Performance Analysis of Real-Time Rewriting
Models

Jounaidi Ben Hassan*, Osman Hasan®, Tarek Sadani* and Sofiéne Tahar*
*Department of Electrical & Computer Engineering,
Concordia University,
1455 de Maisonneuve W., Montreal, Quebec, H3G 1MS, Canada
Email: {jounaidi,o_hasan,tsadani,tahar} @ece.concordia.ca
§School of Electrical Engineering and Computer Science,
National University of Sciences and Technology,

Sector H-12, Islamabad, 44000, Pakistan
Email: osman.hasan@seecs.nust.edu.pk

Abstract—Real-time systems usually involve a subtle
interaction of a number of distributed components and have
a high degree of parallelism, which makes their performance
analysis quite complex. Thus, traditional techniques, such as
simulation, fail to produce reasonable results. Formal methods
pose an interesting solution but they usually lack the capabilities
to reason about quantitative time and probabilistic properties,
which play a vital role in performance analysis. This paper
addresses this issue by presenting a formal approach for
assessing the performance of a real-time system. To describe the
evolution of the system, we use a real-time rewriting logic, in
which we mechanize the extraction of quantitative information
from a timed model. To evaluate the performance, we first
consider the set of runs obtained from different initial input
values that are not equivalent modulo the equational theory
associated with the model. The overall performance of the system
is then evaluated as the performance of each run weighted by
its probability mass function. In order to illustrate the practical
effectiveness of the proposed approach, we present the formal
modeling and performance analysis of a simple search engine.
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Time Systems, Rewriting Logic, RT-Maude.

I. INTRODUCTION

Real-time systems can be characterized as systems for
which the correctness of an operation is dependant not only
on its logical correctness but also on the time taken. Some
commonly used real-time system applications include em-
bedded systems, digital circuits with uncertain delays and
communication protocols. Due to the increased usage of
real-time systems in safety critical and extremely sensitive
applications such as medicine, military and space travel, their
correctness and performance has become imperative. The
functional verification and performance evaluation tasks in
this domain are quite challenging as the present age real-
time systems usually involve a subtle interaction of a number
of concurrent and distributed components and have a high
degree of parallelism. The level of sophistication found in
current real-time systems demands formal specification of
requirements and thus traditional techniques, like simulation,
fail to provide the necessary level of assuredness about what
is being built is actually what was intended.

On the other hand, formal methods offer a promising
solution. A number of elegant approaches for the formal
verification of real-time systems can be found in the open
literature using state-based or theorem proving techniques
(e.g. [6], [3]). However, most of these tools are only capable
of specifying and verifying hard deadlines, i.e., properties
where a late response is considered to be incorrect. For
example, while proving the message delivery characteristic of
a communication protocol, we can only check if the message is
delivered for sure within a specific duration in time, say 100s,
for all possible scenarios. Even though this information is
quite useful for establishing functional correctness, it usually is
found to be quite insufficient for performance analysis, where
the designers are more interested to determine the maximum
(or minimum) possible values or the probabilities associated
with the parameters of interest.

In this paper, we propose a formal approach for the anal-
ysis of the above mentioned performance analysis related
properties for real-time systems. Our approach is based on
rewriting logic [13], which is a simple and intuitive formalism
that is well suited to be used as a semantics framework in
which one can express different models of computation. The
primary motivation of using rewriting logic is to leverage
upon its naturalness and simplicity for expressing concurrent
and distributed real-time systems. Rewriting logic has been
successfully used for the functional verification of many
concurrent models (e.g. [14], [16]). The main contribution of
this paper is to utilize this formalism to analyze performance
related properties of a real-time system. We propose three
novel techniques in this direction.

Firstly, we propose algorithms for the computation of
quantitative timing information, such as exact minimum and
maximum delays, between two specified rewrite rules. This
is probably the most crucial timing measurement for real-
time systems as it allows designers to ensure that the timing
objectives are being satisfied. For example, our algorithms can
be used to measure the time taken from one specified point in
a piece of code to another or the time between the occurrence
of an external event and the system response to that event.



Secondly, we provide counting algorithms that compute the
bounds on the number of states that satisfy a property between
two specified rewrite rules. This feature provides more detailed
information compared to the traditional formal techniques
when addressing classical problems, such as schedulability
analysis. For example, rather than just determining whether
some tasks will always meet their deadlines, when executed
under a given scheduling strategy, the likelihood of a priority
inversion situation may be assessed by counting the number of
reachable states where actions of lower priority processes can
be executed during the execution of a high priority process.
On the other hand, priority inversion time can be determined
by looking at the fraction of time spent in such states.

Thirdly, we propose algorithms to compute the probability
of a property being satisfied for all inputs of the given system.
This capability allows us to optimize the system’s performance
over all inputs specially when we are not given an initial state
assignment. This is a key feature of the proposed approach,
since most of the available formal approaches are only capable
of analyzing the truth value of a given property and do not
provide any probabilistic information.

In order to illustrate the utilization and practical effective-
ness of the proposed algorithms, we utilize them to evaluate
the performance of a simple search engine system. The system
is first formally modeled in RT-MAUDE [19], which is a lan-
guage and tool that supports formal specification and analysis
of real-time and hybrid systems. The proposed algorithms, also
modeled in RT-MAUDE, are then used to precisely evaluate the
minimum and maximum delays associated with a given run of
the systems model. Similarly, the proposed probabilistic time
computation approach is also used to formally achieve some
interesting probabilistic information about the given search
engine system.

The paper is organized as follows: Section II provides a
review of the related work. Then, in the next three section,
we provide the details associated with the above mentioned
three contributions, i.e., the algorithms for computing bounds
on delays for an interval, bounds on the number of times a
property is verified for an interval and probabilistic properties,
respectively. The search engine case study is given in Section
VL. Finally, Section VII concludes the paper.

II. RELATED WORK

The minimum delay problem was first formulated by [9]
within the Markovian decision theory. The authors of [9]
addressed the problem of intercepting in minimum expecting
time a target that moves randomly among a finite number of
states. In [2] the minimum delay problem is formulated as a
shortest stochastic path problem.

A large number of state-based formal approaches have been
proposed that offer the capability to analyze the performance
of real-time systems. They can be broadly classified into two
categories, i.e., using probabilistic model-checking (e.g.,[11],
[12]) and Petri nets (e.g. [4], [1]). However, all these ap-
proaches share the same inherent limitation, which is the
reduced expressive power of their automata based or Petri net

based specification formalism, when compared to the proposed
rewriting logic formalism. For example, a verification method-
ology consisting of selective quantitative timing analysis and
interval model checking has been proposed in [5]. The model
of the system is a Kripke structure. The selective quantitative
algorithms compute minimum and maximum delays over a
selected subset of system executions. However, this approach
is based on the assumption that the delay between two system’s
state is constant and equal to one time unit. Also, the selection
of executions set is based on a linear-time temporal logic [22]
formula and not on the environment behavior, which can also
be probabilistic. Moreover, this approach lacks a mechanism
which permits to specify suspension and resumption of actions
without losing the temporal context. Hence, it seems to be
appropriate only for systems that can be executed in a lock-
step, which is usually not the case for real-time systems.
Rewriting logic, which is the fundamental technique in the
proposed approach, allows us to compute delays without any
additional assumptions and to select executions based on a
probabilistic model of the environment, as will be seen in this
paper.

Besides the state-based formal techniques, interactive the-
orem proving based on higher-order logic has also been
explored for conducting the performance analysis of real-time
systems. The formal performance analysis of the Stop-and-
Wait protocol, which is a classical example of a real-time
system, is presented in [10]. Unlike the state-based formal
methods, due to the high expressive nature of higher-order
logic, this approach is capable of formally specifying any real-
time system that can be described mathematically and reason
about all sorts of statistical and probabilistic performance
characteristics. But, it requires an enormous amount of user
effort for interactively verifying the intended properties in
the theorem prover (e.g., the Stop-and-Wait protocol analysis
required 300 man-hours [10]), which is not the case in the
proposed rewriting logic based technique.

To the best of our knowledge, there is no ad hoc approach
to analyze the performance of real-time rewriting models.
The most that has been achieved in this area so far is
the “manual” analysis by defining execution strategies and
comparing output results. For example, the specification and
analysis of an AFR/NCA active network protocol, which is a
real-time system, is done using rewriting techniques in [17].
To evaluate its performance, some variables have been added
to the original model and the specification of the system
was executed with different strategies. However, this approach
highlights a serious drawback especially if many performance
criteria have to be measured. In fact, continuous adding of
variables to the initial system can introduce errors or modify
the original system behavior in unexpected ways. Also, there is
no guarantee that the selected execution strategies will provide
the best estimation of the properties to be verified. To the
best of our knowledge, the proposed approach presents an
automated performance analysis of real-time rewriting models
for the first time and thus tends to overcome the above
mentioned limitations.



We utilize RT-MAUDE [19] to implement the proposed
algorithms and conduct our case study. RT-MAUDE com-
plements conventional timed-automata based model checkers,
such as UPPAAL [7] and KRONOS [8], by the full generality
of the specification language, but most importantly by its
simplicity and clarity. The tool offers a wide range of analysis
techniques including timed rewriting for simulation purposes,
and time-bounded linear temporal logic model checking. It has
been used to model and analyze sophisticated communication
protocols [20], state of the art wireless sensor networks [21]
and scheduling algorithms [18]. The main strength of RT-
MAUDE lies in the modeling and analysis of complex systems
that cannot be naturally expressed as, e.g., finite timed (or
hybrid) automata or timed petri nets. This gain in expressive
power is appreciable. However, it is balanced by the undecid-
ability of many system properties.

III. REAL-TIME REWRITING SYSTEMS DELAYS

In this section, we first provide a brief review of rewriting
logic and its usage in expressing real-time systems. This will
be followed by the proposed algorithms for the computation
of delay bounds.

Rewriting logic theory [13] expresses an essential equiv-
alence between logic and computation. System’s states are
in bijective correspondence with formulas, and concurrent
computations are in bijective correspondence with proofs.
Given this equivalence between computation and logic, a
rewrite rule of the form ¢ — ¢ can be read in the following
two different ways:

o Computationally: it is interpreted as a local transition
which expresses how parts of system’s state can change
concurrently;

o Logically: it is interpreted as an inference rule which says
that we can derive the formula ¢’ form the formula 7.

The computational and the logical viewpoints are not exclu-
sive; they complement each other and can be seen as two
different sides of the same coin.

A rewrite theory [13] can be formally defined as a 4-tuple
R=(%,E,L,R) [15], where

o (X, E) is the equational theory modulo which we rewrite.

o L is a set of labels.

e R is a set of labeled rewrite rules.

A commonly occurring form for the equational theory
(3,E) is E=E'UA, where A is a set of equational axioms
for which there exists a matching algorithm, and E’ is a set
of terminating equations modulo A.

Now, a real-time system may be described in rewrite theory
by M = (%, E, L, R), where R, in this case, can be viewed
as the union of two disjoint sets Ry and Rp. Ry is the set
of instantaneous rewrite rules ¢ : t — ¢ that are applied
without delay and Rr represents the set of tick rewrite rules.
A tick rewrite rule £ : t —5 ¢t is applied after the specified
delay 7.

A run p of M represents a set of rewriting derivations
of M. Whereas, a rewriting derivation deriv(t;,t;11,7¢)

corresponds to one application of a rewrite rule £ : t; —— t;,1.
When /£ is instantaneous, we assume that the derivation step
is delayed by 0, i.e., 7, = 0. The starting term ¢ of a run p
can be obtained by using the head function as head(p). A
run p can also be viewed as the union of some sequences of
derivation steps. In this case, each sequence defines a path 7
from the starting term and has the form:

F:togtl Eﬁgztgm
Given a path, the derivation step deriv (t;,t; 11, 7; (i+1)) starts
at the global time Z?j’;l 7j,(j+1)- Given a term ¢ in the run
p, we define step(¢) as the function that associates to ¢ the
set of all possible derivation steps that can be applied over ¢.
Tails(p) denotes the set of terms in the run p that cannot be
rewritten by any of the rewrite rules of the model.

Now, utilizing the above mentioned terminology, we present
the proposed algorithms for the computation of minimum and
maximum delays associated with real-time rewriting models.
In the minimum delay computation, our main goal is to be
able to predict how quickly can we start from a given state
and reach a given set of states in a real-time rewriting model.
We solve this minimum delay problem by reducing it to a
shortest path (in terms of time delays) problem.

The proposed minimum delay computation algorithm is
given in Algorithm 1. The function mintime accepts two
variables: a starting term ¢; and a set of final terms Ty # @,
whereas typically, Ty = Tails(p). It returns the shortest time
delay between t; and T's. The loop, in the algorithm, intuitively
scans through the delays associated with the set of all possible
terms in the real-time rewriting model of the system by
executing each derivation step and recursively calling the
function mintime for each one of them. If at any point, we
encounter a delay shorter than the current delay, we update
the latter by the new value. The correctness of Algorithm 1
relies on the hypothesis that there exists at least one path from
some initial term reaching some final term.

Algorithm 1 Minimum Delay
function mintime(t;, T')

1. if t; € Ty then return 0

2. else mindelay :=

3 for all t;, € step(t;) do
4 ming, = mintime(ty, T) + 7 k
S. if mindelay > min,, then
6. mindelay := min;,
7 end if

8 end do

9. return mindelay
10. end if

It is important to note that technically, there may not be a
shortest path in a real-time rewriting model, i.e., it is possible
that every path can be shortened by an infinitesimal amount.
So in order to be precise, we seek the greatest lower bound



on the mindelay. Moreover initial and final terms must be
understood in a broad sense. For a terminating process these
can be the terms in which execution starts and ends. Whereas,
for a non-terminating process, they can be the terms in which
a resource is requested and in which it has later been allocated,
respectively.

We now consider the maximum delay computation in a real-
time rewriting model. Similar to the minimum delay problem,
we solve this problem by reducing it to the calculation of the
longest path (in terms of time delays) between a term and
a set of terms. Algorithm 2 accepts two parameters: t; and
Ty # @, where t; is the starting term and T is the set of
final terms. It returns the longest time delay between ¢; and T'.
This algorithm is basically a recursive function that performs
a backward search. The function step'(t) defines the set
of terms ¢ such that 3 m; € p satisfying step(t ,t) € ;.
Intuitively, this algorithm explores the delays between each
term ¢ty € Ty and the starting term ?; and it retains the
maximum value of the delay encountered. The correctness of
Algorithm 2 relies on two hypotheses. Firstly, that there exists
at least one path from the initial term to some final term.
Secondly, that there is no infinite cyclic path leading towards
some final term that never backtracks to the initial term.

Algorithm 2 Maximum Delay
function maxtime(t;, T')

1. if t; € Ty then return O

2. else maxdelay :=0

3 forallt; € Ty do

4 for all ¢, € step™*(t;) do

5. maxdelay,, = maxtime(t;, {tx}) + 7% s
6 if maxdelay < max;, then

7 maxdelay = max,,

8

. end if
9. end do
10. end do
11. return maxdelay
12. endif

IV. COUNTING OVER A RUN

In many performance related queries, we are interested not
only in the length of a rewriting derivation from a starting term
t; to a non empty set of final terms T, but also the minimum
or the maximum number of times a given property is satisfied
on a rewriting derivation from the starting to final terms.

Now, we propose two algorithms that compute the minimum
and maximum number of states where a given property is
verified in a run p. Both algorithms accept three variables,
i.e., the initial term ¢;, a property p and a set of final terms
T. The algorithms compute the minimum and the maximum
number of terms (states) where p is true, over all finite paths
of the rewriting derivations that are between a starting term ¢;
and some ¢y € T, respectively. The function V(t,p), used in
these algorithms, returns 1 if the property p is verified on term

ti and O otherwise. To guarantee that the mincounter and
mazxcounter variables, in Algorithms 3 and 4, respectively,
are well-defined, we assume that there exists at least one
rewriting derivation path m; beginning from ¢; that reaches
some term ¢y in T’ after a finite number of steps. By definition
of the rewriting derivation, those minimum and maximum are
well defined when the starting term is the initial term of the
run.

Algorithm 3 Minimum Property Counting
function minprop(¢;, p, 1)

L. if t; € Ty then return v(t;,p)

2. else mincounter = co

3 for all ¢, € step(t;) do

4 counter := minprop(tx, p, T¢) + V(t;,p)
5 if mincounter > counter then

6. mincounter := counter

7 end if

8 end do

9. return mincounter

10. end if

Algorithm 4 Maximum Property Counting
function maxprop(t;, p, T¥)

1. if t; € Ty then return v(¢;,p)

2. else maxcounter ;=0

3 for all ty € Ty do

4. for all t;, € step™*(¢s) do

5. counter := maxprop(t;, p, {tx}) + V(tx,p)
6 if maxcounter < counter then

7 maxcounter := counter

8

. end if
9. end do
10. end do
11. return maxcounter
12. end if

Variants of the above algorithms can be used to compute
many other interesting characteristics of real-time rewriting
models. This includes the minimum and maximum intermedi-
ate derivation steps in a run, by setting p = True for all the
“states” in the run. We can also combine delay and counting
algorithms to deduce information about the bounds on the
number of states in the rewriting derivations that satisfy a given
property within an interval [mindelay, maxdelay].

V. PROBABILISTIC ANALYSIS

Probabilistic considerations play a vital role in the perfor-
mance analysis of real-time systems as these systems contain a
considerable amount of asynchronously initiated unpredictable
events. Traditionally, formal verification techniques handle
these random events by making worst-case assumptions in



order to avoid the tedious tasks of formally specifying random
behaviors and formal reasoning about probabilistic properties.
Due to the inherent nature of this approach, the resulting de-
signs are developed based on excessively pessimistic criteria,
which in turn reduces their overall performance. In order to
solve this problem, we propose an approach that can be utilized
to formally analyze probabilities associated with a property
being satisfied for all possible inputs of a real-time rewriting
model.

The probability of a discrete event A is usually defined in
terms of its relative frequency [23].

Number 0f Ways Event A Can Occur

P(A)

This definition can be utilized to determine the probability
associated with a real-time system property p being satisfied
for a rewriting model run as follows

(D

- Total Number Of Possible Outcomes

P(p = True) = M (2)

|pTi

where Pty.p denotes the set of runs, with initial term ¢, € Tj,
that satisfy property p, pr, denotes the set of runs for all
possible initial terms 7; and |S| denotes the cardinality of
a set S. Even though Equation 2 illustrates the fundamental
concept behind the computation of the probability of success
for a given property of a real-time system run, its usage for real
world applications is not very straightforward due to two main
reasons. First of all, executing all possible runs of a real-time
systems, for the evaluation of the probability term in Equation
2, is quite time consuming, if not impossible. The situation
gets worse when we consider the analysis of real world real-
time systems where we often have to deal with a large set of
parameters that affect the initial terms. For example, consider
the case of an Internet routing controller that takes an IP
address as its input and either directs the associated packet
to its destination or sends it to another routing controller. Due
to the wide range of initial terms in this case that depend on the
number of possible IP addresses, it is practically impossible
to consider all possible runs associated with each one of these
IP addresses. The second challenge in using Equation 2 for
practical purposes is to model the random input sequence from
the environment of the given real-time system, which plays
an important role in determining the set of runs that satisfy a
given property. The range of input values is usually known
but the probability of getting a given input at a particular
time may or may not be equal to the probability of getting
another one. It is very important to consider this kind of
environmental randomness for the verification of performance
related properties of real-time systems. For example, if we
want to analyze the performance of a computer, it is important
to take into account the type of applications that it will
be required to run along with the frequency of each one.
The performance measure will vary drastically depending
on if it is mostly used for rough computations or for text
processing. Formal modeling of this kind of random inputs

from the environments, which are either very unpredictable
or depend on many random choices, is usually not a very
straightforward task. Now, we present an approach that allows
us to use the proposed rewriting logic based approach for
solving both of the above mentioned problems associated with
the computation of the probability, given in Equation 2.

Generally, when we run a rewriting model, the number
of possible runs depends on the number of initial terms ¢;.
Thus, our goal is to select a subset of initial terms in such a
way that allows us to reduce the computation time without
compromising the computation accuracy of P(p = True),
given in Equation 2. We recall that a run p is obtained from
an initial term by successive applications of the rewrite rules
of a model M = (X, EFU A, L, R). If we consider two runs
pt, and py, such that [tl]EUA = [tQ}EUA = t, where [tk]EuA
denotes the equivalence class term of ¢, modulo £ U A and
is called candidate initial term, then p;, = p;, because ¢; and
to can be reduced to the same canonical form ¢ with respect
to the equations of F U A. This fact allows us to choose a
subset of all possible initial terms for the computation of the
probability in Equation 2 and thus solves the above mentioned
problem. The cardinality of this subset would be a number,
say N, which represents the number of disjoint equivalent
classes of possible initial terms. Thus, the set {p, }1<k<n is
the set of runs such that every p;, denotes the run obtained
from a particular acceptable value of an initial term ¢; and
corresponds to the run provided by the equivalence class term
of [tx] pua. If p;, and p;; are two runs obtained from the initial
terms ¢; and t;, respectively, then [t;|pua # [t;]pua for all
i, € {1,..., N} such that ¢ # j. The set of possible initial
terms 7 can then be considered as the union of the /N initial
terms’ canonical forms:

N
T, = |J [trlsua 3)
k=1

If we consider the example of the Internet routing controller
again and assume that this system treats IP addresses coming
from the same server equally, then, the above reasoning allows
us to consider one address input from each server in the net-
work instead of all possible IP addresses. This, in turn, reduces
the number of runs to be considered for the computation of
success probability of a run property, significantly.

To solve the second problem with Equation 2, we propose
to formally model the random input from the environment of
the real-time system as a random variable. In the case of a
real-time system, the set {ptk}1§k§ N 1S countable because
the set 7; of all possible inputs is countable, which allows
us to model the random input behavior of the environment
as a discrete random variable X = {p:,, pty, ..., Pty } OVer
the set of runs. Now, the behavior of the environment can be
integrated into our real-time rewriting model by associating a
probability mass function (PMF) to the random variable X.
The PMF gives the probability that a random variable R is
exactly equal to some value x, i.e., fR = P(R = z). We
assume that the PMF f ¥, associated with the random variable



X, reflects the behavior of passing all input values from the
environment to the system model

fx o Aphi<keny — [0,1]
Pty = P(p = Ptk) =
P(t; = [tr]pua) =
f(tr)

where f is the input frequency distribution function that
associates the probability of its occurrence to each input initial
term.
[ Atideern [0,1]
tr — ]P)(tz = tk-)

—

Suppose that we have a run p;, obtained from the candidate
initial term t;, € T;. By definition, ¢; represents an equivalence
class of terms ty,,...,tx, such that ¢;, can be reduced to
by the equational theory £ U A for all 1 < i < r. The term
tr exists and is unique because the equational theory £ U A
is confluent and terminating. Thus, the frequency distribution
of t; can be expressed in terms of the frequency distributions
of tx,,...,tg, as:

k)ZZf(tki)

Now, based on the above mentioned formalization, we are
in the position of formally evaluating the performance metrics
of real-time rewriting models using Equation 2. Consider a
performance metric ¢, such as minimum (maximum) delay or
a minimum (maximum) property counting, to be measured for
a real-time system. We define over the set of runs a function
vy {pt, fi<w<n — {0, 1} as follows:

| 1 if py, verifies ¢
Vo () = { 0 otherwise

where {p;, }1<k<n is the set of runs and p;, denotes the run
obtained from the candidate initial term [tx]pua € T;. Now,
we can formally evaluate the average value of the performance
metric ¢ being satisfied in the overall system by adding the
performance of each run weighted by its associated probability
as follows:

N A~
= flpr,) x vs(pr) 4)
k=1

The above results can be used to develop algorithms for
performance analysis of a real-time system, based on prob-
abilistic considerations. For instance, Algorithm 5 describes
an approach for computing the probability that the maximum
delay of the model does not exceed a given threshold Max. The
other algorithms for computing the probability of minimum
delay, minimum and maximum property counting can also
be developed by making some modest modifications to the
algorithm presented here. Intuitively, this algorithm computes
the probability estimation provided by Equation 4. It accepts
three inputs: the set of runs {p:, }1<i<n, the frequency dis-
tribution f of an initial term and the threshold Max, and

returns the probability that the maximum delay of the overall
model does not exceed Max. First, it computes the frequency
distribution f for every initial candidate term as the sum of
the individual frequency distributions of all the initial terms
that are equivalent modulo £ U A to the candidate term. Once
the function f is computed, the algorithm calls the function
maxdelay with Head(p;,) and Tail(p;,) as parameters to
compute the maximum delay for every run of the overall
system. If at any step, the maximum delay provided by p:,
is less or equal to the threshold Max, then the probability
value is incremented by the frequency distribution of py,.

Algorithm 5 Probability Maximum Delay
function probmaxtime({p., }1<i<n, f, Max)

01. prob:=0

02. fori=1to N do
03. t:=head(p,)
04. Ty := Tails(p:,)

05.  f(pi,) =0
06. forallt; e [t]b:UA do
07. flpe,) = Fpe,) + F(t5)

08. if maxdelay(t, 7)< Max then
09. prob := prob + f(p:.)

10. endif

11. end do

Algorithm 5 and its other counterparts for the minimum
delay and minimum and maximum property counting can
be used to analyze various interesting probabilistic properties
about real-time rewriting models, which play a significant role
in formally analyzing the performance of a real-time systems.
To illustrate their utilization and effectiveness, we present the
performance analysis of a simple search engine in the next
section.

VI. APPLICATION: A SIMPLE SEARCH ENGINE

We present the performance analysis of a simple search
engine system using RT-MAUDE. The considered system takes
as input a query described as a string of characters, it looks
for results that match the given string and then provides the
matching results to the user.

We assume that the system memorizes the results of m
different queries in its local server. In our case, we pose m = 2
and suppose that results of query a and query b are saved
in the local server of the system. The access to the local
server takes a negligible amount of time, so we assume that
it is performed instantly. If some query other than a or b is
received, the search engine system Sy sends it to two different
exterior servers S; and S,. In this case, each server processes
the query and sends back the results to Sy. Since results can
be different from both servers, the user is provided both sets
of results by the system. We assume that the communication
between Sy and S; and between Sy and Sy requires a delay
of 100 and 200 time units, respectively. The query processing



by 57 and S5 takes 20 and 2 time units, respectively; whereas
the query processing of a and b by Sy needs 30 and 50 time
units, respectively. The RT-MAUDE description of the module
is given as follows:

(tomod SEARCH-ENGINE is
protecting QID.
sort Query Answer.
sort Server.
subsort Query < QID.
subsort Answer < QID.

op a : —> Query.
op b : —-> Query.
op sO0: -> Server.
op sl: —> Server.

op s2: —-> Server.

op request: Query —> Query[ctor].

op send: Query Server —> Query Server.
op process: Query Server —-> Answer.

op result: Answer —-> Answer.

var r: Query.}
crllregl] request(r) => send(r,sl) in time 100
if (r =/=a)/\ (r =/= b).
crll[reg2] request(r) => send(r,s2) in time 200
if (r =/=a) /\ (r =/=b).
rl[reqa] request (a) => process(a,s0) in time 30.
rl[regb] request (b) => process(b,s0) in time 50.
rl[senl] send(r,sl) => process(r,sl) in time 20.
rl[sen2] send(r,s2) => process(r,s2) in time 2
rl[pro0O] process(r,s0) => result(r).
rl[prol] process(r,sl) => result(r) in time 100.
rl[pro2] process(r,s2) => result(r) in time 200.
endtom)

After declaring two new sorts Query and Answer as
subsorts of the typical sort of identifiers QID in RT-MAUDE,
we declare an abstract sort Server. We define two constants
a and b of sort Query that represent the two stored queries in
the server and three constants S0, s1 and s2 of sort Server
to represent the local server, the server S7 and the server Ss,
respectively. We also define four operators:

e request: represents the initial state, where the system
reads the user’s request.

« send: represents the sending of the request to servers S;
and Ss.

e process: defines the state corresponding to the request
processing.

o result: describes the state where the result is provided to
the user.

The description of the module contains nine rewrite rules.
The first two [req1] and [req2], are conditional rewrite rules
that are applied only when the request is different from the
stored ones (a and b). The first rewrite rule is delayed by 100
time units and the second by 200 time units, which represents
the necessary time for the system to communicate with the
servers 51 and S, respectively. All other rewrite rules but
[pro0] are tick rewrite rules (that model time elapsing in
the system). The rewrite rule [pro0] is applied instantly and
reflects our assumption regarding local server access.

Our goal is to analyze the performance of this real-time
system based on timing delays. For this purpose, we assume
that there is a set of N possible different queries, i.e.,

Q={q,...qnv—2,a,b}. We first utilize Algorithms 1 and 2,
proposed in this paper, to deduce the minimum and maximum
delays of a given run of the system. Table I summarizes our
experimental results for the minimum and maximum delay
of the runs when N = 10 for the given system. The set )
contains the following input ground terms {q1...98, a, b}
and the two parameters passed to both algorithms are the query
and the result of the query provided by each run.

TABLE I
DELAYS FOR QUERIES IN THE SEARCH ENGINE
run(gt) run(q8) | a b
Minimum Delay 220 30 | 50
Maximum Delay 402 30 | 50

Next, we illustrate the process of analyzing probabilistic
properties for this system. Consider a performance metric p
for the system, according to which the result of a query should
be provided no later than 200 time units. It is quite obvious
that the overall system behavior does not support p since the
minimum delay when the input is qO, for instance, is larger
than 200 time units and thus the property fails, even though,
this property is satisfied for the cases when the input is a
or b. This fact clearly demonstrates the usefulness of using
probability theory in the field of performance analysis as it
allows us to obtain some information about these kind of cases
where a failing property is satisfied. Using the formalization
presented in Section V, we can rephrase our question as
follows: “what is the probability that the total behavior of
the system satisfies p?”. The answer to this question depends
on the probability distribution of the random variable that
models the query generation for the search engine. If the query
generation is modeled as a Uniform random variable, where
the probability of acquiring each query is the same, then an
obvious solution to the above question is two runs out of 10,
which gives an overall system performance of 20%. Usually
this is not the case for a search engine system, i.e., the queries
are not equiprobable. This is when our environment modeling
approach comes into account, as it allows us to model the
query generation with a random variable with an appropriate
PMF that assigns a frequency distribution to every query.
Thus, we can compute the system’s performance by applying
Algorithm 5. We experimented with a frequency distribution
of 0.5% and 1.5% for a and b, respectively. This gave us the
overall system performance of 2%. On the other hand, with
a frequency distribution of 30% each for both a and b, the
overall performance of the system rose to 60%. The results of
this exercise clearly indicate that the performance of the given
search engine can be maximized if the results of most of the
incoming queries are available in the local server.

The above example clearly demonstrates the practical effec-
tiveness of the proposed algorithms in the formal performance
analysis of rewriting models of real-time systems. We are able
to formally compute delays and probabilistic quantities about a
real-time rewriting model, which to the best of our knowledge
cannot be done by any other existing formal method. Though,



the state-based techniques are capable of verifying probabilis-
tic properties, as has been described in Section II of this paper,
but the analysis is not as straightforward as has been the case
with the proposed rewriting logic based infrastructure.

VII. CONCLUSIONS

This paper presents a novel approach for formally analyzing
quantitative information about the performance of real-time
systems. Our approach is based on rewriting logic and is thus
expressive enough to model a variety of real-time systems. The
main contributions of the paper can be classified into three
categories. Firstly, we present algorithms that can be used to
find the bounds on the length of the time interval between
two specified rewrite rules in a rewriting model. Secondly, we
present algorithms that facilitate the computation of the bounds
on the number of times a property is verified in such intervals.
Thirdly, based on the different runs of a rewriting model, we
present algorithms that allow us to compute the probabilities
associated with a property being verified for all possible input
values. All these three characteristics play a vital role in
performance analysis of real-time systems. Thus, the precise
evaluation within a formal framework can prove to be very
beneficial for the performance and reliability optimization of
safety critical and highly sensitive real-time system application
domains, such as medicine, military or space travel.

In order to illustrate the utilization and practical effective-
ness of the proposed approach in analyzing real-time systems,
we developed our algorithms in RT-MAUDE and used them to
analyze a simple search engine model. This exercise allowed
us to formally analyze many performance characteristics about
the given real-time systems that, to the best of our knowledge,
cannot be analyzed in such a straightforward manner using
other available formal methods, such as model checking or
theorem proving, due to their limited expressiveness or huge
user interaction issues.

The next step is to extend our approach by developing al-
gorithms for analyzing the performance of real-time rewriting
models that are composed of many sub-models operating in
parallel and exchanging data and messages. In such cases, the
run of a sub-model depends not only on the input provided by
the environment but also on the current behavior of the other
sub-models. Also, we want to explore real-time models that
interact with the environment. In this case, the input is not
only a function of static probabilities, but also depends on the
output of the model. We also plan to conduct more extensive
case studies using the proposed infrastructure in this paper,
such as soft real-time processing applications, where some
modules are allowed to miss deadlines, and communication
protocols, like the Stop-and-Wait protocol.
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