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Abstract-In this paper, we discuss the integration of Multiway 
Decision Diagrams (MDG) model-checker into Bandera frame- 
work. A schema is introduced fur transforming the Bandera 
Intermediate Representation (BIR) into the language of MDG 
model checker. Experience with model-checking the hw pro- 
grams demonstrates that this approach offers effective support 
for verifying softnare models. 

I .  INTRODUCTION 

Model checking is an automatic finite-state verification 
tcchnique that has gained wide acccptance as a powerfiil tool 
for debugging hardware design [I]. It consists of exhaustively 
checking a finitc-statc modcl of thc system for violation of its 
requirements specificd in sonic temporal logics. This approach 
provides a level confidence coniparahle to that of machine- 
checked proof of the system's requirements correctness with- 
out (extensive) human guidance. 

During the past few years, there Itas been increasing interest 
in the application of model checking to software. However, 
the transfer of this technique to software was very slow due 
to the state explosion problem and the semantics gap between 
the artifkcts produced by software developers and those ac- 
cepted hy current verification tools [?I. These prohlems have 
been tackled in several ways. These attempts can he roughly 
classified into two approaches: the first approach [ 2 ]  consists 
of developing new dedicated techniques for software while 
the sccond one 131, 141 allows thc intcgration of existing tools 
by using high (abstract) modeling techniques. Thc advantagc 
of the former is that the difficulty of applying software model 
checking is addressed directly, while the advantage of the latter 
is reusing an existing tool and therefore the effort is oriented 
towards the integration part. 

In this paper, we describe an experience with the second 
approach using the toolset Bandera [3]  and Multiway Decision 
Diagrams (MDGs). The rest of paper is organized as follows. 
Section 11 surveys MDG and Bandera tools and emphasizes the 
Java concurrency model. Section I11 describes the translation 
schema with a focus on Java concurrency model. Section IV 
considers a simple lava program and illustrates its modeling 
and verification using MDG tool. Finally. Section V concludes 
the paper and states the future work. 

11. BACKGROUND 

A. Java Concurrency Model 
Java is a general-purpose. concurrent. object-oriented lan- 

guage. The key fcature of concurrency is threads. The Java 
class java.lurrg.Threud is used to initiate and control new 
activities. A thread is created by executing a new Thread() 

allocation statement and it is started by invoking the thread 
object's starri) method which begins execution of the 1-mfi 
method. To synchronize threads, Java uses monitors, which 
are a high-level mechanism for enforcing mutually exclusive 
access to a region of codc. The behavior of monilors is 
explained in terms of locks. Each Java object has a unique lock 
associated with it. In addition, each ohject has an associated 
block-set and wait-ser for managing threads that are blocked 
on thc oh.icct's lock or waiting on the object's lock. When a 
sychronizedieqr) statement is executed by a current thrcad, 
the ohiect expression is evaluatcd and the resultins object's 
lock is checked for availability. If the lock has been acquired 
hy some other threads, the current thread becomes blocked and 
it is inserted into the object's block-set. When a thread leaves 
the synchronized block. it unlocks the lock associated with it. 
Acquiring the lock of the current object during a method body 
may he abbreviated by placing the keyword rynclirmized in 
the method's signature. 

A thread may become waiting on ohject's lock hy invoking 
wh() method, which results in puning the thread in the 
ohject's wait-set and releasing the lock. A waiting thread is 
released hy another thread by invoking notifi(J or r r o t ~ j A l l ( )  
methods. Invoking iiofqj)() removes an arbitrary thread while 
notijj:All(J removes all the threads from the object's wait-set. 

R. MDG-HDL Language 

MDGs [5] are a canonical representation of a certain 
class of' many-sorted first-order logic formulas, where data 
values and operations are represented by abstract variables 
and uninterpreted functions, respectively. In MDG-hnsed ver- 
ification. abstract description of states machines (ASM) are 
used for modcling systems. MDGs have been invcstigated 
from different angles and it culniinatcd in a MDG tool 
providing Prolog-stylc MDG-HDL for modeling and diffcrent 
verification techniques including sequential and combinational 
equivalence checking, invariant checking and a subset of first- 
order LTL model checking. 

MDG-HDL specification describes a concrete model by 
using structural andlor behavioral description. In the structural 
description, a model is described at the RT level as a collection 
of components interconnected by nets that carry signals. Each 
signal is represented by a variable. Variahles denoting control 
signals have concrete sorts. while variables denoting data val- 
ues have abstract sons. The control operations are represented 
by uninterpreted cross-operators while data operations can he 
viewed as black-boxes and thus represented as uninterpreted 
functions. Furthermore, MDG-HDL language provides prede- 
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fined components (e.g. repisters. gates. multiplexers). which 
are automatically transformed into thcir MDG representation. 
Figure 1 (a) shows a comparator that produces a control signal 
,? from two data inpurs z and y. Both x and y are variables of 
ahstract sort while z is a Boolean variable. An uninterpreted 
cross-operaror cq is used to denote the functionality of the 
comparator. If the meaning of e q  matters, rewrite rules. such 
as eq(z, 2) --t 1 should he used. An MDG of the comparator 
is shown in Figure I(h). 

0'- / 1 

'($' 

(h) (a) 

Fig. 1. The MflG for U comparator. 

A behavioral description is given by high-level constructs 
as IT€ (If-Then-Else) formulas. CASE formulas or tabular 
representations. Thc tabular construct is similar to a truth table 
but allows first-order terms in rows. 

C. The choice of Bnridera 

We aim to use MDG tool for software model checking. We 
have decided to use Bandera because like MDG specification 
it is based on transition system. Moreover, Bandera [3] is a 
collection of program analysis and transformation components 
that enables the automatic extraction of finite-state models of 
Java programs and generates a program model in the input of 
language of one of existing verification tools, mainly SPIN 
and SMV. The key component is that the extracted model 
is specified in Bandera Intermediate Representation and thus 
enabling different model checker BS a hack-end. Therefore. we 
describe the transformation of a significant subset of BIR to 
the input language of MDG tool which is used to check the 
resulting model against its requirements (see Figurc 2). 

grams to different verifiers. BIR uses an asynchronous model 
and contain constructs convcnicnt for rcpresenting Java (c.g. 
thrcads. locks, refcrenccs). A BIR specification describes a 
trnrisiriori sjstem. Formally, a transition system is a pair ( S , T )  
where : 

x D, is set o f  states. A state is an 
assignment of values to a finite set of state variahles 
'01 ~. . . ~u,, where each ti; ranges over a finite domain D; 
T g S x S is a transition relation. T is defined by a 
set of guarded transformations t i  : gi j of the state 
variablcs. where g; : S -+ Bool. called the guard. is a 
boolean predicatc on statcs. and hi : S + S, called thc 
transformation. is a map from states to states such that: 
T ( s ,  s') iff 36.gi(s) A s' = h i ( s )  

In practice, a BIR transition system is described by a set 01 
objects (the passive part) and a set of threads (the active part). 
Thrcads interact only through objects except for locks which 
are used to affect the state of the other threads (see section 
11-A). 

111. TRANSLATION SCHEMA 
A.  Process 

A process rcpresents a single Java virtual machine and 
consists of a name. a list of definitions, a list of threads, and 
(optionally) a set of predicates. A definition specifies either an 
integer constant or type specification (e.g., enumerated type, 
range, locks, references). An object is specified by a name, a 
type and (optionally) an initial value. Typically, a BIR program 
has the following form: 

process Examplc0 
SIZE : 2; 
java_lang.ObjectLrel= 

slaw : range - 1 2  := 0; 

main thread Deadlock0 

loc s25: live E.Bool 

ref { Lock.co1, Lock.col.0, Prncessl.col, Process?.col }; 

.... 

... 

when (E5oo l  == 1) 
do printhi(); goto 526: 

... 
loc s44: live 
loc s66 live p2 

Tu M &  j when true do goto s30: 
CbCkng, I 
Ti..& : end Deadlock; 

... 
thread Processl(this : Processl.ref) 

end Procrssl: 
... lrsnalaio, 

F u d d s F w  ... 
j end Example Pmrnala 

"*"a=. Tmnrislor 

"a _m A vrocess is convcrtcd into set of files that dcscribc a 
, , ILMDG-HDL -------- I ~ MDG-HDL model, namely, an algebraic specification file, a 

symbol order file, a circuit description file and an invariant 
specification file. This conversion may require human guidance 

Tisnsktor 
' 

/...-..-I 

Fig. 2. Randen ArchiEcNre ToolSeI 
in particular for defining variables order. 

B. Definitions and Objects 
Bandera Intermediate Representation (BIR) is guarded com- For a constant of a concrete sort, a translator 

mand language intended to facilitate translation of Java pro- adds a constantsignal component declaration into 
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a the circuit dcscription f i le. In thc example 
abox,  thc statement (SIZE=>) is translatcd to: 
c m p m e n  t ( U ,  cmistant .sign al ( d u e  (2) , signal ( S I Z E )  ) ) 
The translation of ob,jccts is acliicved according to their typcs 
and will be described in the rollowin&. 

c. T v p a  
BIR allows seven hasic types of ohjects: boolean, range, 

enumerated. locks, arrays, rtcords. and reterences. The trans- 
lator converts some of these types of BJR into types of MDG- 
HDL accordingly to the following table: 

BIR Type MDC-HDL Type 
boolenn conc.sort(bool; [0,1]) 
range z..1/ 
enum { A ,  B, C }  
Array and Record 

conc.sort((son name ),[I,. . . , y]) 
conc.sort((son name), [.A: B ,  Cl) 
Rattcncd and declared as signals 

where z and y are integers, A, B and C are integers or 
strings. Note that for range type, we need IO enumerate all the 
values that hold between 2 and y and for array type, all the 
signals have the same MDG sort. 

A lock is an aggregate with thc following components: 
.4n owner variable indicating which thread holds the lock 
A count variable, recording the number of acquisitions of 

A wait variable for cach thread indicating whether thar 

A rejbrerrre is an aggregate with the following components: . a reflndex variahle, specifying the target pointed to (or 0 

an instance variable, specifying the instance number of 

Note that reference variables are unusual in  that they may 
appear as final values in expressions even though they are 
implemented as two variables. The prohlem can be solved by 
combining (R-reflndex and R-instNum) into a single integer 
for the purposes of assignment and equality tests. Derefer- 
encing (the most common operation) uses the components 
separately. 

D. Tlrreads 
A thread is specified as set of guarded transfonuations on 

the ob.jects. It can be represented as directed graph in which 
each arc is laheled with a guarded transfunnation of the form: 

when (guard) do (action) goto (location) 
A thread must have at least one location; the first location 

listed is the start location. Each location is labeled with unique 
identifier, which is used to refer to the location in a goto. A 
location may also optionally specify a set of local objects that 
are live at the location. The guard expression must he boolean 
expression while the action can he either an assignment, a lock 
operation, a thread operation. or an assert operation. 

The threads are running in parallel but in  an interleaved 
model, i s ,  asynchronous. Therefore. the translation schema 
starts by introducing a concrete variable nmningThread, which 

the lock (for rclocking) 

thrcad is blocked in  the wait qucue of this lock 

for null) 

the collection. 

(location) : live{sct of objects} 

will hold the name of the thread taking step. Thus. it is an 
enumeration of thrcad namcs: 

conc~sort(Th,readT~pe, [NoThread,TI,. . . T,]). 
signal(runningThread, ThreadType). 

Next, we associate with each thread the following variables: . Iocurirw variable is of type concrete sort and represents 
the set of localions of the current thread. As indicated 
above; tliese locations are uniquely identified. 
uctive variable is a boolean flag that represents the status 
of the thread and can be changed by tlie current thread 
or anothcr one. Typically. thc thread actions are (i) srarf 
action changes the state of another thread from inactive 
to active, (ii) exif action changes the state of the current 
thread to inactive and (iii) joLi action changes the current 
thread until another thread becomes inactive (i.e., exits). 
Note that tlie active variable is not associated with the 
main thread. . blocked variable is a boolean Hag that indicates the 
current thread is blocked. This may happens when a 
thread reaches a certain location where the guards are 
t’alse. The disjunctive boolean expression associated to 
this nag is derived from the set of guarded transformation 
of the current thread. In the example above within the 
Deadlock thread, the hlockcd variable is defincd as: 

Deadlockhlocked E (Deadlock-location = szs A E.Rool = 0) V 
ternrinared is similar to blocked boolean variable but 
indicares that the current thread exits. In the example 
ahove within the Deadlock thread, the terminated variable 
is defined as: 

Deadlock.terminavd 2 (Deadlock-location = s4.j V . . .) 

E. Guarded rrairsforriiafiori 

three steps: 
The thread’s set of guarded transformation is processed into 

I )  Transitions between locations are mapped into a table 
which has the following fonn: 

lablc([Tlocation.runningThread,T.active, n.Tlocation], . . .) 

where TYocation is the current location and 
n.T.location represents thc next location ( i t ,  goto loca- 
tion). Note that the main thread’s table docs not contain 
the active column. 

2) Each guard is a boolean expression and is represented 
as a collection of predefined components. 

3) Each action is translated into a table which contains the 
current location. the runningfiread variable. the boolean 
output of the guard constructed in step 2, the active 
variahle, the state variable and its next state. The table’s 
body is defined according to the action kind described 
below. 

An action is either an assignment, a lock operation, a thread 
operation, a print operation. or an assert operation. We support 
only a subset of these actions. Note that print actions are used 
to output specific values of variables of three types, namely 
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range, hoolean. and enumerated during a simulation. This typc 
of action is ignorcd. 

Another alternalivc for translating a guardcd transf'oormation 
in a structural stylc consists in mapping locations to registcrs 
and guard-action pairs to multiplcxers [6]. 

E Properties 

A BIR Specification Language (BSLI allows to specify the 
propertics of thc program as asscrtions i n  certain program 
locations andlor by using the temporal patterns. As a first stcp, 
we arc intercsted only in invariant chccking. Within thc framcs 
of MDG-HDL, an invariant is mapped to a combinational 
circuit. The deadlock invariant can be generated automatically 
from our translation schema by using the boolean variables 
terniinated and blocked associated to each thread: 

(4 .blocked A TT-terminated) V (T.term.inated) 

which means that either the thread is taking step or it is 
temiinated. Note this invariant can he generalized to n threads. 

IV. EXAMPLE 
a) Siniplijed Model: As an cxaniplc. wc havc choscn 

a Java implementation of a growable stack' The stack is 
dcscribcd by (i) a dynamic array of integcrs, (ii) a constant 
six that specifies the depth of the stack, and (iii) a integer 
variable tos that points to the top of the stack. Moreover, the 
stack class provides three methods: (i) the constructor method 
that allocates space for dynamic array according to a specified 
size and initializes the top of the stack 00s) to - I ,  (ii) the 
push method adds a specified item to the stack and increments 
the top of the stack, and (iii) the pop method returns the 
current item specified the top of the stack and decreases the 
latter. Moreover, we made errmxous modification, namely, we 
removed from source code a part that allocates extra space for 
stack when i t  is full. We do so because we are going to check a 
property that statcs that a top of the stack ncver goes beyond 
its limits, i.e., thc top of the stack holds hetwccn its initial 
value (-1) and the specified size of the stack. Note that this 
property is added to the source code. 

The code of growable stack implementation is uscd as input 
file for Bandera tool. Then, we derived a flowchart from BIR 
specification to make the translation easier. Analysis of the 
BIR specification flowchart gives us the following results: 
(i) there are three state variahles within this model which 
are interesting for purposes of the invariant checking, namely 
mystaektos, i, and io. The state variable mystacksize is 
never changed. So, it can be considered as a constant signal, 
and (ii) the guarded transformations are summarized in the 
following tahle: 

Guard Action 
i < 9  
i 2 9 A io < 15 A tos 2 -10 
i 2 9 A i o  < l 5Atos  < -10 

tos := tos+ 1;i := i +  1 
tos := tOS - 1; io := io + 1 
i o  :=io + 1 

Fig. 3. Sequrniiol circuit derived from RIR Model. 

6) hvariarir Checking: Bandera extracts thc invariant 
from source code and placcd into a file. As rcsult. the invariant 
to be checked looks like follows: 

11 ( ( 'cos > - 2 )  && (tos < size)) 

Then, we develop a combinational circuit that represents the 
property to be checked to create an invariant specification file. 
Finally we perform the invariant checking and as expected the 
invariant does not hold. 

V. CONCLUSION A N D  FUTURE WORK 

In this paper, we investigated the use of MDG tool in 
the verification of software models. We have outlined the 
mapping rules for translating a program model from Bandera 
Intermediate Representation (BIR) to the MDG-HDL language 
where a significant suhset 0 1  BIR is handled. To illustrate 
the effectiveness oS this approach, a simple Java program 
was processed with Bandera. A model of this program was 
represented as a BIR specification. Then it a'as translated into 
MDG-HDL and was verificd then. As a future work, wc wc 
planning to improve thc translation schema and providing a 
bctter support for chccking asscrtions and temporal pattcrns. 
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