Regular Session H : System Testing & Verification

‘Towards Software Model Checking using MDGs

M. Krykhtin', Y. Mokhtari!, O. Ait Mohamed' and X. song?
! ECE Dept., Concordia University, Canada, {m krykht, mokhtari,ait} @ece.concordia.ca,
2 ECE Dept., Portland State University, USA, song@ece.pdx.edn

Abstrect— In this paper, we discuss the integration of Multiway
Decision Diagrams (MDG) medel-checker inte Bandera frame-
work. A schema is introduced for transforming the Bandera
Intermediate Representation (BIR) into the language of MDG
model checker, Experience with model-checking the Java pro-
grams demonstrates that this approach offers effective support
for verifying software models.

[. INTRODUCTION

Model checking is an automatic finite-state verification
technique that has gained wide acceplance as a powerful tool
for debugging hardware design {1]. It consists of exhaustively
checking a finite-state model of the system for violation of its
requiremenis specitied in some temporal logics. This approach
provides a level confidence comparable to that of machine-
checked proof of the system’s requirements correctness with-
out (extensive) human guidance.

During the past few years, there has been increasing interest
in the application of model checking to software. However,
the transfer of this technique to software was very slow due
to the state explosion problem and the semantics gap between
the anifacts produced by software developers and those ac-
cepled by current verification tools [3]. These problems have
been tackled in several ways. These attempts can be roughly
classified into two approaches: the first approach [2] consists
of developing new dedicated techniques for software while
the second one [3], |4} allows the integration of existing tools
by using high (abstract) modeling techniques. The advantage
of the former is that the difficulty of applying software model
checking is addressed directly, while the advantage of the later
is reusing an existing tool and therefore the effort is oriented
towards the Integration part.

In this paper, we describe an experience with the second
approach using the toclset Bandera [3] and Multiway Decision
Diagrams (MDGs). The rest of paper is organized as follows.
Section 1T surveys MDG and Bandera tools and emphasizes the
Java concurrency model. Section III describes the translation
schema with a focus on Java concurrency model. Section IV
considers a simple Java program and illustrates its modeling
and verification using MDG tool. Finally, Section V concludes
the paper and states the future work.

II. BACKGROUND

A. Java Concurrency Model

Java is a general-purpose. concurrent. object-oriented lan-
guage. The key feature of concurrency is threads. The Java
class java.lang Thread is used to initiate and control new
activities. A thread is created by execuling a new Thread()

0-7803-8322-2/04/$20.00 ©2004 IEEE.

allocation statement and it is started by invoking the thread
object’s start() method which begins execution of the run()
method. To synchronize threads, Java uses monitors, which
are a high-level mechanism for enforcing mutually exclusive
access 10 a region of code. The behavior of monitors is
explained in terms of Jocks. Each Java object has a unique lock
associated with it. In addition, each object has an associated
block-set and wait-ser for managing threads that are blocked
on the object’s lock or waiting on the object’s lock. When a
synchrorized{expr) statement is executed by a current thread,
the object expression is evaluated and the resulting object’s
lock is checked for availability. If the lock has been acquired
by some other threads, the current thread becomes blocked and
it is inserted into the object’s block-set. When a thread leaves
the synchronized block, it unlocks the lock associated with 1t
Acquiring the lock of the current object during a method body
may be abbreviated by placing the keyword synchronized in
the method’s signature.

A thread may become waiting on object’s lock by invoking
wait(} method, which results in putting the thwead in the
object’s wait-set and releasing the lock. A waiting thread is
released by another thread by invoking notify(} or notifyAll{})
methods. Invoking rotify() removes an arbitrary thread while
norifyAll() removes all the threads from the object’s wait-set.

B. MDG-HDL Language

MDGs [5] are a canonical representation of a certain
class of many-sorted first-order logic formulas, where data
values and operations are represented by abstract variables
and uninterpreted functions, respectively. In MDG-based ver-
ification, abstract description of states machines (ASM) are
used for modeling systems. MDGs have been investigated
from different angles and it culminated in a MDG tool
providing Prolog-style MDG-HDL for modeling and different
verification techniques including sequential and combinational
equivalence checking, invariant checking and a subset of first-
order LTL model checking.

MDG-HDL specification describes a concrete model by
using structural and/or behavioral description. In the structural
description, a model is described at the RT level as a collection
of components interconnected by nets that carry signals. Each
signal is represented by a variable. Variables denoting control
signals have concrete sorts, while variables denoting data val-
nes have abstract sorts. The control operations are represented
by uninterpreted cross-operators while data operations can be
viewed as black-boxes and thus represented as uninterpreted
functions. Furthermore, MDG-HDL language provides prede-

345

mailto:song@ece.pdx.edu

Regular Session M : System Testing & Verification

fined components (e.g. registers, gates, multiplexers). which
are automatically transformed into their MDG representation.
Figure 1(a) shows a comparator that produces a control signal
z from iwo data inputs = and y. Both £ and y are variables of
abstract sort while z is a Boolean variable. An uninterpreted
cross-aperatr eg is used to denote the functionality of the
comparator. If the meaning of eg matters, rewrite rules, such
as eq{x,x) — 1 should be used. An MDG of the comparator

is shown in Figure 1(b}.
&y (%.y)
ﬁ_.,i 1

0
X
—z —
¥ EQ @< /y
0o " 1
~
\(—\
(a) (b)
Fig. 1. The MDG for a comparator.

A behavioral description is given by high-level constructs
as ITE (If-Then-Else) formulas, CASE formulas or tabular
representations. The tabular construct is similar to a truth table
but allows first-order tenms in rows.

C. The choice of Bandera

We aim 10 use MDG tool for software model checking. We
have decided to use Bandera because like MDG specification
it is based on transition system. Moreover, Bandera [3] is a
collection of program analysis and wransformation components
that enables the automatic extraction of finite-state models of
Java programs and generates a program model in the input of
language of one of existing verification tools, mainly SPIN
and SMV. The key component is thal the extracted model
is specified in Bandera Intermediate Representation and thus
enabling different model checker as a back-end. Theretfore, we
describe the transformation of a significant subset of BIR to
the input language of MDG tool which is used o check the
resulting model against its requirements (see Figure 2).

!“’“ To Moded
= Cheekin
Tanpoml Ti\o; e,
logic SPEC
Y ___ L.
I |
1] i . sMv | sMv-
: Slicing /Ahstmriuon “Transiator P
. ! Bindings
: o
)]
1 I
:~ / Uodsk Promgia
i ABRS ' Conwuctor - T Transieter ——
| I Abatracted
I__—_t‘__—_l Java source
|
| |——--—___t
I 1MDG-HDL
::r:m L-"‘: Transkator Eﬂ___’
| PO 1
Fig. 2. Bandera Architecture ToolSet

Bandera Intermediate Representation (BIR) is guarded com-
mand language intended to facilitate translation of Java pro-

346

grams to different verifiers. BIR uses an asynchronous model
and contain constructs convenient for representing Java (c.g.
threads. locks, references). A BIR specification describes a
transirion system. Formally, a transition system is a pair (S, T)
where :

e S = D x...x D, is set of states. A state is an
assignment of values to a finite set ol state variables
Ui,-..,Un where each v; ranges over a finite domain D,

e T'C § x § is a transition relation. T is defined by a
set of guarded transformations f; : g; => h; of the state
variables, where g; : S — DBool, called the guard, is a
boolean predicate on states, and h; : § — S, called the
transformation, is a map from states to states such that:
T(s,s") iff Fi.g;(s) A s = hy(s)

In practice, a BIR transition system is described by a set of
objects (the passive part) and a set of threads (the active part).
Threads interact only through objects except for locks which
are used to affect the state of the other threads (see section
II-A).

[1I. TRANSLATION SCHEMA

A. Process

A process represents a single Java virtual machine and
consists of a name, a list of definitions, a Iist of threads, and
(optionally) a set of predicates. A definition specifies either an
integer constant or type specification (e.g., enumerated type,
range, locks, references). An object is specified by a name, a
type and (optionally) an initial value. Typically, a BIR program
has the following form:

process Example()
SIZE : 2;
javalang.Objectsef =
ref { Lock_col, Lock_col-0, Processi_cal, Process2_col };
state : range -1..5 = 0;

main thread Deadlock()

foc 525: live E_Bool
when (E_Bool == |)
do priniln(); gowo s26;

loc s44: live
loc s66: live p2
when true do goto s30;
end Deadlock;

thread Process!(this : Process] _ref)
;I-Ild Processl;
end Example

A process is converted into set of files that describe a
MDG-HDL model, namely, an algebraic specification file, a
symbol order file, a circuit description file and an invariant
specification file. This conversion may require human guidance
in particular for defining variables order.

B. Definitions and Objects

For a constant of a
adds a constantsignal

sort, a translator
declaration into

concrete
component

Reguiar Session H : Systern Testing & Verification

a the gircuit
above, the statement

description file. In the example
(SIZE=2} is wanslated 1o:

component(c_s, constant_signal(value(2), signal(STIZE))).

The transiation of objects is achieved according to their types
and will be described in the following.

C. Tipes

BIR allows seven basic types of ohjects: boolean, range,
enumeraied, locks, arrays, records, and references. The trans-
lator converts some of these types of BIR into types ol MDG-
HDL accordingly 10 the following table:

BIR Type MDG-HDL Type
boolean conc.sort(bool, {0, 1])
range ..y cone_sort({sort name }, [,...,¥])

erum {4, B, C}
Array and Record

conc_sort({sort name), [4, B, C])
fattened and declared as signals
where ¢ and y are integers, A, B and C are integers or
strings. Note that for range type, we need 1o enumerate all the
values that hold between x and ¢ and for array type, all the
signals have the same MDG sorl.
A lock is an aggregate with the following components:
¢ An owner variable indicating which thread holds the lock
« A count variable, recording the number of acquisitions of
the lock (for relocking)
o A wait variable for each thread indicating whether that
thread is blocked in the wait queue of this lock
A reference is an aggregate with the following components:
« arefIndex variable, specifying the target pointed to (or 0
for null)
¢ an instance variable, specifying the instance number of
the collection.
Note that reference variables are unusual in that they may
appear as final values in expressions even though they are
implemented as two variables. The problem can be solved by
combining (R_refIndex and R_instNum} into a single integer
for the purposes of assignment and equality tests. Derefer
encing (the most common operation) uses the components
separately.

D. Threads

A thread is specitied as set of guarded transformations on
the objects. It can be represented as directed graph in which
each arc is labeled with a guarded transformation of the form:

live{sct of objects}
when {guard} do {action) goto (location)

{location)

A thread must have at least one location; the first location
listed is the start location. Each location is labeled with unique
identifier, which is used 1o refer to the location in a goto. A
location may also optionally specify a set of local objects that
are live at the location. The guard expression must be boolean
expression while the action can be either an assignment, a lock
operation, a thread operalion, or an assert operation.

The threads are running in paraliel but in an interleaved
model, i.e, asynchronous. Therefore, the translation schema
starts by introducing a concrete variable runningThread, which

will hold the name of the thread taking step. Thus, it is an

chumeration of thread names:
conc_sort(ThreadType, [NoT hread, Ty, ..
signal{runningT hread, T hreadT ype).

ST,

Next, we associate with each thread the following variables:

+ locarion variable is of type concrete sort and represenis
the set of locations of the current thread. As indicated
above, these locations are uniquely identified.

e active variable is a boolean flag that represents the status
of the thread and can be changed by the current thread
or another one. Typically, the thread actions are (i) srart
action changes the state of another thread from inactive
to active, (ii} exir action changes the state of the current
thread to inactive and (iii) join action changes the current
thread until ancther thread becomes inactive (i.e., exits).
Note that the active variable is not associated with the
main thread.

» blocked variable is a boolean flag that indicates the
current thread is blocked. This may happens when a
thread reaches a certain location where the guards are
false. The disjunctive boolean expression associated (o
this flag is derived from the set of guarded transformation
of the current thread. In the example above within the
Deadlock thread, the blocked variable is defined as:

Deadlock blocked = (Deadlock location = sa5 A E-Bool = 0) V...

e ferminared is similar to blocked boolean variable but
indicates that the current thread exits. In the example
above within the Deadlock thread, the terminated variable
is defined as:

Deadlock_terminated = (Deadlock location = s44 V ...)

E. Guarded transformation

The thread’s set of gouarded transformation is processed into
three steps:
1} Transitions between locations are mapped inlo a table
which has the following form:

table([T tocation,runningThread, T_active, n_T locatien], ...)

where Tllocation is the current location and
n_T_focation represents the next location (i.e, goto loca-

tion). Note that the main thread’s table does not contain
the active column.

2) Each guard is a boolean expression and is represented
as a collection of predefined components.

3) Each action is translated into a table which contains the
current location, the runningThread variable, the boolean
output of the guard constructed in step 2, the active
variable, the state variable and its next state. The able’s
body is defined according to the action kind described
below.

An action is either an assignment, a lock operation, a thread
operation, a print operation, or an assert operation, We support
only a subset of these actions. Note that print actions are used
to output specific values of variables of three types, namely

347

Regular Session H : Systemn Testing & Verification

range, boolean, and enumerated during a simulation. This type
of action is ignored.

Another alternative for translating a guarded transformation
in a structural style consists in mapping locations to registers
and guard-action pairs to multiplexers [6].

F. Properties

A BIR Specification Language (BSL) allows to specify the
propertics of the program as assertions in certain program
locations and/or by using the temporal patterns. As a first step,
we are interested only in invariant checking, Within the frames
of MDG-HDL, an invariant is mapped to a combinational
circuit. The deadlock mvariant can be generated automatically
from our translation schema by using the boolean variables
rerminated and blocked associated to each thread:

(=T _blocked n —T _terminated) v (T _terminated)

which means that either the thread is taking step or it is
terminated. Note this invariant can be generalized 1o n threads.

IV. EXAMPLE

a) Simplifted Model: As an example, we have chosen
a Java implementation of a growable siack! The stack is
described by (i) a dvnamic array of integers, (ii) a constant
size that specifies the depth of the stack, and (i) a integer
variable ros that points to the top of the stack. Moreover, the
stack class provides three methods: (i) the constructor method
that allocates space for dynamic array according to a specified
size and initalizes the top of the stack (ros) to -1, (ii) the
push method adds a specified item to the stack and increments
the top of the stack, and (iii) the pop method returns the
current item specified the top of the stack and decreases the
latter. Moreover, we made erroneons modification, namely, we
removed from source code a part that aliocates extra space for
stack when it is fall. We do so because we are going to check a
property that states that a top of the stack never goes beyond
its Iimits, i.e., the top of the stack holds between its initial
value (-1) and the specified size of the stack. Note that this
property is added to the source code.

The code of growable stack implementation is uscd as input
file for Bandera twol, Then, we derived a flowchart from BIR
specification to make the translation easier. Analysis of the
BIR specification flowchart gives us the following results:
(1} there are three state variables within this model which
are interesting for purposes of the invariant checking, namely
mystack.tos, i, and ip. The slate variable mystack.size is
never changed. So, it can be considered as a constant signal,
and (il) the guarded transformations are summarized in the
following table:

Guard
i<9
iZ>9Mig<15At0s > =10
1> 9N <15 Atos < —10

Action

tos :=los+ L;i:=1+1
fos:=tos— ljig =iy + 1
iu = 1:(] -+ i

! javaboutique.internet.com/javasource

348

Tt)
e st
— b

Fig. 3.

Sequential circuwit derived from BIR Model.

b) fmvariant Checking: Bandera extracts the invariant
from source code and placed into a file. As result, the invariant
to be checked looks like follows:

[]{({tos > -2) && (tos < size))

Then, we develop a combinational circuit that represents the
property to be checked to create an invariant specification file.
Finally we perform the invariant checking and as expected the
invariant does not hold.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigated the use of MDG tool in
the verification of software models. We have outlined the
mapping rules for translating a program model from Bandera
Intermediate Representation (BIR) to the MDG-HDL language
where a significant subset of BIR is handled. To illustrate
the effectiveness of this approach, a simple Java program
was processed with Bandera. A model of this program was
represented as a BIR specification. Then it was translated into
MDG-HDL and was verified then. As a future work, we are
planning to improve the translation schema and providing a
better support for checking assertions and temporal patterns.

REFERENCES

f1] J. Baymgartner, T. Heyman, V. Singhat, and A. Aziz. Model Check-
ing the IBM Gigahertz Processor: An abstraction algorithm for high-
performance netlists. In Proc. 11th Imernational Conference On Coni-
pmer Aided Verifi cation (CAV). LNCS, 1633, pp 72-83, Springer-
Verlag, 1999.

[2] W. Visser. K. Havelund, G. Brat, and S. Park. Model checking programs.
In Proc. of the 15 th International Conference on Automated Software
Engineering. Grenoble, France, September 2000.

[31 1. Corbett, M. B. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach,
and H. Zheng., Bandera : Extracting Finite-state Models from Java
Source Code. In Proc. of the Imternational Conference or Software
Engineering (ICSE), IEEE Press, June 2000.

[4] K. Havelund and T. Pressburger. Model checking Java Prograins using
Java PathFinder. Intemnational Journal on Software Tools for Technology
Transfer (STTT). 2(2). 2000,

[5] E Corella. Z. Zhou, X. Song, M. Langevin. and E. Cerny. Multiway
decision graphs for automated hardware verifi cation. Formal Methods
in Systemn Design, 10(1). 1997,

[6] A. Gawanmeh, S. Tahar and K. Winter Interfacing ASMs with the
MDG Tool. In: E. Boerger, A. Gargantini. E. Riccobene (Eds.) Abstract
State Machines - Advances in Theory and Applications, LNCS 2589,
pp- 278-292 Springer Verlag, 2003

