
Regular Session H : System Testing & Verification

Towards Software Model Checking using MDGs
M. Krykhtin'. Y. Mokhtari', 0. Ait Mohamed' and X. song'

' ECE Dept., Concordia University, Canada, {mkrykht , mokhtari,ait}@ece.concordia.ca,
ECE Dept., Portland State University. USA, song@ece.pdx.edu

Abstract-In this paper, we discuss the integration of Multiway
Decision Diagrams (MDG) model-checker into Bandera frame-
work. A schema is introduced fur transforming the Bandera
Intermediate Representation (BIR) into the language of MDG
model checker. Experience with model-checking the hw pro-
grams demonstrates that this approach offers effective support
for verifying softnare models.

I . INTRODUCTION

Model checking is an automatic finite-state verification
tcchnique that has gained wide acccptance as a powerfiil tool
for debugging hardware design [I]. It consists of exhaustively
checking a finitc-statc modcl of thc system for violation of its
requirements specificd in sonic temporal logics. This approach
provides a level confidence coniparahle to that of machine-
checked proof of the system's requirements correctness with-
out (extensive) human guidance.

During the past few years, there Itas been increasing interest
in the application of model checking to software. However,
the transfer of this technique to software was very slow due
to the state explosion problem and the semantics gap between
the artifkcts produced by software developers and those ac-
cepted hy current verification tools [?I. These prohlems have
been tackled in several ways. These attempts can he roughly
classified into two approaches: the first approach [2] consists
of developing new dedicated techniques for software while
the sccond one 131, 141 allows thc intcgration of existing tools
by using high (abstract) modeling techniques. Thc advantagc
of the former is that the difficulty of applying software model
checking is addressed directly, while the advantage of the latter
is reusing an existing tool and therefore the effort is oriented
towards the integration part.

In this paper, we describe an experience with the second
approach using the toolset Bandera [3] and Multiway Decision
Diagrams (MDGs). The rest of paper is organized as follows.
Section 11 surveys MDG and Bandera tools and emphasizes the
Java concurrency model. Section I11 describes the translation
schema with a focus on Java concurrency model. Section IV
considers a simple lava program and illustrates its modeling
and verification using MDG tool. Finally. Section V concludes
the paper and states the future work.

11. BACKGROUND

A. Java Concurrency Model
Java is a general-purpose. concurrent. object-oriented lan-

guage. The key fcature of concurrency is threads. The Java
class java.lurrg.Threud is used to initiate and control new
activities. A thread is created by executing a new Thread()

allocation statement and it is started by invoking the thread
object's starri) method which begins execution of the 1-mfi
method. To synchronize threads, Java uses monitors, which
are a high-level mechanism for enforcing mutually exclusive
access to a region of codc. The behavior of monilors is
explained in terms of locks. Each Java object has a unique lock
associated with it. In addition, each ohject has an associated
block-set and wait-ser for managing threads that are blocked
on thc oh.icct's lock or waiting on the object's lock. When a
sychronizedieqr) statement is executed by a current thrcad,
the ohiect expression is evaluatcd and the resultins object's
lock is checked for availability. If the lock has been acquired
hy some other threads, the current thread becomes blocked and
it is inserted into the object's block-set. When a thread leaves
the synchronized block. it unlocks the lock associated with it.
Acquiring the lock of the current object during a method body
may he abbreviated by placing the keyword rynclirmized in
the method's signature.

A thread may become waiting on ohject's lock hy invoking
wh() method, which results in puning the thread in the
ohject's wait-set and releasing the lock. A waiting thread is
released hy another thread by invoking notifi(J or r r o t ~ j A l l ()
methods. Invoking iiofqj)() removes an arbitrary thread while
notijj:All(J removes all the threads from the object's wait-set.

R. MDG-HDL Language

MDGs [5] are a canonical representation of a certain
class of' many-sorted first-order logic formulas, where data
values and operations are represented by abstract variables
and uninterpreted functions, respectively. In MDG-hnsed ver-
ification. abstract description of states machines (ASM) are
used for modcling systems. MDGs have been invcstigated
from different angles and it culniinatcd in a MDG tool
providing Prolog-stylc MDG-HDL for modeling and diffcrent
verification techniques including sequential and combinational
equivalence checking, invariant checking and a subset of first-
order LTL model checking.

MDG-HDL specification describes a concrete model by
using structural andlor behavioral description. In the structural
description, a model is described at the RT level as a collection
of components interconnected by nets that carry signals. Each
signal is represented by a variable. Variahles denoting control
signals have concrete sorts. while variables denoting data val-
ues have abstract sons. The control operations are represented
by uninterpreted cross-operators while data operations can he
viewed as black-boxes and thus represented as uninterpreted
functions. Furthermore, MDG-HDL language provides prede-

0-7803-8322-2/04/$20.00 02004 IEEE. 345

mailto:song@ece.pdx.edu

Regular Session H : System Testing & Verification

fined components (e.g. repisters. gates. multiplexers). which
are automatically transformed into thcir MDG representation.
Figure 1 (a) shows a comparator that produces a control signal
,? from two data inpurs z and y. Both x and y are variables of
ahstract sort while z is a Boolean variable. An uninterpreted
cross-operaror cq is used to denote the functionality of the
comparator. If the meaning of e q matters, rewrite rules. such
as eq(z, 2) --t 1 should he used. An MDG of the comparator
is shown in Figure I(h).

0'- / 1

'($'

(h) (a)

Fig. 1. The MflG for U comparator.

A behavioral description is given by high-level constructs
as IT€ (If-Then-Else) formulas. CASE formulas or tabular
representations. Thc tabular construct is similar to a truth table
but allows first-order terms in rows.

C. The choice of Bnridera

We aim to use MDG tool for software model checking. We
have decided to use Bandera because like MDG specification
it is based on transition system. Moreover, Bandera [3] is a
collection of program analysis and transformation components
that enables the automatic extraction of finite-state models of
Java programs and generates a program model in the input of
language of one of existing verification tools, mainly SPIN
and SMV. The key component is that the extracted model
is specified in Bandera Intermediate Representation and thus
enabling different model checker BS a hack-end. Therefore. we
describe the transformation of a significant subset of BIR to
the input language of MDG tool which is used to check the
resulting model against its requirements (see Figurc 2).

grams to different verifiers. BIR uses an asynchronous model
and contain constructs convcnicnt for rcpresenting Java (c.g.
thrcads. locks, refcrenccs). A BIR specification describes a
trnrisiriori sjstem. Formally, a transition system is a pair (S , T)
where :

x D, is set o f states. A state is an
assignment of values to a finite set of state variahles
'01 ~. . . ~u,, where each ti; ranges over a finite domain D;
T g S x S is a transition relation. T is defined by a
set of guarded transformations t i : gi j of the state
variablcs. where g; : S -+ Bool. called the guard. is a
boolean predicatc on statcs. and hi : S + S, called thc
transformation. is a map from states to states such that:
T (s , s') iff 36.gi(s) A s' = h i (s)

In practice, a BIR transition system is described by a set 01
objects (the passive part) and a set of threads (the active part).
Thrcads interact only through objects except for locks which
are used to affect the state of the other threads (see section
11-A).

111. TRANSLATION SCHEMA
A. Process

A process rcpresents a single Java virtual machine and
consists of a name. a list of definitions, a list of threads, and
(optionally) a set of predicates. A definition specifies either an
integer constant or type specification (e.g., enumerated type,
range, locks, references). An object is specified by a name, a
type and (optionally) an initial value. Typically, a BIR program
has the following form:

process Examplc0
SIZE : 2;
java_lang.ObjectLrel=

slaw : range - 1 2 := 0;

main thread Deadlock0

loc s25: live E.Bool

ref { Lock.co1, Lock.col.0, Prncessl.col, Process?.col };

....

...

when (E5oo l == 1)
do printhi(); goto 526:

...
loc s44: live
loc s66 live p2

Tu M & j when true do goto s30:
CbCkng, I
Ti..& : end Deadlock;

...
thread Processl(this : Processl.ref)

end Procrssl:
... lrsnalaio,

F u d d s F w ...
j end Example Pmrnala

"*"a=. Tmnrislor

"a _m A vrocess is convcrtcd into set of files that dcscribc a
, , ILMDG-HDL -------- I ~ MDG-HDL model, namely, an algebraic specification file, a

symbol order file, a circuit description file and an invariant
specification file. This conversion may require human guidance

Tisnsktor
'

/...-..-I

Fig. 2. Randen ArchiEcNre ToolSeI
in particular for defining variables order.

B. Definitions and Objects
Bandera Intermediate Representation (BIR) is guarded com- For a constant of a concrete sort, a translator

mand language intended to facilitate translation of Java pro- adds a constantsignal component declaration into

346

Regular Session H : System Testing &Verification

a the circuit dcscription f i le. In thc example
abox, thc statement (SIZE=>) is translatcd to:
c m p m e n t (U , cmistant .sign al (d u e (2) , signal (S I Z E)))
The translation of ob,jccts is acliicved according to their typcs
and will be described in the rollowin&.

c. T v p a
BIR allows seven hasic types of ohjects: boolean, range,

enumerated. locks, arrays, rtcords. and reterences. The trans-
lator converts some of these types of BJR into types of MDG-
HDL accordingly to the following table:

BIR Type MDC-HDL Type
boolenn conc.sort(bool; [0,1])
range z..1/
enum { A , B, C }
Array and Record

conc.sort((son name),[I,. . . , y])
conc.sort((son name), [.A: B , Cl)
Rattcncd and declared as signals

where z and y are integers, A, B and C are integers or
strings. Note that for range type, we need IO enumerate all the
values that hold between 2 and y and for array type, all the
signals have the same MDG sort.

A lock is an aggregate with thc following components:
.4n owner variable indicating which thread holds the lock
A count variable, recording the number of acquisitions of

A wait variable for cach thread indicating whether thar

A rejbrerrre is an aggregate with the following components: . a reflndex variahle, specifying the target pointed to (or 0

an instance variable, specifying the instance number of

Note that reference variables are unusual in that they may
appear as final values in expressions even though they are
implemented as two variables. The prohlem can be solved by
combining (R-reflndex and R-instNum) into a single integer
for the purposes of assignment and equality tests. Derefer-
encing (the most common operation) uses the components
separately.

D. Tlrreads
A thread is specified as set of guarded transfonuations on

the ob.jects. It can be represented as directed graph in which
each arc is laheled with a guarded transfunnation of the form:

when (guard) do (action) goto (location)
A thread must have at least one location; the first location

listed is the start location. Each location is labeled with unique
identifier, which is used to refer to the location in a goto. A
location may also optionally specify a set of local objects that
are live at the location. The guard expression must he boolean
expression while the action can he either an assignment, a lock
operation, a thread operation. or an assert operation.

The threads are running in parallel but in an interleaved
model, i s , asynchronous. Therefore. the translation schema
starts by introducing a concrete variable nmningThread, which

the lock (for rclocking)

thrcad is blocked in the wait qucue of this lock

for null)

the collection.

(location) : live{sct of objects}

will hold the name of the thread taking step. Thus. it is an
enumeration of thrcad namcs:

conc~sort(Th,readT~pe, [NoThread,TI,. . . T,]).
signal(runningThread, ThreadType).

Next, we associate with each thread the following variables: . Iocurirw variable is of type concrete sort and represents
the set of localions of the current thread. As indicated
above; tliese locations are uniquely identified.
uctive variable is a boolean flag that represents the status
of the thread and can be changed by tlie current thread
or anothcr one. Typically. thc thread actions are (i) srarf
action changes the state of another thread from inactive
to active, (ii) exif action changes the state of the current
thread to inactive and (iii) joLi action changes the current
thread until another thread becomes inactive (i.e., exits).
Note that tlie active variable is not associated with the
main thread. . blocked variable is a boolean Hag that indicates the
current thread is blocked. This may happens when a
thread reaches a certain location where the guards are
t’alse. The disjunctive boolean expression associated to
this nag is derived from the set of guarded transformation
of the current thread. In the example above within the
Deadlock thread, the hlockcd variable is defincd as:

Deadlockhlocked E (Deadlock-location = szs A E.Rool = 0) V
ternrinared is similar to blocked boolean variable but
indicares that the current thread exits. In the example
ahove within the Deadlock thread, the terminated variable
is defined as:

Deadlock.terminavd 2 (Deadlock-location = s4.j V . . .)

E. Guarded rrairsforriiafiori

three steps:
The thread’s set of guarded transformation is processed into

I) Transitions between locations are mapped into a table
which has the following fonn:

lablc([Tlocation.runningThread,T.active, n.Tlocation], . . .)

where TYocation is the current location and
n.T.location represents thc next location (i t , goto loca-
tion). Note that the main thread’s table docs not contain
the active column.

2) Each guard is a boolean expression and is represented
as a collection of predefined components.

3) Each action is translated into a table which contains the
current location. the runningfiread variable. the boolean
output of the guard constructed in step 2, the active
variahle, the state variable and its next state. The table’s
body is defined according to the action kind described
below.

An action is either an assignment, a lock operation, a thread
operation, a print operation. or an assert operation. We support
only a subset of these actions. Note that print actions are used
to output specific values of variables of three types, namely

341

Regular Session H : System Testing & Verification

range, hoolean. and enumerated during a simulation. This typc
of action is ignorcd.

Another alternalivc for translating a guardcd transf'oormation
in a structural stylc consists in mapping locations to registcrs
and guard-action pairs to multiplcxers [6].

E Properties

A BIR Specification Language (BSLI allows to specify the
propertics of thc program as asscrtions i n certain program
locations andlor by using the temporal patterns. As a first stcp,
we arc intercsted only in invariant chccking. Within thc framcs
of MDG-HDL, an invariant is mapped to a combinational
circuit. The deadlock invariant can be generated automatically
from our translation schema by using the boolean variables
terniinated and blocked associated to each thread:

(4 .blocked A TT-terminated) V (T.term.inated)

which means that either the thread is taking step or it is
temiinated. Note this invariant can he generalized to n threads.

IV. EXAMPLE
a) Siniplijed Model: As an cxaniplc. wc havc choscn

a Java implementation of a growable stack' The stack is
dcscribcd by (i) a dynamic array of integcrs, (ii) a constant
six that specifies the depth of the stack, and (iii) a integer
variable tos that points to the top of the stack. Moreover, the
stack class provides three methods: (i) the constructor method
that allocates space for dynamic array according to a specified
size and initializes the top of the stack 00s) to - I , (ii) the
push method adds a specified item to the stack and increments
the top of the stack, and (iii) the pop method returns the
current item specified the top of the stack and decreases the
latter. Moreover, we made errmxous modification, namely, we
removed from source code a part that allocates extra space for
stack when i t is full. We do so because we are going to check a
property that statcs that a top of the stack ncver goes beyond
its limits, i.e., thc top of the stack holds hetwccn its initial
value (-1) and the specified size of the stack. Note that this
property is added to the source code.

The code of growable stack implementation is uscd as input
file for Bandera tool. Then, we derived a flowchart from BIR
specification to make the translation easier. Analysis of the
BIR specification flowchart gives us the following results:
(i) there are three state variahles within this model which
are interesting for purposes of the invariant checking, namely
mystaektos, i, and io. The state variable mystacksize is
never changed. So, it can be considered as a constant signal,
and (ii) the guarded transformations are summarized in the
following tahle:

Guard Action
i < 9
i 2 9 A io < 15 A tos 2 -10
i 2 9 A i o < l 5Atos < -10

tos := tos+ 1;i := i + 1
tos := tOS - 1; io := io + 1
i o :=io + 1

Fig. 3. Sequrniiol circuit derived from RIR Model.

6) hvariarir Checking: Bandera extracts thc invariant
from source code and placcd into a file. As rcsult. the invariant
to be checked looks like follows:

11 (('cos > - 2) && (tos < size))

Then, we develop a combinational circuit that represents the
property to be checked to create an invariant specification file.
Finally we perform the invariant checking and as expected the
invariant does not hold.

V. CONCLUSION A N D FUTURE WORK

In this paper, we investigated the use of MDG tool in
the verification of software models. We have outlined the
mapping rules for translating a program model from Bandera
Intermediate Representation (BIR) to the MDG-HDL language
where a significant suhset 0 1 BIR is handled. To illustrate
the effectiveness oS this approach, a simple Java program
was processed with Bandera. A model of this program was
represented as a BIR specification. Then it a'as translated into
MDG-HDL and was verificd then. As a future work, wc wc
planning to improve thc translation schema and providing a
bctter support for chccking asscrtions and temporal pattcrns.

REFERENCES

[I] J. Baymgamier, T. Heyman. V. Singhal. and A. Amiz. Model Chech-
ing the IRM Cigahem Processor: An abstraction algorithm for high-
performance netlisls. In Proc. 1 I th International Conference On Com-
puter Aided Verification (CAV). LNCS. 1633, pp 72-83. Springer-
Verlag, 1999.

[?I W. Visser. K. Havelund, G. Rrat. and S . Park. Model checking programs.
In Proc. of the 15 rh lntemalional Conference on Automated Software
Engineering. Grenoble, Fmce, September 2Mx).

[31 J . Corbrtt, M. B. Dwyer, J. Hatcliff, C. Pasmanu. Rabhy. S . Laubach,
and H. Zheng. Bandera : Extracting Finite-slate Mcdrls from Java
Source Code. In Roc. of the International Conference on Software
Engineering (ICSE), IEEE Press. June 2000.

[4] K. Havelund and T. Pressburger. Modct checking Java Programs using
Java ParhFinder. Inamalional Journal on Soliware Tools lor Technology
Transfer (STIT). ?(2). 2000.

[SI F. Corella Z. Zhou, X. Song, M. Langevin. and E. Cemy. Multiway
decision graphs for automated hardwm venfi cation. Formal Methods
in System Design. 10i1). 1997.

[b] A. Cawanmeh, S . Tahar and K. Winler Interfacing ASMs with the
MDG Tool. In: E. Boerger. A. Gargantini. E. Riccobene (Eds.) Ab~tract
State Machines - Advances in Theory and Applications. LNCS 2589.
pp. ?78-?92.Springer Verlag, 2003

348

