes the communication hetween
the bus and the slaves. Multiple slaves can be connected to
the bus. Each slave models some kind of memory thal can be
accessed through the slave interface. Two modes are possible:

« Direct interface: immediate read or writing of data with-
eut using the bus protocol.

« Indirect interface: read or write a single data element,
pointed to by data in or from the slave’s memory. The
functions return instantaneously and the caller must check
the status of the transfer.

To the bus more than one master can be connected. Each
master is independent of the others, so cach master can
issue a bus request at any time. The arbiter selects the most
appropriate request according the following rules:

« If the current request is a locked burst request, then it is

always selected.

o [f the last request had its lock flag set and is again
‘requested’, it is selected from the collection queue and
returned, otherwise:

« The request with the highest priority is selected from the
collection queue and returned.

1V. FORMAL VERIFICATION

In this section we will illustrate the verification approach
on a bus structure offered as pan of the SystemC distribution
[12]. In fact, this swructure includes several SystemC com-
ponents and showed the principles of using SystemC at the
transactional level. Besides some of the sample properties,
e.g. liveness and safety, cannot be verified using simulation.
They require the usage of formal techniques such as model
checking.

A, Abstraction

A partial representation of the bus’s hypergraph is given in
Figure 3. [t shows the first hypergraph generated from the bus

I Master1

- Bus = H4|Arbiter
Clock i o
Al— [§
Slave 1 l{:‘.t Slave 2
Fig. 2. Simple Bus Srructure.

code. It includes an events’ environment containing several
processes: masters, slaves, clocks, arbiter, ete. In parallel with
the program environment, the events environment includes
the list of all the system processes and their stams. For
simplification, we use only two status for each process: active
(1) and not-active (0).

The simulation manager is presenled as a box connected
to the entries of the program hypergraph. It can be seen
as a procedure that determines the structure of the system
according to the list of active processes. For example, if the
Master 1 is sending active, then, only its correspondent code
is analyzed. Each small box from the program environment,
(e.g., arbiter(})) presents a confined hypergraph that includes
the cotrespondent object members and methods.

EnventManager \
EventsStack b g
- _] v!
master_direct.main_action{ [1 2o "
o7 e 3
| fast_memaory.main_action() clk %
o
| siow_memory.main_action() arbiter.arbitratsﬁl . z
il 8
imaster_blocking,main_actien() sbus.mam_acnon()l oll| 13
3
]master_nonblock.mainiaction() L
\
maslersl
]
g &
(=]
g 3
m
£ 2
“ 2
T <

Fig. 3. Hypergrah of the Simple Bus Structure.

63

Poster Session | : System Level Design

TABLE 1
Mol CHECKING RESULTS.

Property “ CPU Time | Memory (in MB)

P1 6:59:12 93.59
P2 15:23:02 183.91
P3 17:46:54 293.63

B. Model Checking

After applying reductions tactics on the hypergraph of
Figure 2, the generated reduced hypergraph is concretized into
a Verilog code. This latter is fed inmto the FormalCheck tool
{31 in order 1o veniy some of the design’s properties. In fact,
FormalCheck verifies that a design model exhibits specific
behaviors (properties) that are required by the design specifica-
tion. Properties that form the basis of a model checker’s query
fall into two categories: safety and liveness. Safely properties
can be expressed using one of two formats: The alwayvs format
and the never format. Liveness properties describe behaviors
that are eventuallv exhibited.

For instance we considered the following properties:

Property 1:
NEVER((simple_bus.request==ture)
&& (simple_bus.status!=BUS_QK))

Property 2:
AFTER (simple bus.request==true)
&& (simple_bus.request.block==true)
EVENTUALLY (simple_bus. status==BUS_BLOCK)

Property 3:
EVENTUALLY

(simple_bus.status==BUS_OK)

Property 1 means that a master generates request only when
the bus is ready to handle new requests (i.¢. bus status set
o BUS_OK). Property 2 says that if the bus receives a new
blocking request, then, in the future. its status will change
10 blocking (1.e. bus status set to BUS_BLOCK). Property 3
proves the bus status will always return to ready to receive
new requests.

C. Experimental Resulis

We first started by translating the bus code from SystemC
to verilog (without abstraction). We modelled the SystemC
simulator as a new module. Although this simplification re-
duces effectively the complexity of the code, the verification
of all the previous properties failed after few minutes with the
same problem of “memory exceeded”. Then. when using the
abstracted code all the properties were verified as it can be
seen in Table . The verification platform is described in IL

V. CONCLUSION

In this paper, we used an approach based on abstract
interpretation to verify, using model checking, a bus structure
modelled in SystemC. We used abstract interpretation to

64

TABLE 1l
VERIFICATION PLATFORM.

FormalCheck version 3z
Main Memory 4.0 GB
CPU 2 CPUs (Run 900MHz)
Architecture Sparc
0S Version 538

reduce the code. Our choice was guided by the well known
performances of this technique when dealing with a variety
of languages and complex systems. The reduced code is
represented in a graphical structure, hypergraph, in order to
allow more flexible yet efficient analysis environment.

We translated the reduced hypergraph structure to Verilog in
order to use model checking in FormalCheck (o verify some of
the system’s properties. The results obtained on a bus structure
showed the feasibility of the approach. In tuture work, we will
investigate (1) the proof of soundness of the concretization of
the hypergraph into a Verilog code and (2) the application of
model checking directly on the hypergraph structure.

REFERENCES

{13 P. Alexander, R. Kamath and D. Barton. Systeni Specifi cation in Rosetta,
in Proc. IEEE Engineering of Compurer Based Systems Symposium, UK.
April 2000

[2] P. Bellows and B. Hutchings. JHDL - An HDL for Reconfi gurable
Systems. JEEE Symposium on FPGAs for Customn Computing Machines.
IEEE Computer Society Pres, Los Alamitos. CA, pp. 175-184. 1998,

[31 Cadence. Formal Verifi cation Using Affi rma FormalCheck. version 2.4,
Auguest 1999,

[4] P. Cousor and R. Cousot. Abstract interpretation frameworks. Journal of
Lagic and Compuration, 2(4):511-547, August 1992.

[5]1 D B. P. Douglass. Reat-Time UML. Addison-Wesley, 2000.

[6] IEEE Std. 1364-200¢, IEEE Standard for Verilog Hardware Description
Language 2001. 1ISBN 0- 7381-2827-9. IEEE Product No. SH94921-TBR.

[71 M. Kantrowitz and L. Noack. I'm Done Sirmulating: Now What? Verifi ca-
tion Coverage Analysis and Correctness Checking of the DECchip21164
Alpha Microprocessor, in Proc. ACMAEEE Design Awomarion Cenfer-
ence, 1996,

[8] C. Kern and M. Greenstreet. Formal Verifi cation in Hardware Design: A
Survey, ACM Transactions on Design Automation of E. Svstems, Vol. 4,
April

[93 P. C. Pixley. Integrating model checking into the semiconductor design
fow, Computer Design’s Electronic Svstems jowrnal, pp. 67-74, March
1999.

[10}] R. Roth and D. Ramanathan. A High-Level Hardware Design Method-
ology Using C++, In Proc. 4th High Level Design Validation and Tes:
Workshop, San Diego, pp 73-80, 1999,

[11] Systemc 2.0.1 language reference manual. open systeme initiative, 2003.

[12] Systemc website: http:/fwww.systemc.org, 2004.

[13] F Vederine. Analyses totales de programmes par interpretation abstraite.
PhDD thesis, Ecole Polytechnigue, Paris, France, 2000.

