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Abstract. Geometrical optics, in which light is characterized as rays,
provides an efficient and scalable formalism for the modeling and anal-
ysis of optical and laser systems. The main applications of geometrical
optics are in stability analysis of optical resonators, laser mode lock-
ing and micro opto-electro-mechanical systems. Traditionally, the anal-
ysis of such applications has been carried out by informal techniques
like paper-and-pencil proof methods, simulation and computer algebra
systems. These traditional techniques cannot provide accurate results
and thus cannot be recommended for safety-critical applications, such
as corneal surgery, process industry and inertial confinement fusion. On
the other hand, higher-order logic theorem proving does not exhibit the
above limitations, thus we propose a higher-order logic formalization of
geometrical optics. Our formalization is mainly based on existing theo-
ries of multivariate analysis in the HOL Light theorem prover. In order to
demonstrate the practical effectiveness of our formalization, we present
the modeling and stability analysis of some optical resonators in HOL
Light.

1 Introduction

Different characterizations of light lead to different fields of optics such as quan-
tum optics, electromagnetic optics, wave optics and geometrical optics. The
latter describes light as rays which obey geometrical rules. The theory of ge-
ometrical optics can be applied for the modeling and analysis of physical objects
with dimensions greater than the wavelength of light. Geometrical optics is based
on a set of postulates which are used to derive the rules for the propagation of
light through an optical medium. These postulates can be summed up as fol-
lows: light travels in the form of rays emitted by a source; an optical medium is
characterized by its refractive index; light rays follow Fermat’s principle of least
time [19].

Optical components, such as thin lenses, thick lenses and prisms are usually
centered about an optical axis, around which rays travel at small inclinations
(angle with the optical axis). Such rays are called paraxial rays and this as-
sumption provides the basis of paraxial optics which is the simplest framework
of geometrical optics. The paraxial approximation explains how light propagates
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through a series of optical components and provides diffraction-free descriptions
of complex optical systems. The change in the position and inclination of a
paraxial ray as it travels through an optical system can be efficiently described
by the use of matrices [11]. This matrix formalism (called ray-transfer matrices)
of geometrical optics provides accurate, scalable and systematic analysis of real-
world complex optical and laser systems. This fact has led to the widespread
usage of ray-transfer matrices in the modeling and analysis of critical physical
systems. Typical applications of ray-transfer matrices include analysis of a laser
beam propagation through some optical setup [11], the stability analysis of laser
or optical resonators [13], laser mode-locking, optical pulse transmission [15]
and analysis of micro opto-electro-mechanical systems (MOEMS) [28]. Another
promising feature of the matrix formalism of geometrical optics is the prediction
of design parameters for physical experiments, e.g., recent dispersion-managed
soliton transmission experiment [14] and invention of the first single-cell biolog-
ical lasers [5].

Traditionally, the analysis of geometrical optics based models has been done
using paper-and-pencil proof methods [11,15,14]. However, considering the com-
plexity of present age optical and laser systems, such an analysis is very difficult
if not impossible, and thus quite error-prone. Many examples of erroneous paper-
and-pencil based proofs are available in the open literature, a recent one can be
found in [4] and its identification and correction is reported in [16]. One of the
most commonly used computer-based analysis techniques for geometrical optics
based models is numerical computation of complex ray-transfer matrices [25,12].
Optical and laser systems involve complex and vector analysis and thus numer-
ical computations cannot provide perfectly accurate results due to the inherent
incomplete nature of the underlying numerical algorithms. Another alternative
is computer algebra systems [17], which are very efficient for computing mathe-
matical solutions symbolically, but are not 100% reliable due to their inability to
deal with side conditions [7]. Another source of inaccuracy in computer algebra
systems is the presence of unverified huge symbolic manipulation algorithms in
their core, which are quite likely to contain bugs. Thus, these traditional tech-
niques should not be relied upon for the analysis of critical laser and optical
systems (e.g., corneal surgery [27]), where inaccuracies in the analysis may even
result in the loss of human lives.

In the past few years, higher-order logic theorem proving has been successfully
used for the precise analysis of a few continuous physical systems [22,10]. Devel-
oping a higher-order logic model for a physical system and analyzing this model
formally is a very challenging task since it requires both a good mathematical
and physical knowledge. However, it provides an effective way for identifying crit-
ical design errors that are often ignored by traditional analysis techniques like
simulation and computer algebra systems. We believe that higher-order logic
theorem proving [6] offers a promising solution for conducting formal analysis of
such critical optical and laser systems. Most of the classical mathematical the-
ories behind geometrical optics, such as Euclidean spaces, multivariate analysis
and complex numbers, have been formalized in the HOL Light theorem prover
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[8,9]. To the best of our knowledge, the reported formalization of geometrical
optics is the first of its kind. Our HOL Light developments of geometrical op-
tics and applications presented in this paper are available for download [20] and
thus can be used by other researchers and optics engineers working in industry to
conduct the formal analysis of their optical systems. This paper is an extended
and improved version of [21].

The rest of the paper is organized as follows: Section 2 describes some fun-
damentals of geometrical optics, and its commonly used ray-transfer-matrix for-
malism. Section 3 presents our HOL Light formalization of geometrical optics.
In order to demonstrate the practical effectiveness and the use of our work, we
present in Section 4 the analysis of two real-world optical resonators: Fabry-
Pérot resonator and Z-shaped resonator. Finally, Section 5 concludes the paper
and highlights some future directions.

2 Geometrical Optics

When a ray passes through optical components, it undergoes translation or re-
fraction. When it comes to translation, the ray simply travels in a straight line
from one component to the next and we only need to know the thickness of the
translation. On the other hand, refraction takes place at the boundary of two
regions with different refractive indices and the ray follows the law of refrac-
tion, i.e., the angle of refraction relates to the angle of incidence by the relation
n0 sin(φ0) = n1 sin(φ1), called Snell’s law [19], where n0, n1 are the refractive
indices of both regions and φ0, φ1 are the angles of the incident and refracted
rays, respectively, with the normal to the surface. In order to model refraction,
we thus need the normal to the refracting surface and the refractive indices of
both regions.

In order to introduce the matrix formalism of geometrical optics, we consider
the propagation of a ray through a spherical interface with radius of curvature
R between two mediums of refractive indices n0 and n1, as shown in Figure 1.
Our goal is to express the relation between the incident and refracted rays.
The trajectory of a ray as it passes through various optical components can
be specified by two parameters: its distance and angle with the optical axis.
Here, the distances with respect to the optical axis of the incident and refracted
rays are r1 and r0, respectively. Since the thickness of the surface is assumed to
be very small, we consider that r1 = r0. Here, φ0 and φ1 are the angles of the
incident and refracted rays with the normal to the spherical surface, respectively.
On the other hand, θ0 and θ1 are the angles of the incident and refracted rays
with the optical axis.

Applying Snell’s law at the interface, we have n0 sin(φ0) = n1 sin(φ1), which,
in the context of the paraxial approximation, reduces to the form n0φ0 = n1φ1
since sin(φ) � φ if φ is small. We also have θ0 = φ0−ψ and θ1 = φ1−ψ, where ψ
is the angle between the surface normal and the optical axis. Since sin(ψ) = r0

R ,
then ψ = r0

R by the paraxial approximation again. We can deduce that:
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Fig. 1. Spherical interface
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n1

)
θ0 (1)

So, for a spherical surface, we can relate the refracted ray with the incident ray
by a matrix relation using equation (1) as follows:

[
r1

θ1

]
=

[
1 0

n0−n1

n1R
n0

n1

][
r0

θ0

]

Thus the propagation of a ray through a spherical interface can be described by
a 2 × 2 matrix generally called, in the literature, ABCD matrix. It is actually
possible to obtain such a 2× 2 matrix relating r1, θ1 and r0, θ0 for many optical
components [19].

If we have an optical system consisting of k optical components, then we can
trace the input ray Ri through all optical components using multiplication of
the matrices of all optical components as follows:

Ro = (Mk.Mk−1....M1).Ri (2)

where Ro is the output ray and Ri is the input ray.

3 Formalization of Geometrical Optics

In this section, we present a brief overview of our higher-order logic formalization
of geometrical optics. The formalization consists of three parts: 1) fundamental
concepts of optical systems structures and light ray; 2) frequently used opti-
cal components (i.e., thin lens, thick lens and plane parallel plate); 3) optical
resonators and their stability.
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3.1 Optical System Structure and Ray

The formalization is two-fold: first, we model the geometry and physical pa-
rameters of an optical system; second, we model the physical behavior of a ray
when it goes through an optical interface. Afterwards, we derive the ray-transfer
matrices of the optical components, as explained in Section 2.

An optical system is a sequence of optical components, which consists of free
spaces and optical interfaces. We define interfaces by an inductive data type
enumerating their different kinds and their corresponding parameters:

Definition 1 (Optical Interface and System)
define type "optical interface = plane | spherical R"

define type "interface kind = transmitted | reflected"

new type abbrev ("free space",‘:R × R‘)

new type abbrev ("optical component",

‘:free space × optical interface × interface kind‘)

new type abbrev ("optical system",

‘:optical component list × free space‘)

An optical component is made of a free space, which is formalized by a pair of real
numbers representing the refractive index and width of free space, and an optical
interface which is of two kinds: plane or spherical, yielding the corresponding
constructors as shown in Figure 2. A spherical interface takes a real number
representing its radius of curvature. Finally, an optical system is a list of optical
components followed by a free space. When passing through an interface, the
ray is either transmitted or reflected. In this formalization, this information is
also provided in the type of optical components, as shown by the use of the type
interface kind. Note that this datatype can easily be extended to many other
optical components if needed.

A value of type free space does represent a real space only if the refractive
index is greater than zero. In addition, in order to have a fixed order in the
representation of an optical system, we impose that the distance of an optical
interface relative to the previous interface is greater or equal to zero. We also
need to assert the validity of a value of type optical interface by ensuring
that the radius of curvature of spherical interfaces is never equal to zero. This
yields the following predicates:

Definition 2 (Valid Free Space and Valid Optical Interface)
� is valid free space ((n,d):free space) ⇔ 0 < n ∧ 0 ≤ d

� (is valid interface plane ⇔ T) ∧
(is valid interface (spherical R) ⇔ 0 <> R)

Then, by ensuring that this predicate holds for every component of an optical
system, we can characterize valid optical systems as follows:

Definition 3 (Valid Optical Component)
� ∀fs i ik. is valid optical component ((fs,i,ik):optical component)

⇔ is valid free space fs ∧ is valid interface i
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Definition 4 (Valid Optical System)
� ∀os fs. is valid optical system ((cs,fs):optical system) ⇔
ALL is valid optical component cs ∧ is valid free space fs

where ALL is a HOL Light library function which checks that a predicate holds
for all the elements of a list. We conclude our formalization of an optical system
by defining the following helper function to retrieve the refractive index of the
first free space in an optical system:

Definition 5 (Refractive Index of First Free Space)
� (head index ([],(n,d)) = n) ∧
(head index (CONS ((n,d),i) cs, (nt,dt)) = n)

We can now formalize the physical behavior of a ray when it passes through
an optical system. We only model the points where it hits an optical interface
(instead of modeling all the points constituting the ray). So it is sufficient to
just provide the distance of every of these hitting points to the axis and the
angle taken by the ray at these points. Consequently, we should have a list of
such pairs (distance, angle) for every component of a system. In addition, the
same information should be provided for the source of the ray. For the sake of
simplicity, we define a type for a pair (distance, angle) as ray at point. This
yields the following definition:

Definition 6 (Ray)
new type abbrev ("ray at point", ‘:R × R‘)

new type abbrev ("ray", ‘:ray at point × ray at point ×
(ray at point × ray at point) list‘)

The first ray at point is the pair (distance, angle) for the source of the ray,
the second one is the one after the first free space, and the list of ray at point
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pairs represents the same information for the interfaces and free spaces at every
hitting point of an optical system. Once again, we specify what is a valid ray by
using some predicates. First of all, we define what is the behavior of a ray when
it is traveling through a free space. This requires the position and orientation
of the ray at the previous and current point of observation, and the free space
itself. This is shown in Figure 2(a).

Definition 7 (Behavior of a Ray in Free Space)
� is valid ray in free space (y0,θ0) (y1,θ1) ((n,d):free space) ⇔

y1 = y0 + d * θ0 ∧ θ0 = θ1

Next, we define what is the valid behavior of a ray when hitting a particular
interface. This requires the position and orientation of the ray at the previous
and current interface, and the refractive index before and after the component.
Then the predicate is defined by case analysis on the interface and its type as
follows:

Definition 8 (Behavior of a Ray at Given Interface)
� (is valid ray at interface (y0,θ0) (y1,θ1) n0 n1 plane transmitted

⇔ y1 = y0 ∧ n0 * θ0 = n1 * θ1) ∧
(is valid ray at interface (y0,θ0) (y1,θ1) n0 n1 (spherical R)

transmitted ⇔ let φi= θ0 +
y1
R

and φt = θ1 +
y1
R

in

y1 = y0 ∧ n0 * φi = n1 * φt) ∧
(is valid ray at interface (y0,θ0) (y1,θ1) n0 n1 plane reflected

⇔ y1 = y0 ∧ n0 * θ0 = n0 * θ1) ∧
(is valid ray at interface (y0,θ0) (y1,θ1) n0 n1 (spherical R)

reflected ⇔ let φi =
y1
R

- θ0 in y1 = y0 ∧ θ1 = -(θ0 + 2 * φi))

The above definition states some basic geometrical facts about the distance to
the axis, and applies Snell’s law to the orientation of the ray as shown in Figures
1 and 2. Note that, both to compute the distance and to apply Snell’s law,
we assumed the paraxial approximation in order to turn sin(θ) into θ. Finally,
we can recursively apply these predicates to all the components of a system as
follows:

Definition 9 (Behavior of a Ray in an Optical System)
� ∀ sr1 sr2 h h’ fs cs rs i ik y0 θ0 y1 θ1 y2 θ2 y3 θ3 n d n’ d’.

(is valid ray in system (sr1,sr2,[]) (CONS h cs,fs) ⇔ F) ∧
(is valid ray in system (sr1,sr2,CONS h’ rs) ([],fs) ⇔F)∧
(is valid ray in system ((y0,θ0),(y1,θ1),[]) ([],n,d) ⇔
is valid ray in free space (y0,θ0) (y1,θ1) (n,d)) ∧

(is valid ray in system ((y0,θ0),(y1,θ1),
CONS ((y2,θ2),y3,θ3) rs) (CONS ((n’,d’),i,ik) cs,n,d) ⇔

(is valid ray in free space (y0,θ0) (y1,θ1) (n’,d’) ∧
is valid ray at interface (y1,θ1) (y2,θ2) n’

(head index (cs,n,d)) i ik)) ∧
(is valid ray in system ((y2,θ2),(y3,θ3),rs) (cs,n,d))
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The behavior of a ray going through a series of optical components is thus
completely defined. Using this formalization, we verify the ray-transfer matrices
as presented in Section 2. In order to facilitate formal reasoning, we define the
following matrix relations for free spaces and interfaces.

Definition 10 (Free Space Matrix)

� ∀d. free space matrix d =

[
1 d

0 1

]

Definition 11 (Interface Matrix)
� ∀n0 n1 R.

interface matrix n0 n1 plane transmitted =

[
1 0

0 n0
n1

]
∧

interface matrix n0 n1 (spherical R) transmitted =

[
1 0

n0−n1
n0∗R

n0
n1

]
∧

interface matrix n0 n1 plane reflected =

[
1 0

0 1

]
∧

interface matrix n0 n1 (spherical R) reflected =

[
1 0
−2
R

1

]

In the above definition, n0 and n1 represent the refractive indices before and after
an optical interface. We use the traditional mathematical notation of matrices
for the sake of clarity, but, in practice, we use the dedicated functions of HOL
Light’s vectors library.

Next, we verify the ray-transfer-matrix relation for free spaces:

Theorem 1 (Ray-Transfer-Matrix for Free Space)
� ∀n d y0 θ0 y1 θ1. is valid free space (n,d) ∧
is valid ray in free space (y0,θ0) (y1,θ1) (n,d)) =⇒[
y1
θ1

]
= free space matrix d **

[
y0
θ0

]

where ** represents matrix-vector or matrix-matrix multiplication. The first as-
sumption ensures the validity of free space and the second assumption ensures
the valid behavior of ray in free space. The proof of this theorem requires some
properties of vectors and matrices along with some arithmetic reasoning. Next,
we verify an important theorem describing the general ray-transfer-matrix rela-
tion for any interface as follows:

Theorem 2 (Ray-Transfer-Matrix any Interface)
� ∀n0 n1 y0 θ0 y1 θ1 i ik. is valid interface i ∧
is valid ray at interface (y0,θ0) (y1,θ1) n0 n1 i ik ∧
0 < n0 ∧ 0 < n1 =⇒

[
y1
θ1

]
= interface matrix n0 n1 i ik **

[
y0
θ0

]

In the above theorem, both assumptions ensure the validity of the interface and
behavior of ray at the interface, respectively. This theorem is easily proved by
case splitting on i and ik.
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Now, equipped with the above theorem, the next step is to formally verify the
ray-transfer-matrix relation for a complete optical system as given in Equation
2. It is important to note that in this equation, individual matrices of optical
components are composed in reverse order. We formalize this fact with the fol-
lowing recursive definition:

Definition 12 (System Composition)
� system composition ([],n,d) ⇔ free space matrix d ∧
system composition (CONS ((nt,dt),i,ik) cs,n,d) ⇔
(system composition (cs,n,d) **

interface matrix nt (head index (cs,n,d)) i ik) **

free space matrix dt

The general ray-transfer-matrix relation is then given by the following theorem:

Theorem 3 (Ray-Transfer-Matrix for Optical System)
� ∀sys ray. is valid optical system sys ∧
is valid ray in system ray sys =⇒
let (y0,θ0),(y1,θ1),rs = ray in

let yn,θn = last ray at point ray in[
yn
θn

]
= system composition sys **

[
y0
θ0

]

Here, the parameters sys and ray represent the optical system and the ray
respectively. The function last ray at point returns the last ray at point of
the ray in the system. Both assumptions in the above theorem ensure the validity
of the optical system and the good behavior of the ray in the system. The theorem
is easily proved by induction on the length of the system and by using previous
results and definitions.

This concludes our formalization of optical system structure and ray along
with the verification of important properties of optical components and optical
systems. The formal verification of the above theorems not only ensures the
effectiveness of our formalization but also shows the correctness of our definitions
related to optical systems.

3.2 Frequently Used Optical Components

In this section, we present the formal modeling and verification of the ray-transfer
matrix relation of thin lens, thick lens and plane parallel plate [19], which are
the most widely used components in optical and laser systems.

Generally, lenses are determined by their refractive indices and thickness. A
thin lens is represented as the composition of two transmitting spherical inter-
faces such that any variation of ray parameters (position y and orientation θ)
is neglected between both interfaces, as shown in Figure 3 (a). So, at the end,
a thin lens is the composition of two spherical interfaces with a null width free
space in between. We formalize thin lenses as follows:
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Fig. 3. Frequently used optical components

Definition 13 (Thin Lens)
� ∀R1 R2 n0 n1. thin lens R1 R2 n0 n1 =

([(n0,0),spherical R1,transmitted; (n1,0),spherical R2,transmitted],

(n0,0))

We can then prove that a thin lens is indeed a valid optical system if the corre-
sponding parameters satisfy some constraints:

Theorem 4 (Valid Thin Lens)
� ∀R1 R2 n0 n1. R1 	= 0 ∧ R2 	= 0 ∧ 0 < n0 ∧ 0 < n1 =⇒
is valid optical system (thin lens R1 R2 n0 n1)

Now, in order to simplify the reasoning process, we define the thin lens matrix:

Definition 14 (Thin Lens Matrix)

� ∀R1 R2 n0 n1. thin lens mat R1 R2 n0 n1 =

[
1 0

n1 − n0
n0

( 1
R2

− 1
R1
) 1

]

Next, we verify that this matrix is indeed the ray-transfer matrix of the corre-
sponding thin lens:

Theorem 5 (Thin Lens Matrix)
� ∀R1 R2 n0 n1. R1 	= 0 ∧ R2 	= 0 ∧ 0 < n0 ∧ 0 < n1

=⇒ system composition (thin lens R1 R2 n0 n1) =

thin lens mat R1 R2 n0 n1

Finally, we can wrap up the behavior of a ray through a thin lens as follows,
thanks to Theorem 3:

Theorem 6 (Ray-Transfer-Matrix Model of Thin Lens)
� ∀R1 R2 n0 n1. R1 	= 0 ∧ R2 	= 0 ∧ 0 < n0 ∧ 0 < n1 =⇒
(∀ray.is valid ray in system ray (thin lens R1 R2 n0 n1)

=⇒ (let (y0,θ0),(y1,theta1),rs = ray in

(yn,θn) = last single ray ray in

vector [yn;θn] = thin lens mat R1 R2 n0 n1 ** vector [y0;θ0]))



On the Formal Analysis of Geometrical Optics in HOL 171

The thick lens is another useful optical component which is used in many real-
world optical systems [19]. It is a composition of two spherical interfaces sep-
arated by a distance d as shown in Figure 3 (b). We formalize thick lenses as
follows:

Definition 15 (Thick Lens)
� ∀R1 R2 n0 n1 d. thick lens R1 R2 n0 n1 d =

([(n0,0),spherical R1,transmitted; (n1,d),spherical R2,transmitted],

(n0,0))

Next, we verify that this lens indeed represents a valid optical system:

Theorem 7 (Valid Thick Lens)
� ∀R1 R2 n0 n1. R1 	= 0 ∧ R2 	= 0 ∧ 0 < n0 ∧ 0 < n1 ∧ 0 ≤ d

=⇒ is valid optical system (thick lens R1 R2 n0 n1 d)

Again, we define the thick lens matrix:

Definition 16 (Thick Lens Matrix)
� ∀R1 R2 n0 n1 d. thin lens mat R1 R2 n0 n1 =[

1+ d∗n0
R1∗n1 − 1

R1
d∗n0
n0

− (n0−n1)∗[d∗(n0 − n1) + n1∗(R1−R2)]
n0∗n1∗R1∗R2 1+ d ∗ ( 1

R2
− n1

n1∗R2 )

]

We verify that this matrix is indeed the ray-transfer matrix of the thick lens as
follows:

Theorem 8 (Thick Lens Matrix)
� ∀R1 R2 n0 n1 d. R1 	= 0 ∧ R2 	= 0 ∧ 0 < n0 ∧ 0 < n1 ∧ 0 < n1 ∧
0 ≤ d =⇒ system composition (thick lens R1 R2 n0 n1) =

thick lens mat R1 R2 n0 n1

We then easily obtain the ray-transfer-matrix relation for thick lenses by using
Theorem 3:

Theorem 9 (Ray-Transfer-Matrix Model of Thick Lens)
� ∀R1 R2 n0 n1 d. R1 	= 0 ∧ R2 	= 0 ∧ 0 < n0 ∧ 0 < n1 ∧
0 ≤ d =⇒
(∀ ray.is valid ray in system ray (thick lens R1 R2 n0 n1 d)

=⇒ (let (y0,θ0),(y1,theta1),rs = ray in

(yn,θn) = last single ray ray in

vector [yn;θn] = thick lens mat R1 R2 n0 n1 d ** vector [y0;θ0]))

The plane parallel plate is another useful optical component which consists of
two plane interfaces separated by some distance d as shown in Figure 3 (c). We
formally model plane parallel plates as follows:

Definition 17 (Plane Parallel Plate)
� ∀n0 n1 d. plane parallel plate n0 n1 d =

([(n0,0),plane,transmitted; (n1,d),plane,transmitted],(n0,0))
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Next, we verify this system:

Theorem 10 (Valid Plane Parallel Plate)
� ∀n0 n1 d. 0 < n0 ∧ 0 < n1 ∧ 0 ≤ d =⇒
is valid optical system (plane parallel plate n0 n1 d)

Now, we define the matrix for plane parallel plate:

Definition 18 (Plane Parallel Plate Matrix)

� ∀n0 n1 d. plane parallel mat n0 n1 d =

[
1 d ∗ n0

n1

0 1

]

Next, we verify that this matrix is indeed the ray-transfer matrix of the corre-
sponding plane parallel plate:

Theorem 11 (Plane Parallel Matrix)
� ∀n0 n1 d. 0 < n0 ∧ 0 < n1 ∧ 0 ≤ d

=⇒ system composition (plane parallel plate n0 n1 d) =

plane parallel mat n0 n1 d

Finally, we can verify the behavior of ray through a plane parallel plate:

Theorem 12 (Ray-Transfer-Matrix Model of Plane Parallel Plate)
� ∀n0 n1 d. 0 < n0 ∧ 0 < n1 ∧ 0 ≤ d =⇒
(∀ray.is valid ray in system ray (plane parallel plate n0 n1 d)

=⇒ (let (y0,θ0),(y1,theta1),rs = ray in

(yn,θn) = last single ray ray in

vector [yn;θn] = plane parallel mat n0 n1 d ** vector [y0;θ0]))

This concludes our formalization of some frequently-used components, which
demonstrates how we can use our optics fundamentals formalization in order to
define basic systems.

3.3 Optical Resonators and Their Stability

An optical resonator usually consists of mirrors or lenses which are configured in
such a way that the beam of light confines in a closed path as shown in Figure 4.
Optical resonators are fundamental building blocks of optical devices and lasers.
Resonators differ by their geometry and components (interfaces and mirrors)
used in their design.

Optical resonators are broadly classified as stable or unstable. Stability anal-
ysis identifies geometric constraints of the optical components which ensure that
light remains inside the resonator (see Figure 5 (a)). Both stable and unstable
resonators have diverse applications, e.g., stable resonators are used in the mea-
surement of refractive index of cancer cells [24], whereas unstable resonators are
used in the laser oscillators for high energy applications [23].

The stability analysis of optical resonators involves the study of infinite rays,
or, equivalently, of an infinite set of finite rays. Indeed, a resonator is a closed
structure terminated by two reflected interfaces and a ray reflects back and forth
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between these interfaces. For example, consider a simple plane-mirror resonator
as shown in Figure 4: let m1 be the first mirror, m2 the second one, and f the
free space in between. Then the stability analysis involves the study of the ray as
it goes through f , then reflects on m2, then travels back through f , then reflects
again on m1, and starts over. So we have to consider the ray going through
the “infinite” path f,m2, f,m1, f,m2, f,m1, . . . , or, using regular expressions
notations, (f,m2, f,m1)

∗. Our purpose, regarding stability, is to ensure that
this infinite ray remains inside the cavity. This is equivalent to consider that,
for every n, the ray going through the path (f,m2, f,m1)

n remains inside the
cavity. This allows to reduce the study of an infinite path to an infinite set of
finite paths.

Our formalization (which is inspired by the way optics engineers model optical
systems), presented in Section 3.1, fixes the path of any considered ray. Since we
want to consider an infinite set of finite-path rays, we should thus consider an
infinite set of optical systems. This has been naturally achieved by optics engi-
neers by “unfolding” the resonator as many times as needed, depending on the
considered ray. For instance, consider again the above example of a plane-mirror
resonator: if we want to observe a ray going back and forth only once through the
cavity, then we should consider the optical system made of f,m1, f,m2; however,
if we want to study the behavior of rays which make two round-trips through
the cavity, then we consider a new optical system f,m1, f,m2, f,m1, f,m2; and
similarly for more round-trips. This is the standard way optics engineers handle
resonators and therefore is the one that we have chosen for our formalization,
which we present now.

In our formalization, we want the user to provide only the minimum informa-
tion so that HOL Light generates automatically the unfolded systems. Therefore,
we do not define resonators as just optical systems but define a dedicated type
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for them: in their most general form, resonators are made of two reflecting in-
terfaces and a list of components in between. We thus define the following type:

Definition 19 (Optical Resonator)
define type "resonator = :interface × optical component list ×

free space × interface"

Note that the additional free space in the type definition is required because
the optical component type only contains one free space (the one before the
interface, not the one after).

As usual, we introduce a predicate to ensure that a value of type resonator

indeed models a real resonator:

Definition 20 (Valid Optical Resonator)
� ∀i1 cs fs i2. is valid resonator ((i1,cs,fs,i2):resonator)⇔
is valid interface i1 ∧ ALL is valid optical component cs ∧
is valid free space fs ∧ is valid interface i1

We now present the formalization of the unfolding mentioned above. The first
step in this process is to define a function round trip which returns the list of
components corresponding to one round-trip in the resonator:

Definition 21 (Round Trip)
�i1 i1 cs fs. round trip ((i1,cs,fs,i2):resonator) =

APPEND cs (CONS (fs,i2,reflected)

(let cs’,fs1 = optical component shift cs fs in

REVERSE (CONS (fs1,i1,reflected) cs’)))

where APPEND is a HOL Light library function which appends two lists, REVERSE
reverses the order of elements of a list, and optical component shift cs fs

shifts the free spaces of cs from right to left, introducing fs to the right; the
leftmost free space which is “ejected” is also returned by the function. This
manipulation is required because unfolding the resonator entails the reversal of
the components for the return trip.

We can now define the unfolding of a resonator as follows:

Definition 22 (Unfold Resonator)
� unfold resonator ((i1,cs,fs,i2):resonator) N =

list pow (round trip (i1,cs,fs,i2)) N,(head index (cs,fs),0)

where list pow l n concatenates n copies of the list l. The argument N repre-
sents the number of times we want to unfold the resonator. Note that the output
type is optical system, therefore all the previous predicates and theorems can
be used on an unfolded resonator.

We can now define formally the notion of stability. For an optical resonator to
be stable, the distance of the ray from the optical axis and its orientation should
remain bounded whatever is the value of N . This is formalized as follows:
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Definition 23 (Resonator Stability)
� ∀res. is stable resonator res ⇔ (∀r. ∃y θ. ∀N.
is valid ray in system r (unfold resonator res N) =⇒
(let yn,θn = last single ray r in abs(yn) ≤ y ∧ abs(θn) < θ))

Proving that a resonator satisfies the abstract condition of Definition 23 does
not seem trivial at first. However, if the determinant of a resonator matrix M
is 1 (which is the case in practice), optics engineers have known for a long time
that having −1 < M11+M22

2 < 1 is sufficient to ensure that the stability condition
holds. The obvious advantage of this criterion is that it is immediate to check.
This can actually be proved by using Sylvester’s Theorem [26], which states that
for a matrix M=

[
A B
C D

]
such that | M |= 1 and −1 < A+D

2 < 1, the following
holds:

[
A B

C D

]N

=
1

sin(θ)

[
A sin[Nθ]− sin[(N − 1)θ] B sin[Nθ]

C sin[Nθ] D sin[Nθ]− sin[(N − 1)θ]

]

where θ = cos−1[A+D
2 ]. This theorem allows to prove that stability holds under

the considered assumptions: indeed, N only occurs under a sine in the result-
ing matrix; since the sine itself is comprised between −1 and 1, it follows that
the components of the matrix are obviously bounded, hence the stability. We
formalize Sylvester’s theorem as follows:

Theorem 13 (Sylvester’s Theorem)

� ∀N A B C D.

∣∣∣∣A B

C D

∣∣∣∣ = 1 ∧ −1 < A+D
2

∧ A+D
2
< 1 =⇒

let θ = acs( (A+D)
2

) in[
A B

C D

]N
= 1

sin(θ)

[
A ∗ sin[Nθ]− sin[(N− 1)θ] B ∗ sin[Nθ]

C ∗ sin[Nθ] D ∗ sin[Nθ]− sin[(N− 1)θ]

]

We prove Theorem 13 by induction on N and using the fundamental properties
of trigonometric functions, matrices and determinants. This allows to derive now
the generalized stability theorem for any resonator as follows:

Theorem 14 (Stability Theorem)
� ∀res. is valid resonator res ∧
(∀N. let M = system composition (unfold resonator res 1) in

det M = 1 ∧ -1 <
M1,1+M2,2

2
∧ M1,1+M2,2

2
< 1) =⇒

is stable resonator res

where Mi,j represents the element at column i and row j of the matrix. The
formal verification of Theorem 14 requires the definition of stability (Definition
23) and Sylvester’s theorem along with the following important lemma:

Lemma 1 (Resonator Matrix)
� ∀n res. system composition (unfold resonator res N)=

system composition (unfold resonator res 1) mat pow N
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where mat pow is the matrix power function. Note that it is an infix operator.
This intuitive lemma formalizes the relation between the unfolding of a resonator
and the corresponding ray-transfer matrix.

It is also important to note that our stability theorem is quite general and
can be used to verify the stability of almost all kinds of optical resonators.

4 Applications

In this section, we present the stability of two widely used optical resonators: a
Fabry Pérot resonator and a Z-shaped resonator.

4.1 Fabry Pérot Resonator

Nowadays, optical systems are becoming more andmore popular due to their huge
application potential. In order to bring this technology to the market, a lot of re-
search has been done towards the integration of low cost, low power and portable
building blocks in optical systems. One of the most important such building blocks
is the Fabry Pérot (FP) resonator [19]. Originally, this resonatorwas used as a high
resolution interferometer in astrophysical applications. Recently, the Fabry Pérot
resonator has been realized as amicroelectromechanical (MEMS) tuned optical fil-
ter for applications in reconfigurable Wavelength Division Multiplexing [18]. The
other important applications are in the measurement of refractive index of can-
cer cells [24] and optical bio-sensing devices [2]. As a direct application of the

Spherical  
Mirrors  

d 

n 

R R 

Fig. 6. Fabry Pérot resonator

framework developed in the previous sections, we present the stability analysis
of the Fabry Pérot (FP) resonator with spherical mirrors as shown in Figure 6.
This architecture is composed of two spherical mirrors with radius of curvature
R separated by a distance d and refractive index n. We formally model this
resonator as follows:

Definition 24 (FP Resonator)
� ∀R d n. (fp resonator R d n :resonator) =

(spherical R,[],(n,d),spherical R)
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where [] represents an empty list of components because the given structure has
no component between spherical interfaces but only a free space (n,d). Next, we
verify that the FP resonator is indeed a valid resonator as follows:

Theorem 15 (Valid FP resonator)
� ∀R d n. R 	= 0 ∧ 0 ≤ d ∧ 0 < n =⇒
is valid resonator (fp resonator R d n)

Finally, we formally verify the stability of the FP resonator as follows:.

Theorem 16 (Stability of FP Resonator)
� ∀R d n. R 	= 0 ∧ 0 < n ∧ 0 < d

2
∧ d

2
< 2 =⇒

is stable resonator (fp resonator R d n)

The first two assumptions just ensure the validity of the model description. The
two following ones provide the intended stability criteria. The formal verifica-
tion of the above theorem requires Theorem 14 along with some fundamental
properties of the matrices and arithmetic reasoning.

4.2 Z-Shaped Resonator

The Z-shaped resonator consists of two plane mirrors and two spherical mirrors
as shown in Figure 7. It is widely used in many optical and laser systems including
optical bandpass filters and all-optical timing recovery circuits [3]. We formally

Plane Mirror 

Spherical Mirror 

d1 

d2 

d1 

n 

R 

R 

Fig. 7. Z-shaped resonator

model this resonator as follows:

Definition 25 (Z Resonator)
� ∀R d1 d2 n. (z resonator R d1 d2 n :resonator) = (plane,

[(n,d1),spherical R,reflected; (n,d2),spherical R,reflected],

(n,d1),plane)

Here, we have a list of optical components and a free space between two plane
mirrors. Again, we check the validity of the Z-shaped resonator as follows:
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Theorem 17 (Valid Z-Shaped Resonator)
� ∀R d1 d2 n. R 	= 0 ∧ 0 ≤ d1 ∧ 0 ≤ d2 ∧ 0 < n =⇒
is valid resonator (z resonator R d1 d2 n)

Finally, we formally verify the stability of the FP resonator:

Theorem 18 (Stability of Z-Shaped Resonator)

� ∀R d1 d2 n. R 	= 0 ∧ 0 < d1 ∧ 0 < n ∧ (2∗d1+d2)
2

2∗d1 < d2 ∧
2∗d1∗d2
2∗d1+d2

< R =⇒ is stable resonator (z resonator R d1 d2 n)

The first three assumptions just ensure the validity of the model description.
The two following ones provide the intended stability criteria. The formal verifi-
cation of the above theorem requires Theorem 14 along with some fundamental
properties of the matrices and arithmetic reasoning.

4.3 Discussion

The formal stability analysis of the FP and Z-shaped resonators demonstrates
the effectiveness of the proposed theorem proving based approach to reason
about geometrical optics. Due to the formal nature of the model and inherent
soundness of higher-order logic theorem proving, we have been able to formal-
ize some foundations of geometrical optics along with the verification of some
useful theorems about optical components and systems with an unrivaled ac-
curacy. This improved accuracy comes at the cost of the time and effort spent,
while formalizing the underlying theory of geometrical optics and resonators.
The formalization of geometrical optics, frequently used components and res-
onators stability took around 1500 lines of HOL Light code and 250 man-hours.
But the availability of such a formalized infrastructure significantly reduces the
time required for the modeling and stability analysis of FP and Z-shaped res-
onators as the verification task took just around 100 lines of HOL Light code and
a couple of man-hours each. Note that the number of lines has been significantly
reduced by the development of some automation tactics, which automatically
verifies the validity of a given optical system structure.

5 Conclusion

In this paper, we report a novel application of formal methods in analyzing
optical and laser systems which is based on geometrical optics. We provided
a brief introduction of the current state-of-the-art and highlighted their limita-
tions. Next, we presented an overview of geometrical optics followed by highlights
of our higher-order logic formalization. We also presented the formalization of
frequently used optical components like thin lens, thick lens and plane parallel
plate. In order to show the practical effectiveness of our formalization, we pre-
sented the stability analysis of two widely used optical resonators (i.e., Fabry
Pérot resonator and Z-shaped resonator).
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Our plan is to extend this work in order to obtain an extensive library of
verified optical components, along with their ray-transfer matrices, which would
allow a practical use of our formalization in industry. In addition, we plan to
formally take into account the paraxial approximation using asymptotic nota-
tions [1]. We also intend to improve the traditional stability analysis method by
handling infinite paths of rays (as described in Section 3.3) by working directly
with all the possible paths of a ray, and thus avoiding the use of unfolding.
In particular, this requires a more general treatment of optical interfaces with-
out explicitly mentioning their behavior, i.e., transmitted or reflected. This is a
very interesting direction of research since it would even go beyond what optics
engineers currently do. Our long term goal is to package our HOL Light formal-
ization in a GUI, so that it can be used by the non-formal methods community
in industry for the analysis of practical resonators, and in academia for teaching
and research purposes.
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