
Formal Probabilistic Analysis: A Higher-Order

Logic Based Approach

Osman Hasan and Sofiène Tahar

Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada

{o hasan,tahar}@ece.concordia.ca

Abstract. Traditionally, simulation is used to perform probabilistic
analysis. However, it provides less accurate results and cannot handle
large-scale problems due to the enormous CPU time requirements. Re-
cently, a significant amount of formalization has been done in higher-
order logic that allows us to conduct precise probabilistic analysis using
theorem proving and thus overcome the limitations of the simulation.
Some major contributions include the formalization of both discrete and
continuous random variables and the verification of some of their cor-
responding probabilistic and statistical properties. This paper describes
the infrastructures behind these capabilities and their utilization to con-
duct the probabilistic analysis of real-world systems.

1 Introduction

“In short, we can only pretend to achieve a relative faultless construc-
tion, not an absolute one, which is clearly impossible. A problem solution
for which is still in its infancy is finding the right methodology to per-
form an environmental model that is a “good” approximation of the real
environment. It is clear that a probabilistic approach would certainly be
very useful for doing this.”

J. Abrial, Faultless Systems: Yes We Can!, IEEE Computer Magazine,
42(9):30-36, 2009.

Probabilistic analysis is a tool of fundamental importance for the analysis of
hardware and software systems. These systems usually exhibit some random or
unpredictable elements. Examples include, failures due to environmental condi-
tions or aging phenomena in hardware components and the execution of certain
actions based on a probabilistic choice in randomized algorithms. Moreover, these
systems act upon and within complex environments that themselves have cer-
tain elements of unpredictability, such as noise effects in hardware components
and the unpredictable traffic pattern in the case of telecommunication protocols.
Due to these random components, establishing the correctness of a system un-
der all circumstances usually becomes impractically expensive. The engineering

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 2–19, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 3

approach to analyze a system with these kind of unpredictable elements is to
use probabilistic analysis. The main idea is to mathematically model the unpre-
dictable elements of the given system and its environment by appropriate random
variables. The probabilistic properties of these random variables are then used
to judge system’s behaviors regarding parameters of interest, such as downtime,
availability, number of failures, capacity, and cost. Thus, instead of guarantee-
ing that the system meets some given specification under all circumstances, the
probability that the system meets this specification is reported.

Simulation is the most commonly used computer based probabilistic analysis
technique. Most simulation softwares provide a programming environment for
defining functions that approximate random variables for probability distribu-
tions. The random elements in a given system are modeled by these functions
and the system is analyzed using computer simulation techniques, such as the
Monte Carlo Method [31], where the main idea is to approximately answer a
query on a probability distribution by analyzing a large number of samples. Sta-
tistical quantities, such as average and variance, may then be calculated, based
on the data collected during the sampling process, using their mathematical
relations in a computer. Due to the inherent nature of simulation, the proba-
bilistic analysis results attained by this technique can never be termed as 100%
accurate. The accuracy of the hardware and software system analysis results has
become imperative these days because of the extensive usage of these systems in
safety-critical areas, such as, medicine and transportation. Therefore, simulation
cannot be relied upon for the analysis of such systems.

In order to overcome the above mentioned limitations, we propose to use
higher-order-logic theorem proving for probabilistic analysis. Higher-order logic
[11] is a system of deduction with a precise semantics and is expressive enough to
be used for the specification of almost all classical mathematics theories. Due to
its high expressive nature, higher-order-logic can be utilized to precisely model
the behavior of any system, while expressing its random or unpredictable ele-
ments in terms of formalized random variables, and any kind of system property,
including the probabilistic and statistical ones, as long as they can be expressed
in a closed mathematical form. Interactive theorem proving [16] is the field of
computer science and mathematical logic concerned with precise computer based
formal proof tools that require some sort of human assistance. Due to its inter-
active nature, interactive theorem proving can be utilized to reason about the
correctness of probabilistic or statistical properties of systems, which are usually
undecidable.

In this paper, we present a higher-order-logic theorem proving based frame-
work that can be utilized to conduct formal probabilistic analysis of systems.
We provide a brief overview of higher-order-logic formalizations that facilitate
the formal modeling of random systems [18,19,26] and formal reasoning about
their probabilistic and statistical properties [17,20,21]. We show how these ca-
pabilities fit into the overall formal probabilistic analysis framework and also
point out some of the missing links that need further investigations. For illus-
tration purposes, we discuss the formal probabilistic analysis of some real-world



4 O. Hasan and S. Tahar

systems from the areas of telecommunications, nanoelectronics and computa-
tional algorithms.

The rest of the paper is organized as follows: Section 2 describes the proposed
probabilistic analysis framework and how the already formalized mathematical
concepts of probability theory fit into it. The case studies are presented in Section
3. Section 4 summarizes the state-of-the-art in the formal probabilistic analysis
domain and compares these approaches with higher-order-logic theorem proving
based analysis. Finally, Section 5 concludes the paper.

2 Formal Probabilistic Analysis Framework

A hypothetical model of a higher-order-logic theorem proving based probabilistic
analysis framework is given in Fig. 1, with some of its most fundamental com-
ponents depicted with shaded boxes. The starting point of probabilistic analysis
is a system description and some intended system properties and the goal is to
check if the given system satisfies these given properties. Due to the differences
in the underlying mathematical foundations of discrete and continuous random
variables [42], we have divided system properties into two categories, i.e., system
properties related to discrete random variables and system properties related to
continuous random variables.

Fig. 1. Higher-order Logic based Probabilistic Analysis Framework

The first step in the proposed approach is to construct a model of the given
system in higher-order-logic. For this purpose, the foremost requirement is the
availability of infrastructures that allow us to formalize all kinds of discrete and
continuous random variables as higher-order-logic functions, which in turn can
be used to represent the random components of the given system in its higher-
order-logic model. The second step is to utilize the formal model of the system



Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 5

to express system properties as higher-order-logic theorems. The prerequisite
for this step is the ability to express probabilistic and statistical properties re-
lated to both discrete and continuous random variables in higher-order-logic.
All probabilistic properties of discrete and continuous random variables can be
expressed in terms of their Probability Mass Function (PMF) and Cumulative
Distribution Function (CDF), respectively. Similarly, most of the commonly used
statistical properties can be expressed in terms of the expectation and variance
characteristics of the corresponding random variable. Thus, we require the for-
malization of mathematical definitions of PMF, CDF, expectation and variance
for both discrete and continuous random variables in order to be able to express
the given system’s reliability characteristics as higher-order-logic theorems. The
third and the final step for conducting probabilistic analysis in a theorem prover
is to formally verify the higher-order-logic theorems developed in the previous
step using a theorem prover. For this verification, it would be quite handy to
have access to a library of some pre-verified theorems corresponding to some
commonly used properties regarding probability distribution functions, expecta-
tion and variance. Since, we can build upon such a library of theorems and thus
speed up the verification process. The formalization details regarding the above
mentioned steps are briefly described now.

2.1 Discrete Random Variables and the PMF

A random variable is called discrete if its range, i.e., the set of values that it can
attain, is finite or at most countably infinite [42]. Discrete random variables can
be completely characterized by their PMFs that return the probability that a
random variable X is equal to some value x, i.e., Pr(X = x). Discrete random
variables are quite frequently used to model randomness in probabilistic analysis.
For example, the Bernoulli random variable is widely used to model the fault
occurrence in a component and the Binomial random variable may be used to
represent the number of faulty components in a lot.

Discrete random variables can be formalized in higher-order-logic as deter-
ministic functions with access to an infinite Boolean sequence B∞; an infinite
source of random bits with data type (natural → bool) [26]. These determin-
istic functions make random choices based on the result of popping bits in the
infinite Boolean sequence and may pop as many random bits as they need for
their computation. When the functions terminate, they return the result along
with the remaining portion of the infinite Boolean sequence to be used by other
functions. Thus, a random variable that takes a parameter of type α and ranges
over values of type β can be represented by the function

F : α → B∞ → (β × B∞)

For example, a Bernoulli(1
2 ) random variable that returns 1 or 0 with prob-

ability 1
2 can be modeled as

� bit = λs. (if shd s then 1 else 0, stl s)



6 O. Hasan and S. Tahar

where the variable s represents the infinite Boolean sequence and the functions
shd and stl are the sequence equivalents of the list operations ’head’ and ’tail’.
A function of the form λx.t represents a lambda abstraction function that maps
x to t(x). The function bit accepts the infinite Boolean sequence and returns a
pair with the first element equal to either 0 or 1 and the second element equal
to the unused portion of the infinite Boolean sequence.

The higher-order-logic formalization of probability theory [26] also consists of
a probability function P from sets of infinite Boolean sequences to real numbers
between 0 and 1. The domain of P is the set E of events of the probability. Both
P and E are defined using the Carathéodory’s Extension theorem, which ensures
that E is a σ-algebra: closed under complements and countable unions. The for-
malized P and E can be used to formally verify all basic axioms of probability.
Similarly, they can also be used to prove probabilistic properties for random vari-
ables. For example, we can formally verify the following probabilistic property
for the function bit, defined above,

� P {s | fst (bit s) = 1} = 1
2

where the function fst selects the first component of a pair and {x|C(x)} rep-
resents a set of all elements x that satisfy the condition C.

The above mentioned infrastructure can be utilized to formalize most of the
commonly used discrete random variables and verify their corresponding PMF
relations [26]. For example, the formalization and verification of Bernoulli and
Uniform random variables can be found in [26] and of Binomial and Geometric
random variables can be found in [21].

2.2 Continuous Random Variables and the CDF

A random variable is called continuous if it ranges over a continuous set of
numbers that contains all real numbers between two limits [42]. Continuous
random variables can be completely characterized by their CDFs that return the
probability that a random variable X is exactly less than or equal to some value
x, i.e., Pr(X ≤ x). Examples of continuous random variables include measuring
the arrival time T of a data packet at a web server (ST = {t|0 ≤ t < ∞}) and
measuring the voltage V across a resistor (SV = {v| −∞ < v < ∞}).

The sampling algorithms for continuous random variables are non-terminating
and hence require a different formalization approach than discrete random vari-
ables, for which the sampling algorithms are either guaranteed to terminate
or satisfy probabilistic termination, meaning that the probability that the al-
gorithm terminates is 1. One approach to address this issue is to utilize the
concept of the nonuniform random number generation [9], which is the process
of obtaining arbitrary continuous random numbers using a Standard Uniform
random number generator. The main advantage of this approach is that we only
need to formalize the Standard Uniform random variable from scratch and use
it to model other continuous random variables by formalizing the corresponding
nonuniform random number generation method.



Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 7

Based on the above approach, a methodology for the formalization of all con-
tinuous random variables for which the inverse of the CDF can be represented
in a closed mathematical form is presented in [18]. The first step in this method-
ology is the formalization of the Standard Uniform random variable, which can
be done by using the formalization approach for discrete random variables and
the formalization of the mathematical concept of limit of a real sequence [15]:

lim
n→∞(λn.

n−1∑

k=0

(
1
2
)k+1Xk) (1)

where Xk denotes the outcome of the kth random bit; True or False represented
as 1 or 0, respectively. The formalization details are outlined in [19].

The second step in the methodology for the formalization of continuous prob-
ability distributions is the formalization of the CDF and the verification of its
classical properties. This is followed by the formal specification of the mathe-
matical concept of the inverse function of a CDF. This definition along with the
formalization of the Standard Uniform random variable and the CDF properties,
can be used to formally verify the correctness of the Inverse Transform Method
(ITM) [9]. The ITM is a well known nonuniform random generation technique for
generating nonuniform random variables for continuous probability distributions
for which the inverse of the CDF can be represented in a closed mathematical
form. Formally, it can be verified for a random variable X with CDF F using
the Standard Uniform random variable U as follows [18].

Pr(F−1(U) ≤ x) = F (x) (2)

The formalized Standard Uniform random variable can now be used to for-
mally specify any continuous random variable for which the inverse of the CDF
can be expressed in a closed mathematical form as X = F−1(U). Whereas, the
formally verified ITM, given in Equation (2), can be used to prove the CDF for
such a formally specified random variable. This approach has been successfully
utilized to formalize and verify Exponential, Uniform, Rayleigh and Triangular
random variables [18].

2.3 Statistical Properties for Discrete Random Variables

In probabilistic analysis, statistical characteristics play a major role in decision
making as they tend to summarize the probability distribution characteristics
of a random variable in a single number. Due to their widespread interest, the
computation of statistical characteristics has now become one of the core com-
ponents of every contemporary probabilistic analysis framework.

The expectation for a function of a discrete random variable, which attains
values in the positive integers only, is defined as follows [30]

Ex fn[f(X)] =
∞∑

n=0

f(n)Pr(X = n) (3)



8 O. Hasan and S. Tahar

where X is the discrete random variable and f represents a function of X .
The above definition only holds if the associated summation is convergent, i.e.,∑∞

n=0 f(n)Pr(X = n) < ∞. The expression of expectation, given in Equation
(3), has been formalized in [20] as a higher-order-logic function using the proba-
bility function P. The expected value of a discrete random variable that attains
values in positive integers can now be defined as a special case of Equation (3)

Ex[X ] = Ex fn[(λn.n)(X)] (4)

when f is an identity function. In order to verify the correctness of the above def-
initions of expectation, they are utilized in [20,21] to formally verify the following
classical expectation properties.

Ex[
n∑

i=1

Ri] =
n∑

i=1

Ex[Ri] (5)

Ex[a + bR] = a + bEx[R] (6)

Pr(X ≥ a) ≤ Ex[X ]
a

(7)

These properties not only verify the correctness of the above definitions but also
play a vital role in verifying the expectation characteristics of discrete random
components of probabilistic systems, as will be seen in Section 3 of this paper.

Variance of a random variable X describes the difference between X and its
expected value and thus is a measure of its dispersion.

V ar[X ] = Ex[(X − Ex[X ])2] (8)

The above definition of variance has been formalized in higher-order-logic in [20]
by utilizing the formal definitions of expectation, given in Equations (3) and (4).
This definition is then formally verified to be correct by proving the following
classical variance properties for it [20,21].

V ar[R] = Ex[R2] − (Ex[R])2 (9)

V ar[
n∑

i=1

Ri] =
n∑

i=1

V ar[Ri] (10)

Pr(|X − Ex[X ]| ≥ a) ≤ V ar[X ]
a2

(11)

These results allow us to reason about expectation, variance and tail distri-
bution properties of any formalized discrete random variable that attains values
in positive integers, e.g., the formal verification for Bernoulli, Uniform, Binomial
and Geometric random variables is presented in [21].



Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 9

2.4 Statistical Properties for Continuous Random Variables

The most commonly used definition of expectation, for a continuous random
variable X , is the probability density-weighted integral over the real line [34].

E[X ] =
∫ +∞

−∞
xf(x)dx (12)

The function f in the above equation represents the Probability Density Function
(PDF) of X and the integral is the well-known Reimann integral. The above
definition is limited to continuous random variables that have a well-defined
PDF. A more general, but not so commonly used, definition of expectation for a
random variable X , defined on a probability space (Ω, Σ, P ) [10], is as follows.

E[X ] =
∫

Ω

XdP (13)

This definition utilizes the Lebesgue integral and is general enough to cater
for both discrete and continuous random variables. The reason behind its lim-
ited usage in the probabilistic analysis domain is the complexity of solving the
Lebesgue integral, which takes its foundations from the measure theory that
most engineers and computer scientists are not familiar with.

The obvious advantage of using Equation (12) for formalizing expectation of
a continuous random variable is the user familiarity with Reimann integral that
usually facilitates the reasoning process regarding the expectation properties in
the theorem proving based probabilistic analysis approach. On the other hand,
it requires extended real numbers, � = � ∪ {−∞, +∞}, whereas all the foun-
dational work regarding theorem proving based probabilistic analysis, outlined
above, has been built upon the standard real numbers �, formalized by Har-
rison [15]. The expectation definition given in Equation (13) does not involve
extended real numbers, as it accommodates infinite limits without any ad-hoc
devices due to the inherent nature of the Lebesgue integral. It also offers a more
general solution. The limitation, however, is the compromise on the interactive
reasoning effort, as it is not a straightforward task for a user to build on this
definition to formally verify the expectation of a random variable.

We have formalized the expectation of a continuous random variable as in
Equation (13) by building on top of a higher-order-logic formalization of Lebesgue
integration theory [6]. Starting from this definition, two simplified expressions for
the expectation are verified that allow us to reason about expectation of a contin-
uous random variable in terms of simple arithmetic operations [17]. The first ex-
pression is for the case when the given continuous random variable X is bounded
in the positive interval [a, b].

E[X ]= lim
n→∞

[
2n−1∑

i=0

(a +
i

2n
(b − a))P

{
a +

i

2n
(b − a) ≤ X < a +

i + 1
2n

(b − a)
}]

(14)



10 O. Hasan and S. Tahar

The second expression is for an unbounded positive random variable [10].

E[X ] = lim
n→∞

[
n2n−1∑

i=0

i

2n
P

{
i

2n
≤ X <

i + 1
2n

}
+ nP (X ≥ n)

]
(15)

Both of the above expressions do not involve any concepts from Lebesgue in-
tegration theory and are based on the well-known arithmetic operations like
summation, limit of a real sequence, etc. Thus, users can simply utilize them,
instead of Equation (13), to reason about the expectation properties of their
random variables and gain the benefits of the original Lebesgue based defini-
tion. The formal verification details for these expressions are given in [17]. These
expressions are further utilized to verify the expected values of Uniform, Trian-
gular and Exponential random variables [17]. The above mentioned definition
and simplified expressions will also facilitate the formalization of variance and
the verification of its corresponding properties.

3 Applications

We now illustrate the usage of the above mentioned formalization, for conducting
probabilistic analysis of some real-world systems.

3.1 Probabilistic Analysis of the Coupon Collector’s Problem

The Coupon Collector’s problem [34] refers to the problem of probabilistically
evaluating the number of trials required to acquire all unique, say n, coupons
from a collection of multiple copies of these coupons that are independently and
uniformly distributed. The problem is similar to the example when each box of
cereal contains one of n different coupons and once you obtain one of every type of
coupon, you win a prize. The Coupon Collector’s problem is a commercially used
computational problem and is commonly used for the identification of routers
that are encountered in packet communication between two hosts [34].

Based on the probabilistic analysis framework, presented in Section 2, partic-
ularly the capabilities to formally specify discrete random variables and formally
reason about the statistical properties of systems, a formal probabilistic analy-
sis of the Coupon Collector’s problem is presented in [21]. The first goal is to
verify that the expected value of acquiring all n coupons is nH(n), where H(n)
is the harmonic number (

∑n
i=1 1/i). Based on this expectation value, the next

step is to reason about the tail distribution properties of the Coupon Collector’s
problem using the formally verified Markov’s and Chebyshev’s inequalities.

The first step in the proposed approach is to model the behavior of the given
system as a higher-order-logic function, while representing its random compo-
nent using the formalized random variables. The Coupon Collector’s problem
can be formalized by modeling the total number of trials required to obtain all n
unique coupons, say T , as a sum of the number of trials required to obtain each
distinct coupon, i.e., T =

∑n
i=1 Ti, where Ti represents the number of trials to



Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 11

obtain the ith coupon, while i − 1 distinct coupons have already been acquired.
The advantage of breaking the random variable T into the sum of n random
variables T1, T2 · · · , Tn is that each Ti can be modeled by the Geometric random
variable function. It is important to note here that the probability of success
for these Geometric random variables would be different from one another and
would be equal to the probability of finding a new coupon while conducting uni-
form selection trials on the available n coupons. Thus, the success probability
depends on the number of already acquired coupons and can be modeled using
the higher-order-logic function for the discrete Uniform random variable. Using
this approach the Coupon Collector’s problem has been modeled in [21] as a
higher-order-logic function, coupon collector, that accepts a positive integer
greater than 0, n + 1, which represents the total number of distinct coupons
that are required to be collected. The function returns the number of trials for
acquiring these n + 1 distinct coupons. Now, using this function along with the
formal definitions of expectation and variance and their formally verified corre-
sponding properties, given in Section 2.3, the following statistical characteristics
can be verified [21].

� ∀ n. expec (coupon collector (n + 1)) = (n + 1) (
∑n+1

i=0
1

i+1
)

� ∀ n a. 0 < a ⇒ P {s | (fst(coupon collector (n + 1) s)) ≥ a}
≤ ( (n+1)

a
(
∑n+1

i=0
1

(i+1)))

� ∀ n a. 0 < a ⇒ P {s | abs((fst(coupon collector (n + 1) s)) -
expec (coupon collector (n + 1))) ≥ a}

≤ ( (n+1)2

a2
(
∑n+1

i=0
1

(i+1)2 ))

where expec and abs represent the higher-order-logic functions for expectation
and absolute functions, respectively.

The first theorem gives the expectation of the Coupon Collector’s problem,
while the next two correspond to the tail distribution bounds of the Coupon
Collector’s problem using Markov and Chebyshev’s inequalities, respectively.
The above results exactly match the results of the analysis based on paper-and-
pencil proof techniques [34] and are thus 100 % precise, which is a novelty that
cannot be achieved, to the best of our knowledge, by any existing computer
based probabilistic analysis tool. The results were obtained by building on top
of the formally verified linearity of expectation and variance properties and the
Markov and Chebyshev’s inequalities and thus the proof script corresponding to
the formalization and verification of the Coupon Collector’s problem translated
to approximately 1000 lines of code and the analysis took around 100 man-hours.

3.2 Performance Analysis of the Stop-and-Wait Protocol

The Stop-and-Wait protocol [29] utilizes the principles of error detection and
retransmission to ensure reliable communication between computers. The main
idea is that the transmitter keeps on transmitting a data packet unless and until
it receives a valid acknowledgement (ACK) of its reception from the receiver.



12 O. Hasan and S. Tahar

The message delay of a communication protocol is the most widely used perfor-
mance metric. In the case of the Stop-and-Wait protocol, the message delay is
an unpredictable quantity since it depends on the random behavior of channel
noise and thus probabilistic techniques are utilized for its assessment.

The Stop-and-Wait protocol is a classical example of a real-time system and
thus involves a subtle interaction of a number of distributed processes. The be-
havior of these processes over time may be specified by higher-order-logic predi-
cates on positive integers [5] that represent the ticks of a clock counting physical
time in any appropriate units, e.g., nanoseconds. The granularity of the clock’s
tick is believed to be chosen in such a way that it is sufficiently fine to detect
properties of interest. Using this approach, the Stop-and-Wait protocol can be
formalized in higher-order logic as a logical conjunction of six processes (Data
Transmission, Data Channel, Data Reception, ACK Transmission, ACK Chan-
nel, ACK Reception) and some initial conditions [22]. The random component
in the Stop-and-Wait protocol is channel noise, which can be expressed using
the formal Bernoulli random variable function.

The next step is to utilize the formal model of the Stop-and-Wait protocol to
formally verify the average message delay relation of the Stop-and-Wait protocol,
for the case when the processing time of a message is equal to 1, as the following
theorem [22].

� ∀ source sink rem s i r ws sn ackty maxP abort dataS dataR
ackS ackR d tprop dtout dtf dta tf ack msg ta tout rec flag
bseqt bseq p.
STOP WAIT NOISY source sink rem s i r ws sn ackty maxP abort
dataS dataR ackS ackR d tprop dtout dtf dta tf
ack msg ta tout rec flag bseqt bseq ∧
LIVE ASSUMPTION abort ∧ 0 ≤ p ∧ p < 1 ∧ ¬NULL source ∧
tprop + 1 + ta + tprop + 1 ≤ tout ⇒
(expec (DELAY STOP WAIT NOISY rem source bseqt) =
((tf + tout)p/(1-p) + (tf + tprop + 1 + ta + tprop + 1)))

The antecedent of the above theorem contains the formal definition of the Stop-
and-Wait protocol under noisy channel conditions (STOP WAIT NOISY), liveness
constraints and the fact that the probability of channel error p is bounded in
the real interval [0, 1). The function DELAY STOP WAIT NOISY formally represents
the delay of the Stop-and-Wait protocol and thus the left-hand-side of the con-
clusion of the above theorem represents the average delay of the Stop-and-Wait
protocol. On the right-hand-side of the conclusion of the above theorem, the
variables tf , ta, tprop and tout denote the time delays associated with data
transmission, ACK transmission, message propagation, message processing and
time-out delays, respectively. More details on the variables used above and the
proof sketch of this theorem can be found in [22].

It is important to note here that the relation for the average delay of a Stop-
and-Wait protocol is not new. In fact its existence dates back to the early days of
introduction of the Stop-and-Wait protocol. However, it has always been verified



Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 13

using theoretical paper-and-pencil proof techniques, e.g. [29]. Whereas, the anal-
ysis described above is based on mechanical verification using a theorem prover,
which is a superior approach to both paper-and-pencil proofs and simulation
based analysis techniques. To the best of our knowledge, it is the first time that
a statistical property for a real-time system has been been formally verified.

3.3 Reliability Analysis of Reconfigurable Memory Arrays

Reconfigurable memory arrays with spare rows and columns are quite frequently
used as reliable data storage components in present age System-on-Chips. The
spare memory rows and columns can be utilized to automatically replace rows
or columns that are found to contain a cell fault, such as stuck-at or coupling
fault [33]. One of the biggest design challenges is to estimate, prior to the actual
fabrication process, the right number of these spare rows and spare columns for
meeting the reliability specifications. Since the fault occurrence in a memory cell
is an unpredictable event, probabilistic techniques are utilized to estimate the
number of spare rows and columns [39].

The analysis for this example is done by formally expressing a fault model
for reconfigurable memory arrays in higher-order logic [23]. The formalization
utilizes the precise Binomial random variable function to express the random
components in the model. This model is then utilized to express and verify
statistical properties, such as expectation and variance of the number of faults
in terms of memory array and spare rows and columns sizes, as higher-order logic
theorems. Finally, this formal statistical information is built upon to formally
verify repairability and irrepairability conditions for a square memory array with
stuck-at and coupling faults that are independent and identically distributed. For
example, the repairability condition for a square nxn memory array, with axn
spare rows and bxn spare columns, has been verified as the following higher-
order-logic theorem.

� ∀ a b w. (0 ≤ a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧
(c1 + c2 = a + b) ∧ (1 < n) ∧ (∀ n.(0 < w(n)) ∧

(w(n) < (min c1
√
n c2

√
n))) ∧ (lim (λn. 1

w(n)) = 0) ⇒
(lim (λn.P{s |(fst(num of faults n c1 c2 w s))≤(a+b)n})=1))

where lim M represents the higher-order logic formalization of the limit of a real
sequence M (i.e., lim M = lim

n→∞ M(n)) [15]. The first four assumptions in the
above theorem ensure that the fractions a and b are bounded by the interval
[0, 1] as the number of spares can never exceed the number of original rows.
The relationship between a and b with two arbitrary real numbers c1 and c2 is
given in the fifth assumption. The precondition 1 < n has been used in order
to ensure that the given memory array has more than one cell. The next two
assumptions are about the real sequence w and basically provides its upper and
lower bounds. These bounds have been used in order to prevent the stuck-at
and coupling fault occurrence probabilities ps and pc from falling outside their
allowed interval [0, 1] [23]. The last assumption (lim(λn. 1

w(n) ) = 0) has been



14 O. Hasan and S. Tahar

added to formally represent the intrinsic characteristic of real sequence w that
it tends to infinity as its natural argument becomes very very large. The theorem
proves that under these assumptions a very large square memory array is almost
always repairable (with probability 1) since the probability that the number of
faults is less than the number of spare rows and columns is 1.

The above theorem leads to the accurate estimation of the number of spare
rows and columns required for reliable operation against stuck-at and coupling
faults of any reconfigurable memory array without any CPU time constraints.
The distinguishing feature of this analysis is its generic nature as our theorems
are verified for all sizes of memories nxn with any number of spare rows (axn)
or columns (bxn).

This case study clearly demonstrate the effectiveness of theorem proving based
probabilistic analysis. Due to the formal nature of the models, the high expres-
siveness of higher-order logic, and the inherent soundness of theorem proving,
we have been able to verify generic properties of interest that are valid for any
given memory array with 100% precision; a novelty which is not available in sim-
ulation. Similarly, we have been able to formally analyze properties that cannot
be handled by model checking. The proposed approach is also superior to the
paper-and-pencil proof methods [39] in a way as the chances of making human
errors, missing critical assumptions and proving wrongful statements are almost
nil since all proof steps are applied within the sound core of a higher-order-logic
theorem prover. These additional benefits come at the cost of the time and ef-
fort spent, while formalizing the memory array and formally reasoning about its
properties. But, the fact that we were building on top of already verified prob-
ability theory foundations, described in Section 2, helped significantly in this
regard as the memory analysis only consumed approximately 250 man-hours
and 3500 lines of proof code.

3.4 Round-Off Error Analysis in Floating-Point Representation

Algorithms involving floating-point numbers are extensively used these days in
almost all digital equipment ranging from computer and digital processing to
telecommunication systems. Due to their complexity and wide spread usage in
safety critical domains, formal methods are generally preferred over traditional
testing to ensure correctness of floating-point algorithms. A classical work in this
regard is Harrison’s error analysis of floating-point arithmetic in higher-order
logic [14]. Harrison presents a formalization of floating point numbers, verifica-
tion of upper bounds on the error in representing a real number in floating-point
and the error in floating-point arithmetic operations. Even though this analysis
is very useful in identifying the worst case conditions, it doest not reflect upon
typical or average errors. In fact, the assumed worst case conditions rarely occur
in practice. So the error analysis, based under these worst-case conditions can
improperly suggest that the performance of the algorithm is poor.

In paper-and-pencil analyses, probabilistic techniques are thus utilized in the
error analysis of floating-point algorithms [41]. The main idea behind this prob-
abilistic approach is to model the error in a single floating-point number by an



Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 15

appropriate random variable and utilize this information to judge the expected
value of error while representing a real number in floating-point system. This
expected value of error can then be used to find the expected value of error in
different floating-point arithmetic operations.

The above mentioned probabilistic analysis involves reasoning about the ex-
pectation value of a continuous random variable, since the error between a real
number and its corresponding floating-point representation is continuous in na-
ture. Thus, our proposed infrastructure can be directly utilized to conduct such
analysis, something that to the best of our knowledge was not possible before.

We built upon Harrison’s error bounds for floating-point representations of
big (|x| ∈ [2k, 2k+1), small (|x| ∈ [ 1

2k+1 , 1
2k ] : k < 126), and tiny (|x| ∈ [0, 1

2126 ])
real numbers [14]. The error is defined as the difference between the real value
of the floating-point representation and the actual value of the corresponding
real number (error(x) = float(x)− x), with round-to-nearest rounding mode.
Based on this definition, upper bounds on the absolute value of error are verified
to be equal to 2k

224 , 1
2k+1224 and 1

2150 , for the three cases above, respectively.
Assuming any value of error to be equally likely [41], we constructed formal

probabilistic models for representing the above mentioned rounding errors us-
ing Uniform random variables defined in the intervals [0, 2k

224 ], [0, 1
2k+1224 ] and

[0, 1
2150 ], respectively. The formally verified expectation of the Uniform random

variable [17] was then used to verify the expectation values of these floating-point
errors using a theorem prover.

� ∀ k x.
(
expec(uniform rv 0 2k

224 ) = 2k−1

224

) ∧(
expec(uniform rv 0 1

2k+1224 ) = 1
2k+1225

) ∧(
expec(uniform rv 0 1

2150 ) = 1
2151

)

This theorem plays a vital role in the statistical error analysis of floating-point
arithmetic. Based on these averages of error in a single floating-point number,
the average errors in floating point operations, like addition and multiplication,
that involve multiple floating-point numbers, can be evaluated. Similarly, this
information can be utilized in conducting the statistical error analysis of digital
signal processing (DSP) systems by building on top of the DSP verification
framework in higher-order logic [1], which does not include any probabilistic
considerations.

The verification of the above result was automatic as the verified theorem
is a direct consequence of the expectation property of the continuous Uniform
random variable, which is available in the proposed framework. This fact clearly
demonstrates the usefulness of the proposed infrastructure that calls for formal-
izing and verifying the fundamental concepts of probability theory in order to
facilitate the formal probabilistic analysis of real-world systems.

4 Related Work

Due to the vast application domain of probability in safety-critical applications,
many researchers around the world are trying to improve the quality of computer



16 O. Hasan and S. Tahar

based probabilistic analysis. The ultimate goal is to come up with a formal prob-
abilistic analysis framework that includes robust and accurate analysis methods,
has the ability to perform analysis for large-scale problems and is easy to use.
In this section, we provide a brief account of the state-of-the-art in this field.

Probabilistic model checking [3,37] is one of the commonly used formal prob-
abilistic analysis technique. It involves the construction of a precise state-based
mathematical model of the given probabilistic system, which is then subjected to
exhaustive analysis to formally verify if it satisfies a set of formally represented
probabilistic properties. Numerous probabilistic model checking algorithms and
methodologies have been proposed in the open literature, e.g., [8,35], and based
on these algorithms, a number of tools have been developed, e.g., PRISM [36,28],
E �MC2 [24], Rapture [27] and VESTA [38]. Besides the accuracy of the results,
the most promising feature of probabilistic model checking is the ability to per-
form the analysis automatically. On the other hand, it is limited to systems
that can only be expressed as probabilistic finite state machines. Another major
limitation of the probabilistic model checking approach is state space explosion
[4]. The state space of a probabilistic system can be very large, or sometimes
even infinite. Thus, at the outset, it is impossible to explore the entire state
space with limited resources of time and memory. Similarly, we cannot reason
about mathematical expressions in probabilistic model checking. This is a big
limitation as far as reasoning about PMF, CDF or expectation or variance of a
random behavior is concerned, which are basically functions of the range of a
random variable. Thus, the probabilistic model checking approach, even though
is capable of providing exact solutions, is quite limited in terms of handling a
variety of probabilistic analysis problems. Whereas higher-order-logic theorem
proving is capable of overcoming all the above mentioned problems but at a
significant cost of user interaction.

Besides higher-order-logic theorem proving and model checking, another for-
mal approach that is capable of providing exact solutions to probabilistic proper-
ties is proof based languages that have been extended with probabilistic choice.
The main idea behind this approach is to use refinement or utilize the expecta-
tions (or probabilistic invariants) to reason about probabilistic properties. Many
formalisms have been extended with probabilistic choice, e.g., B (pB) [25], Hoare
logic (pL) [7], Z [40] and Event-B [13]. Besides their precision, another major
benefit of these approaches is their automatic or semi-automatic nature. Out
of these formalisms, Probabilistic B (pB) is one of the more commonly used
mainly because of its ability to obtain algebraic relationships between the dif-
ferent parameters of the model and of the design requirements. On the other
hand, even though some efforts have been reported, e.g. [2], it is not mature
enough to model and reason about random components of the system that in-
volve all different kinds of continuous probability distributions. Similarly, all of
the above mentioned formalisms cannot be used to reason about generic mathe-
matical expressions for probabilistic or statistical properties, such as PMF, CDF,
expectation or variance, due to their limited expressiveness, which is not an is-
sue with the proposed higher-order-logic theorem proving based approach. For



Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 17

example, the Chaums Dining Cryptographers (DC) problem, a well-known se-
curity problem, has been recently analyzed formally using the pB approach and
the mean and variance of utterances have been computed for only a finite num-
ber of DC nets and specific set of fixed values for coin fairness [32]. By contrast,
higher-order-logic theorem proving can be utilized to prove generic mathemat-
ical expressions, for the mean and variance characteristics of interest, that are
quantified over n cryptographers and all values of coin fairness.

5 Conclusions

This paper provides a brief overview of the existing capabilities of higher-order-
logic theorem proving based probabilistic analysis approach. The main idea be-
hind this emerging trend is to use random variables formalized in higher-order
logic to model systems, which contain some sort of randomness, and to verify the
corresponding probabilistic and statistical properties in a theorem prover. Be-
cause of the formal nature of the models, the analysis is 100% accurate and due
to the high expressive nature of higher-order logic a wider range of systems can
be analyzed. Thus, the theorem proving based probabilistic analysis approach
can prove to be very useful for the performance and reliability optimization of
safety critical and highly sensitive engineering and scientific applications.

The proposed approach has been illustrated by providing the formal proba-
bilistic analysis of four real-world systems. The analysis results exactly matched
the results obtained by paper-and-pencil proof techniques and are thus 100 %
precise. The successful handling of these diverse problems by the proposed ap-
proach clearly demonstrates its feasibility for real-world probabilistic analysis
issues. In all these applications, we have been able to formally reason about real
valued expressions of probabilistic or statistical properties of systems, something
that cannot be achieved by probabilistic model checking or probabilistic language
based approaches.

All higher-order-logic formalizations, presented in this paper, have been done
using the HOL theorem prover [12]. The main reason being that the foundational
measure and probability theories were formalized in HOL first [26] and then the
rest of the infrastructure kept building upon that. Though, it is important to
note that the presented methodologies and framework are not specific to the
HOL theorem prover and can be adapted to any other higher-order-logic theorem
prover, such as Isabelle, Coq or PVS, as well.

The theorem proving based probabilistic analysis framework can no way be
considered to be mature enough to be able to handle all kind of problems. There
are many open research issues that need to resolved in order to achieve this goal.
To name a few, first of all the capability to reason about multiple continuous
random variables is not available. Secondly, some of the most commonly used
random variables, like the Normal random variable, have not been formalized so
far. Thirdly, no formalization related to stochastic processes and Markov chains
is available, which are widely used concepts in probabilistic analysis.



18 O. Hasan and S. Tahar

References

1. Akbarpour, B., Tahar, S.: An Approach for the Formal Verification of DSP Designs
using Theorem Proving. IEEE Transactions on CAD of Integrated Circuits and
Systems 25(8), 1141–1457 (2006)

2. Andrews, Z.: Towards a Stochastic Event B for Designing Dependable Systems.
In: Proc. Workshop on Quantitative Formal Methods: Theory and Applications,
Eindhoven, The Netherlands (November 2009)

3. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model Checking Algorithms
for Continuous time Markov Chains. IEEE Transactions on Software Engineer-
ing 29(4), 524–541 (2003)

4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

5. Cardell-Oliver, R.: The Formal Verification of Hard Real-time Systems. PhD The-
sis, University of Cambridge, UK (1992)

6. Coble, A.: Anonymity, Information, and Machine-Assisted Proof. Ph.D Thesis,
University of Cambridge, UK (2009)

7. Corin, R.J., Den Hartog, J.I.: A Probabilistic Hoare-style Logic for Game-based
Cryptographic Proofs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 252–263. Springer, Heidelberg (2006)

8. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD Thesis, Stanford
University, Stanford, USA (1997)

9. Devroye, L.: Non-Uniform Random Variate Generation. Springer, Heidelberg
(1986)

10. Galambos, J.: Advanced Probability Theory. Marcel Dekker Inc., New York (1995)

11. Gordon, M.J.C.: Mechanizing Programming Logics in Higher-Order Logic. In: Cur-
rent Trends in Hardware Verification and Automated Theorem Proving, pp. 387–
439. Springer, Heidelberg (1989)

12. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Envi-
ronment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

13. Hallerstede, S., Hoang, T.S.: Qualitative Probabilistic Modelling in Event-B. In:
Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 293–312. Springer,
Heidelberg (2007)

14. Harrison, J.: Floating Point Verification in HOL Light: The Exponential Function.
Technical Report 428, Computing Laboratory, University of Cambridge, UK (1997)

15. Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)

16. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, Cambridge (2009)

17. Hasan, O., Abbasi, N., Akbarpour, B., Tahar, S., Akbarpour, R.: Formal reason-
ing about expectation properties for continuous random variables. In: Cavalcanti,
A., Dams, D.R. (eds.) FM 2009: Formal Methods. LNCS, vol. 5850, pp. 435–450.
Springer, Heidelberg (2009)

18. Hasan, O., Tahar, S.: Formalization of the Continuous Probability Distributions.
In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 3–18. Springer,
Heidelberg (2007)

19. Hasan, O., Tahar, S.: Formalization of the Standard Uniform Random Variable.
Theoretical Computer Science 382(1), 71–83 (2007)

20. Hasan, O., Tahar, S.: Using Theorem Proving to Verify Expectation and Variance
for Discrete Random Variables. Journal of Automated Reasoning 41(3-4), 295–323
(2008)



Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 19

21. Hasan, O., Tahar, S.: Formal Verification of Tail Distribution Bounds in the HOL
Theorem Prover. Mathematical Methods in the Applied Sciences 32(4), 480–504
(2009)

22. Hasan, O., Tahar, S.: Performance Analysis and Functional Verification of the Stop-
and-Wait Protocol in HOL. Journal of Automated Reasoning 42(1), 1–33 (2009)

23. Hasan, O., Tahar, S., Abbasi, N.: Formal Reliability Analysis using Theorem Prov-
ing. IEEE Transactions on Computers (2009), doi:10.1109/TC.2009.165

24. Hermanns, H., Katoen, J.P., Meyer-Kayser, J., Siegle, M.: A Markov Chain Model
Checker. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785,
pp. 347–362. Springer, Heidelberg (2000)

25. Hoang, T.S.: The Development of a Probabilistic B Method and a Supporting
Toolkit. PhD Thesis, The University of New South Wales, UK (2005)

26. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD Thesis, University
of Cambridge, UK (2002)

27. Jeannet, B., Argenio, P.D., Larsen, K.: Rapture: A Tool for Verifying Markov
Decision Processes. In: Tools Day, 13th Int. Conf. Concurrency Theory, Brno, Czech
Republic (2002)

28. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative Analysis with the Prob-
abilistic Model Checker PRISM. Electronic Notes in Theoretical Computer Sci-
ence 153(2), 5–31 (2005)

29. Leon-Garcia, A., Widjaja, I.: Communication Networks: Fundamental Concepts
and Key Architectures. McGraw-Hill, New York (2004)

30. Levine, A.: Theory of Probability. Addison-Wesley series in Behavioral Science,
Quantitative Methods (1971)

31. MacKay, D.J.C.: Introduction to Monte Carlo Methods. In: Learning in Graphical
Models, NATO Science Series, pp. 175–204. Kluwer Academic Press, Dordrecht
(1998)

32. McIver, A., Meinicke, L., Morgan, C.: Security, Probability and Nearly Fair Coins in
the Cryptographers’ Café. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009: Formal
Methods. LNCS, vol. 5850, pp. 41–71. Springer, Heidelberg (2009)

33. Miczo, A.: Digital Logic Testing and Simulation. Wiley Interscience, Hoboken (2003)
34. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University

Press, Cambridge (2005)
35. Parker, D.: Implementation of Symbolic Model Checking for Probabilistic System.

PhD Thesis, University of Birmingham, UK (2001)
36. PRISM (2008), http://www.cs.bham.ac.uk/~dxp/prism
37. Rutten, J., Kwaiatkowska, M., Normal, G., Parker, D.: Mathematical Techniques

for Analyzing Concurrent and Probabilisitc Systems. CRM Monograph Series,
vol. 23. American Mathematical Society (2004)

38. Sen, K., Viswanathan, M., Agha, G.: VESTA: A Statistical Model-Checker and
Analyzer for Probabilistic Systems. In: Proc. IEEE International Conference on
the Quantitative Evaluation of Systems, pp. 251–252 (2005)

39. Shi, W., Fuchs, W.K.: Probabilistic Analysis and Algorithms for Reconfiguration
of Memory Arrays. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 11(9), 1153–1160 (1992)

40. White, N.: Probabilistic Specification and Refinement. Masters Thesis, Oxford Uni-
versity, UK (1996)

41. Widrow, B.: Statistical Analysis of Amplitude-quantized Sampled Data Systems.
AIEE Transactions on Applications and Industry 81, 555–568 (1961)

42. Yates, R.D., Goodman, D.J.: Probability and Stochastic Processes: A Friendly
Introduction for Electrical and Computer Engineers. Wiley, Chichester (2005)

http://www.cs.bham.ac.uk/~dxp/prism

	Formal Probabilistic Analysis: A Higher-Order Logic Based Approach
	Introduction
	Formal Probabilistic Analysis Framework
	Discrete Random Variables and the PMF
	Continuous Random Variables and the CDF
	Statistical Properties for Discrete Random Variables
	Statistical Properties for Continuous Random Variables

	Applications
	Probabilistic Analysis of the Coupon Collector's Problem
	Performance Analysis of the Stop-and-Wait Protocol
	Reliability Analysis of Reconfigurable Memory Arrays
	Round-Off Error Analysis in Floating-Point Representation

	Related Work
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




