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Abstract. Geometrical optics, in which light is characterized as rays,
provides an efficient and scalable formalism for the modeling and anal-
ysis of optical and laser systems. The main applications of geometrical
optics are in stability analysis of optical resonators, laser mode locking
and micro opto-electro-mechanical systems. Traditionally, the analysis
of such applications has been carried out by informal techniques like
paper-and-pencil proof methods, simulation and computer algebra sys-
tems. These traditional techniques cannot provide 100% accurate results
and thus cannot be recommended for safety-critical applications, such
as corneal surgery, process industry and inertial confinement fusion. On
the other hand, higher-order logic theorem proving does not exhibit the
above limitations, thus we propose a higher-order logic formalization of
geometrical optics. Our formalization is mainly based on existing higher-
order logic theories of geometry and multivariate analysis in the HOL
Light theorem prover. In order to demonstrate the practical effectiveness
of our formalization, we present the formal stability analysis of optical
and laser resonators.

1 Introduction

Different characterizations of light lead to different fields of optics such as quan-
tum optics, electromagnetic optics, wave optics and geometrical optics. The lat-
ter describes light as rays which obey geometrical rules. The theory of geometri-
cal optics can be applied for the modeling and analysis of physical objects with
dimensions greater than the wavelength of light. Geometrical optics is based on
a set of postulates which are used to derive the rules for the propagation of
light through an optical medium. These postulates can be summed up as fol-
lows: Light travels in the form of rays emitted by a source; an optical medium is
characterized by its refractive index; light rays follow Fermat’s principle of least
time [17].

Optical components, such as thin lenses, thick lenses and prisms are usually
centered about an optical axis, around which rays travel at small inclinations (an-
gle with the optical axis). Such rays are called paraxial rays and this assumption
provides the basis of paraxial optics which is the simplest framework of geometri-
cal optics. The paraxial approximation explains how light propagates through a
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series of optical components and provides diffraction-free description of complex
optical systems. The change in the position and inclination of a paraxial ray as
it travels through an optical system can be efficiently described by the use of
a matrix algebra [10]. This matrix formalism (called ray-transfer matrices) of
geometrical optics provides accurate, scalable and systematic analysis of real-
world complex optical and laser systems. This fact has led to the widespread
usage of ray-transfer matrices in the modeling and analysis of critical physical
systems. Typical applications of ray-transfer matrices include analysis of a laser
beam propagation through some optical setup [10], the stability analysis of laser
or optical resonators [12], laser mode-locking, optical pulse transmission [14]
and analysis of micro opto-electro-mechanical systems (MOEMS) [20]. Another
promising feature of the matrix formalism of geometrical optics is the prediction
of design parameters for physical experiments, e.g., recent dispersion-managed
soliton transmission experiment [13] and invention of the first single-cell biolog-
ical lasers [3].

Traditionally, the analysis of geometrical optics based models has been done
using paper-and-pencil proof methods [10, 14, 13]. However, considering the com-
plexity of present age optical and laser systems, such an analysis is very difficult
if not impossible, and thus quite error-prone. Many examples of erroneous paper-
and-pencil based proofs are available in the open literature, a recent one can be
found in [2] and its identification and correction is reported in [15]. One of the
most commonly used computer-based analysis techniques for geometrical optics
based models is numerical computation of complex ray-transfer matrices [19, 11].
Optical and laser systems involve complex and vector analysis and thus numer-
ical computations cannot provide perfectly accurate results due to the inherent
incomplete nature of the underlying numerical algorithms. Another alternative
is computer algebra systems [16], which are very efficient for computing mathe-
matical solutions symbolically, but are not 100% reliable due to their inability to
deal with side conditions [5]. Another source of inaccuracy in computer algebra
systems is the presence of unverified huge symbolic manipulation algorithms in
their core, which are quite likely to contain bugs. Thus, these traditional tech-
niques should not be relied upon for the analysis of critical laser and optical
systems (e.g., corneal surgery [9]), where inaccuracies in the analysis may even
result in the loss of human lives.

In the past few years, higher-order logic theorem proving has been success-
fully used for the precise analysis of a few continuous physical systems [18, 8].
Developing a higher-order logic model for a physical system and analyzing this
model formally is a very challenging task since it requires both a good mathemat-
ical and physical knowledge. However, it provides an effective way for identify-
ing critical design errors that are often ignored by traditional analysis techniques
like simulation and computer algebra systems. We believe that higher-order logic
theorem proving [4] offers a promising solution for conducting formal analysis of
such critical optical and laser systems. Most of the classical mathematical the-
ories behind geometrical optics, such as Euclidean spaces, multivariate analysis
and complex numbers, have been formalized in the HOL Light theorem prover
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[6, 7]. To the best of our knowledge, the reported formalization of geometrical
optics is the first of its kind.

2 Geometrical Optics

When a ray passes through optical components, it undergoes translation or re-
fraction. In translation, the ray simply travels in a straight line from one compo-
nent to the next and we only need to know the thickness of the translation. On
the other hand, refraction takes place at the boundary of two regions with dif-
ferent refractive indices and the ray obeys the law of refraction, i.e., the angle of
refraction relates to the angle of incidence by the relation n0 sin(φ0) = n1 sin(φ1),
called Snell’s law [17], where n0, n1 are the refractive indices of both regions
and φ0, φ1 are the angles of the incident and refracted rays, respectively, with
the normal to the surface. In order to model refraction, we thus need the normal
to the refracting surface and the refractive indices of both regions.

In order to introduce the matrix formalism of geometrical optics, we consider
the propagation of a ray through a spherical interface with radius of curvature
R between two mediums of refractive indices n0 and n1, as shown in Figure 1.
Our goal is to express the relationship between the incident and refracted rays.
The trajectory of a ray as it passes through various optical components can be
specified by two parameters: its distance from the optical axis and its angle with
the optical axis. Here, the distances of the incident and refracted rays are r1 and
r0, respectively, and r1 = r0 because the thickness of the surface is assumed to
be very small. Here, φ0 and φ1 are the angles of the incident and refracted rays
with the normal to the spherical surface, respectively. On the other hand, θ0 and
θ1 are the angles of the incident and refracted rays with the optical axis.

Fig. 1. Spherical interface

Applying Snell’s law at the interface, we have n0 sin(φ0) = n1 sin(φ1), which, in
the context of paraxial approximation, reduces to the form n0φ0 = n1φ1 since
sin(φ) � φ if φ is small. We also have θ0 = φ0 − ψ and θ1 = φ1 − ψ, where ψ
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is the angle between the surface normal and the optical axis. Since sin(ψ) = r0
R ,

then ψ = r0
R by paraxial approximation. We can deduce that:

θ1 =
(
n0 − n1

n1R

)
r0 +

(
n0

n1

)
θ0 (1)

So, for a spherical surface, we can relate the refracted ray with the incident ray
by a matrix relationship using equation (1) as follows:[

r1

θ1

]
=

[
1 0

n0−n1
n1R

n0
n1

] [
r0

θ0

]

Thus the propagation of a ray through a spherical interface can be described by
a 2 × 2 matrix generally called, in the literature, ABCD matrix. This can be
generalized to many optical components [17] as follows:[

r1

θ1

]
=

[
A B

C D

] [
r0

θ0

]

where matrix elements are either real in the case of spatial domain analysis or
complex in the case of time domain analysis [14]. If we have an optical system
consisting of k optical components, then we can trace the input ray Ri through
all optical components using composition of matrices of each optical component
as follows:

Ro = (Mk.Mk−1....M1).Ri (2)

Simply, we can write Ro = MsRi where Ms =
∏1

i=k Mi. Here, Ro is the output
ray and Ri is the input ray. In the next section, we present a brief overview of
our higher-order logic formalization of geometrical optics.

3 Formalization of Geometrical Optics

The formalization is two-fold: first, we model the geometry and physical param-
eters of an optical system; second, we model the physical behavior of a ray when
it goes through an optical interface. Afterwards, we will be able to derive the
ray-transfer matrices of the optical components, as explained in Section 2.

An optical system is a sequence of optical interfaces, which are defined by an
inductive data type enumerating their different kinds and their corresponding
parameters:

Definition 1 (Optical Interface and System).
define type "optical interface = plane | spherical real"
define type "interface kind = transmitted | reflected"
new type abbrev("free space",‘:real # real‘)
new type abbrev("optical system",‘:(free space # optical interface #

interface kind) list # free space‘)
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An optical system is made of a list of free spaces which are formalized by pairs
of real numbers representing the refractive index and width of free space, and
a list of optical interfaces along with their types describing the system itself.
Optical interfaces themselves are of two kinds: plane or spherical interfaces,
yielding the corresponding constructors as shown in Figure 2. Both plane and
spherical interface are of two types, i.e., transmitted and reflected which charac-
terize their behavior either the incident ray will pass through or reflects back. A
spherical interface takes a real number representing its radius of curvature. Note
that this datatype can easily be extended to many other optical components if
needed. Here, we call (free space,optical interface,interface kind) an
optical component.

no n1 

 
 

yo y1 n 

 

yo y1 

no n1 

 

 

y0 = y1 
    

y0 = y1 
    

 
 

 

 

(a) Ray in Free Space (b) Plane Interface (transmitted) 

(d) Plane Interface (reflected) (c) Spherical Interface (reflected) 

 

no n1 

Fig. 2. Behavior of ray at different interfaces

A value of the type free space does represent a real space only if the refrac-
tive index is greater than zero. In addition, in order to have a fixed order in the
representation of an optical system, we impose that the distance of an optical
interface relative to the previous interface is greater or equal to zero. We also
need to assert the validity of a value of type optical interface by ensuring
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that the radius of curvature of spherical interfaces is never equal to zero. This
yields the following predicates:

Definition 2 (Valid Free Space and Valid Optical Component).
� is valid free space ((n,d):free space) ⇔ 0 < n ∧ 0 ≤ d
� (is valid interface plane ⇔ T) ∧
(is valid interface (spherical interface R) ⇔ 0 <> R)

Then, by ensuring that this predicate holds for every component of an optical
system, we can characterize valid optical systems as follows:

Definition 3 (Valid Optical System).
� ∀os fs. is valid optical system ((cs,fs):optical system) ⇔

is valid free space fs ∧ ALL (λ(fs,i,ik).is valid free space fs ∧
is valid interface i) cs

where ALL is a HOL Light library function which checks that a predicate holds
for all the elements of a list. We conclude our formalization of an optical system
by defining the following helper function to retrieve the refractive index of the
first free space in an optical system:

Definition 4 (Refractive Index of First Free Space).
� (head index ([],(n,d)) = n) ∧
(head index (CONS ((n,d),i) cs, (nt,dt)) = n)

We can now formalize the physical behavior of a ray when it passes through an
optical system. We only model the points where a ray hits an optical interface
(instead of all the points constituting the ray). So it is sufficient to just provide
the distance of the hitting point to the axis and the angle taken by the ray at
that point. Consequently, we should have a list of such pairs (distance, angle)
for every component of a system. In addition, the same information should be
provided for the source of the ray. For the sake of simplicity, we define a type for
a pair (distance, angle) as ray at point. This yields the following definition:

Definition 5 (Ray).
new type abbrev ("ray at point", ‘:real # real‘)
new type abbrev ("ray", ‘:ray at point # ray at point #

(ray at point # ray at point) list‘)

The first ray at point is the pair (distance, angle) for the source of the ray,
the second one is the one after the first free space, and the list of ray at point
represents the same information for all hitting points of an optical system. The
reason behind the list of ray at point is because an optical system is modeled
as a list of free space and interface.

Once again, we specify what is a valid ray by using some predicates. First of
all, we define what is the behavior of a ray when it is traveling through a free
space. This requires the position and orientation of the ray at the previous and
current point of observation, and the free space itself. This is shown in Figure
2(a).
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Definition 6 (Behavior of a Ray in Free Space).
� is valid ray in free space (y0,θ0) (y1,θ1) ((n,d):free space) ⇔

y1 = y0 + d * θ0 ∧ θ0 = θ1

Next, we define what is the valid behavior of a ray when hitting a particular
interface. This requires the position and orientation of the ray at the previous
and current interface, and the refractive index before and after the component.
Then the predicate is defined by case analysis on the interface and its type as
follows:

Definition 7 (Behavior of a Ray at Given Interface).
� (is valid ray at interface (y0,θ0) (y1,θ1) n0 n1 plane transmitted
⇔ y1 = y0 ∧ n0 * θ0 = n1 * θ1) ∧
(is valid ray at interface (y0,θ0) (y1,θ1) n0 n1 (spherical R)
transmitted ⇔ let φi= θ0 + y1

R
and φt = θ1 + y1

R
in

y1 = y0 ∧ n0 * φi = n1 * φt) ∧
(is valid ray at interface (y0,θ0) (y1,θ1) n0 n1 plane reflected
⇔ y1 = y0 ∧ n0 * θ0 = n0 * θ1) ∧

(is valid ray at interface (y0,θ0) (y1,θ1) n0 n1 (spherical R)
reflected ⇔ let φi = y1

R
- θ0 in y1 = y0 ∧ θ1 = -(θ0 + 2 * φi))

The above definition states some basic geometrical facts about the distance to
the axis, and applies Snell’s law to the orientation of the ray as shown in Figures
1 and 2. Note that, both to compute the distance and to apply Snell’s law,
we assumed the paraxial approximation in order to turn sin(θ) into θ. Finally,
we can recursively apply these predicates to all the components of a system as
follows:

Definition 8 (Behavior of a Ray in an Optical System).
� ∀ sr1 sr2 h h’ fs cs rs i ik y0 θ0 y1 θ1 y2 θ2 y3 θ3 n d n’ d’.
(is valid ray in system (sr1,sr2,[]) (CONS h cs,fs) ⇔ F) ∧
(is valid ray in system (sr1,sr2,CONS h’ rs) ([],fs) ⇔F)∧
(is valid ray in system ((y0,θ0),(y1,θ1),[]) ([],n,d) ⇔
is valid ray in free space (y0,θ0) (y1,θ1) (n,d)) ∧

(is valid ray in system ((y0,θ0),(y1,θ1),
CONS ((y2,θ2),y3,θ3) rs) (CONS ((n’,d’),i,ik) cs,n,d) ⇔

(is valid ray in free space (y0,θ0) (y1,θ1) (n’,d’) ∧
is valid ray at interface (y1,θ1) (y2,θ2) n’
(head index (cs,n,d)) i ik)) ∧

(is valid ray in system ((y2,θ2),(y3,θ3),rs) (cs,n,d))

The behavior of a ray going through a series of optical components is thus
completely defined. Using this formalization, we verify the ray-transfer matrices
as presented in Section 2. In order to facilitate formal reasoning, we define the
following matrix relations for free spaces and interfaces.

Definition 9 (Free Space Matrix).

� ∀ d. free space matrix d ⇔
[
1 d
0 1

]
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Definition 10 (Interface Matrix).
� ∀ n0 n1 R.

interface matrix n0 n1 plane transmitted ⇔
[
1 0
0 n0

n1

]
∧

interface matrix n0 n1 (spherical R) transmitted ⇔
[

1 0
n0−n1
n0∗R

n0
n1

]
∧

interface matrix n0 n1 plane reflected ⇔
[
1 0
0 1

]
∧

interface matrix n0 n1 (spherical R) reflected

[
1 0
−2
R 1

]

In the above definition, n0 and n1 represent the refractive indices before and after
an optical interface. We use the traditional mathematical notation of matrices
for the sake of clarity, whereas we define these matrices using the HOL Light
Vectors library. For example, a simple 2 x 2 matrix can be defined as follows:

Definition 11 (Matrix in HOL Light).
� ∀ A B C D. matrix abcd A B C D ⇔ vector[vector[A;B];vector[C;D]]

Next, we verify the ray-transfer-matrix relation for free space:

Theorem 1 (Ray-Transfer-Matrix for Free Space).
� ∀ n d y0 θ0 y1 θ1. is valid free space (n,d) ∧
is valid ray in free space (y0,θ0) (y1,θ1) (n,d)) =⇒[
y1
θ1

]
= free space matrix d *

[
y0
θ0

]

Here, the first assumption ensures the validity of free space and the second as-
sumption ensures the valid behavior of ray in free space. The proof of this theo-
rem requires some properties of vectors and matrices along with some arithmetic
reasoning. Next, we verify an important theorem describing general ray-transfer-
matrix relation for any interface as follows:

Theorem 2 (Ray-Transfer-Matrix any Interface).
� ∀ n0 n1 y0 θ0 y1 θ1 i ik. is valid interface i ∧
is valid ray at interface (y0,θ0) (y1,θ1) n0 n1 i ik ∧
0 < n0 ∧ 0 < n1 =⇒

[
y1
θ1

]
= interface matrix n0 n1 i ik *

[
y0
θ0

]

In the above theorem, both assumptions ensure the validity of interface and
behavior of ray at the interface, respectively. This theorem is easily proved by
case splitting on i and ik.

Now, equipped with the above theorem, the next step is to formally verify
the ray-transfer-matrix relation for an optical system as given in Equation (2).
It is important to note that in Equation (2), individual matrices of optical com-
ponents are composed in reverse order. We formalize this fact with the following
recursive definition:
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Definition 12 (System Composition).
� system composition ([],n,d) ⇔ free space matrix d ∧
system composition (CONS ((nt,dt),i,ik) cs,n,d) ⇔
(system composition (cs,n,d) *
interface matrix nt (head index (cs,n,d)) i ik) *
free space matrix dt

The general ray-transfer-matrix relation is then given by the following theorem:

Theorem 3 (Ray-Transfer-Matrix for Optical System).
� ∀ sys ray. is valid optical system sys ∧
is valid ray in system ray sys =⇒
let (y0,θ0),(y1,θ1),rs = ray in
let yn,θn = last ray at point ray in[
yn

θn

]
= system composition sys *

[
y0
θ0

]

Here, the parameters sys and ray represent the optical system and the ray
respectively. The function last ray at point returns the last ray at point in
system. Both assumptions in the above theorem ensure the validity of the optical
system and the good behavior of the ray in the system. The theorem is easily
proved by induction on the length of the system and by using previous results
and definitions.

This concludes our formalization of geometrical optics and verification of im-
portant properties of optical components and optical systems. The formal veri-
fication of the above theorems not only ensures the effectiveness of our formal-
ization but also shows the correctness of our formal definitions related to optical
systems. Now, we present the formal verification of the ray-transfer matrix rela-
tionship of Thin Lenses [17], which is one of the most widely used components
in optical and laser systems.

Generally, lenses are determined by their refractive indices and thickness. In
thin lens approximation, a lens is considered as the composition of two trans-
mitted spherical interfaces and any variation of ray parameters (position y and
orientation θ) is neglected between both interfaces, as shown in Figure 3. So,
a thin lens is the composition of two spherical interfaces with a null width free
space in between. Now, we present the formal verification of the thin lens matrix.

Theorem 4 (Thin Lens Matrix).
� ∀ R1 R2 n0 n1. R1 <> 0 ∧ R2 <> 0 ∧ 0 < n1 ∧ 0 < n2 ∧ =⇒
system composition ([(n1,0),spherical R1,transmitted ; (n2,0),

spherical R2,transmitted], n1,0) ⇔
[

1 0
n2−n1

n1
( 1

R2
− 1

R1
) 1

]

In the next section, we sketch the formal stability analysis of an optical
resonator using our formalization.
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Fig. 3. Thin Lens

4 Applications

In order to illustrate the use and effectiveness of the proposed formalization, we
apply it to formally analyze the stability of optical resonators which are very
important for various operations of lasers, e.g., alignment sensitivity and beam
quality. An optical resonator is a special arrangement of optical components
which allows the beam of light to be confined in closed path (Figure 4(a)). The
main step to formally analyze a given optical resonator is to construct its formal
model using already formalized optical components. We then use our library
of formally verified matrices of individual interfaces (plane and spherical) to
formally verify the matrix relation of a Z-cavity as shown in Figure 4(b).

Fig. 4. (a) Simple two mirror resonator (b) The Z-cavity

Theorem 5 (Z-Cavity Matrix).
� ∀ R d1 d2. R <> 0 ∧ 0 < d1 ∧ 0 < d2 ∧ =⇒
system composition ([(n,0), plane, reflected; (n,d1),
spherical R1, reflected; (n,d2), spherical R2, reflected; (n,d1),
plane,reflected ], n,0) ⇔[

R2−4d1R−2d2R+4d1d2
R2

(−2d1−R)(−2d1d2+Rd2+Rd2+2d1R)
R2

4(d2−R)
R2

R2−4d1R−2d2R+4d1d2
R2

]
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Now, we sketch the stability analysis of an optical and laser resonator which
is an ongoing work. The stability of the resonator means that, after n round
trips, beam of light should be confined within the resonator. The last step is to
formally derive the stability condition under which the resonator remains stable.
The generalized stability condition of a two-mirror optical resonator is given as
follows:

∀M. − 1 ≤ M1,1 +M2,2

2
≤ 1 (3)

where M is the matrix of the optical resonator obtained by the multiplication
of the matrices of each optical component which is part of the resonator config-
uration [10]. The above expression looks very simple, but its formal verification
involves rather complex mathematics, e.g., trigonometry and eigenvalue problem
solving. A direct application of the above result is in determining the minimum
radius of curvature of two mirrors to ensure that a Z-cavity (shown in Figure
4(b)) is stable. It is given as follows:

∀R, d1, d2.

∣∣∣∣R2 − (4d1 − 2d2)R+ 4d1d2

R2

∣∣∣∣ ≤ 1 (4)

5 Conclusion

In this extended abstract, we report a novel application of formal methods in
analyzing optical and laser systems which is based on geometrical optics. We
provided a brief introduction of the current state-of-the-art and highlighted their
limitations. Next, we presented an overview of geometrical optics followed by
some highlights of our higher-order logic formalization. In order to show the
practical effectiveness of our formalization, we presented a sketch of the formal
stability analysis of a two-mirror resonator. Our plan is to extend this work in
order to obtain an extensive library of verified optical components, along with
their ray-transfer matrices, which would allow a practical use of our formalization
in industry.

In the current formalization, we use paraxial approximation, i.e., sin(θ) is
treated as θ. In the future, we plan to formally take into account this paraxial
approximation using asymptotic notations [1]. We also plan to formally verify
Snell’s law from the Fermat’s principle of least time [17].
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