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Abstract. Optical systems are widely used in safety critical applications
such as aerospace, telecommunication and biomedical systems. The veri-
fication of such systems is usually performed by informal techniques (e.g.,
numerical simulation and paper-and-pencil based proofs) which may re-
sult in erroneous designs. Interactive theorem proving has the potential
to verify complex optical designs with better accuracy and soundness.
However, existing formalizations of optics theories do not provide the fa-
cility to analyze optical imaging properties which are used to characterize
the behavior of objects under observation (e.g., cancer cells, human eye
or commercial camera lenses). In this paper, we present the formaliza-
tion of cardinal points which are the most fundamental requirement to
model imaging properties. We also present the formal verification of the
cardinal points for an arbitrary optical system consisting of any number
of optical components. In order to demonstrate the usefulness of our for-
malization, we present the formal analysis of an optical instrument used
to compensate the ametropia of an eye.

Keywords: Theorem Proving, HOL Light, Optical Systems, Cardinal
Points.

1 Introduction

Generally, optical systems consist of a combination of reflecting and refracting
surfaces (i.e., mirrors or lenses) to achieve different functionalities such as as-
tronomical imaging, light modulation and short pulse generation. Modeling and
analysis of such systems is based on different abstractions of light such as geo-
metrical, wave, electromagnetic and quantum optics. Geometrical or ray optics
[20] characterizes light as a set of straight lines which linearly traverse through
an optical system. Wave [26] and electromagnetic optics [26] describe the scalar
and vectorial wave nature of light, respectively. In quantum optics [8], light is
considered as a stream of photons and electric and magnetic fields are modeled
as operators. In general, each of these theories has been used to model different
aspects of the same or different optical components. A phase-conjugate mirror
[15] can be modeled using the ray, electromagnetic and quantum optics. The
application of each theory is dependent on the type of system properties which
needs to be verified. For example, ray optics provides a convenient way to verify
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the stability of optical resonators, coupling efficiency of optical fibers and opti-
cal imaging of commercial lenses. On the other hand, ensuring that no energy is
lost when light travels through a waveguide and the analysis of active elements
require electromagnetic and quantum optics theories, respectively. In practice,
one of the primary design choices is to model a given optical system using the
ray optics theory which provides useful information about the overall structure
of the system. Moreover, it provides a convenient way to analyze some impor-
tant properties describing the transformation of input ray (object ray) to the
output ray (image ray). Some of these properties are the optical power of each
component, image size and location etc. These properties are called the imaging
properties of optical systems which are usually described in terms of cardinal
points [26] (i.e., three pair of points on the optical axis which are sufficient to
completely specify the imaging properties of most widely used optical systems).
Most of the industrial optical system analysis software products (e.g., Zemax
[19]) provide the facility to analyze such properties.

One of the most challenging requirement in the validation of the practical opti-
cal system models is the verification of desired properties. Therefore, a significant
portion of time is spent finding design bugs in order to build accurate optical
systems. Traditionally, the analysis of optical systems has been done using paper-
and-pencil proofs [26]. However, considering the complexity of optical and laser
systems, this analysis is very difficult, risky and error-prone. Many examples of
erroneous paper-and-pencil proofs are available in the literature of optics (e.g.,
work reported in [7] was latter corrected in [18]). Another approach is to perform
a simulation-based analysis of optical systems. This is mainly based on numer-
ical algorithms and suffers from numerical precision and soundness problems.
The above mentioned inaccuracy problems of traditional analysis techniques are
impeding their usage in designing safety-critical optical systems, where minor
bugs can lead to disastrous consequences such as the loss of human lives (e.g.,
surgeries [16]) or financial loss (e.g., the Hubble Telescope [1], for which the total
budget was $1.6 billion). In order to build reliable and accurate optical systems,
it is indispensable to develop a framework which is both accurate and scalable
for handling complex optical and laser systems.

Formal methods [27] allow for accurate and precise analysis and has the po-
tential to overcome the above mentioned limitations of traditional approaches.
The main idea behind them is to develop a mathematical model for the given
system and analyze this model using computer-based mathematical reasoning,
which in turn increases the chances for catching subtle but critical design errors
that are often ignored by traditional techniques. In order to formally verify elec-
tronic systems, several formal methods based techniques (such as model checking
[5] and theorem proving [12]) have been proposed. Due to the involvement of
multivariate calculus (complex linear algebra, complex geometry theory) in the
design of optical systems, model checking is not suitable to handle such systems.
Recently, some preliminary works for analyzing optical systems using theorem
proving have been reported in the open literature. For instance, in [14], the
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formal analysis of optical waveguides using real analysis of HOL4 theorem prover
is reported. In [4], complex formalization of electromagnetic optics is reported.
The formalization of quantum mechanics and quantum optics is presented in
[17] with applications in quantum computing. The preliminary formalization of
ray optics is reported in [22,23] with main applications in the analysis of optical
and laser resonators [21]. Despite of the vast applications of optical imaging
systems, none of the above mentioned work provides the formalization of basic
building-blocks such as the notion of cardinal points [26].

The main focus of this paper is to bridge the above mentioned gap and
strengthen the formal reasoning support in the area of optical imaging systems.
The work presented in this paper is an extension of [25] where we elaborate
more on the formalization framework for imaging optical systems along with
the formal analysis of an arbitrary visual optical system to verify its effect for
refractive compensation when placed in front of a human eye [10]. This work is
a part of an ongoing project1 to develop a formal reasoning support for different
fields of optics (e.g., ray, electromagnetic and quantum optics). In this paper,
we use the HOL Light theorem prover [3] to formalize the underlying theories
of imaging optical systems. The main reasons of using HOL Light is the exis-
tence of rich multivariate analysis libraries [13,9]. Our HOL Light developments
of geometrical optics and optical imaging systems presented in this paper are
available for download [24] and thus can be used by other researchers and optics
engineers working in industry to conduct the formal analysis of more practical
optical systems.

The rest of the paper is organized as follows: Section 2 and 3 provide a brief
introduction of ray optics and the HOL Light theorem prover, respectively. In
Section 4, we present the proposed formalization framework for ray optics and
optical imaging properties along with some highlights of the formalization of
optical systems, rays and corresponding matrix models. We describe the formal-
ization of composed optical systems in Section 5. Consequently, we present the
formalization of cardinal points of optical imaging systems and the development
of component library in Sections 6 and 7, respectively. We illustrate the effec-
tiveness of our work by describing the formal modeling and analysis of a visual
optical system in Section 8. Finally, Section 9 concludes the paper and highlights
some future research directions.

2 Ray Optics

2.1 Overview

Ray optics describes the propagation of light as rays through different interfaces
and mediums. The main governing principle of ray optics is based on some pos-
tulates which can be summed up as follows: Light travels in the form of rays
emitted by a source; an optical medium is characterized by its refractive index;
light rays follow the Fermat’s principle of least time [20]. Generally, the main

1 http://hvg.ece.concordia.ca/projects/optics/
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components of optical systems are lenses, mirrors and propagating mediums
which is either a free space or some material such as glass. These components
are usually centered about an optical axis, around which rays travel at small
inclinations (angle with the optical axis). Such rays are called paraxial rays and
this assumption provides the basis of paraxial optics which is the simplest frame-
work of geometrical optics. When a ray passes through optical components, it
undergoes translation, refraction or reflection. In translation, the ray simply trav-
els in a straight line from one component to the next and we only need to know
the thickness of the translation. On the other hand, refraction takes place at the
boundary of two regions with different refractive indices and the ray obeys the
law of refraction, called Paraxial Snell’s law [20]. Similarly, a ray follows the law
of reflection at the boundary of a reflective interface (e.g., mirror). For example,
ray propagation through a free space of width d with refractive index n, and a
plane interface (with refractive indices n0 and n1, before and after the interface,
respectively) is shown in Figure 1.

no n1 

θo 
θ1 

yo y1 n 

θ 

yo y1 

 d 

(a) Free Space  (b) Plane Interface 

Fig. 1. Behavior of a Ray at Plane Interface and Free Space

2.2 Modeling Approach

The change in the position and inclination of a paraxial ray as it travels through
an optical system can be described by the use of a matrix algebra. This matrix
formalism (called ray-transfer matrices) of geometrical optics provides accurate,
scalable and systematic analysis of real-world complex optical and laser systems.
This is because of the fact that each optical component can be described by a
(2 × 2) matrix and many linear algebraic properties can be used in the analysis
of optical systems. For example, the general optical system with an input and
output ray vector can be described as follows:[

yn

θn

]
=

[
A B

C D

][
y0

θ0

]

Finally, if we have an optical system consisting of N optical components (Ci),
then we can trace the input ray Ri through all optical components using the
composition of matrices of each optical component as follows:
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Ro = (Ck.Ck−1....C1).Ri (1)

We can write Ro = MsRi, where Ms =
∏1

i=k Ci. Here, Ro is the output ray
and Ri is the input ray. Similarly, a composed optical system that consists of
N optical systems inherits the same properties as of a single optical component.
This is a very useful modeling notion for the systems which consist of small
subsystems due to the already available infrastructure which can be utilized
directly with minimal efforts.

2.3 Optical Imaging

Optical systems capable of being utilized for imaging (can record or transform
objects to an image) are called optical imaging systems. Mainly these systems
are divided into two main categories, i.e., mirror-systems (also called catoptrics,
which deal with reflected light rays) and lens-systems (also called dioptrics, which
deal with refracted light rays). Examples of such systems are optical fibers and
telescopes, for the first and second case, respectively. An optical imaging system
has many cardinal points which are required to analyze imaging properties (e.g.,
image size, location, and orientation, etc.) of the optical systems. These points
are the principal points, the nodal points and the focal points, which are situated
on the optical axis. Figure 2 describes a general optical imaging system with
an object point P0 with a distance x0 from the optical axis (called the object
height). The image is formed by the optical system at point P1 with a distance x1

from the optical axis (called the image height). The refractive indices of object
space and image space are n and n′, respectively. The points F and F ′ are the
foci in the object space and the image space, respectively. The points N and N ′

are the nodal points in the object and image space. Finally, the points U and
U ′ are the unit or principal points in the object and image space [26].

U U’
F

F’. . . . . .N N’xo

x1

d1

doo

n n'

Po

P1

Fig. 2. Cardinal Points of an Optical System [26]
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2.4 Ray Tracing

The propagation of paraxial rays through an optical system is a very useful tech-
nique to analyse optical systems. The activity of ray propagation through an
optical system is called ray tracing [26] and it provides a convenient way for
the design optimization along with the assessment of imaging quality and prop-
erties such as misalignment tolerance and fabrication error analysis of optical
components. Ray tracing can be automated and hence it is a part of almost
all optical system design tools such as Zemax [19]. There are two types of ray
tracing: sequential and non-sequential. In this paper, we only consider sequential
ray tracing which is based on the following main modeling criterion [26] :

1. The type of each interface (e.g., plane or spherical, etc.) is known.
2. The parameters of the corresponding interface (e.g., the radius of curvature

in the case of a spherical interface) are known in advance.
3. The spacing between the optical components and misalignment with respect

to optical axis are provided by the system specification.
4. Refractive indices of all materials and their dependence on wavelength are

available.

On the other hand, in case of non-sequential ray tracing the nature of each
interface is not predefined, i.e., at each interface, the ray can either be trans-
mitted or reflected. Non-sequential ray tracing is very expensive in terms of its
huge computational time and it is only applied when the sequential ray tracing
cannot be used. It is sufficient to consider sequential ray tracing to evaluate the
performance of most imaging optical systems and hence the main reason of our
choice.

3 HOL Light Theorem Prover

HOL Light [11] is an interactive theorem proving environment for the construc-
tion of mathematical proofs in higher-order logic. A theorem is a formalized
statement that may be an axiom or could be deduced from already verified theo-
rems by an inference rule. A theorem consists of a finite set Ω of Boolean terms
called the assumptions and a Boolean term S called the conclusion. For exam-
ple, “∀x.x �= 0 ⇒ x

x = 1” represents a theorem in HOL Light. A HOL Light
theory consists of a set of types, constants, definitions, axioms and theorems.
HOL theories are organized in a hierarchical fashion and theories can inherit the
types, constants, definitions and theorems of other theories as their parents. In
the development of the framework, presented in this paper, we make use of the
HOL Light theories of Boolean variables, real numbers, transcendental functions
and multivariate analysis. In fact, one of the primary motivations of selecting
the HOL Light theorem prover for our work was to benefit from these built-in
mathematical theories. The proofs in HOL Light are based on the concept of a
tactic that breaks goals into simple subgoals. There are many automatic proof
procedures and proof assistants available in HOL Light which help the user in
directing the proof to the end.
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Table 1 provides the mathematical interpretations of some frequently used
HOL Light symbols and functions in this paper.

Table 1. HOL Light Symbols and Functions

HOL Symbol Standard Symbol Meaning

/\ and Logical and

\/ or Logical or

∼ not Logical negation

==> −→ Implication

<=> = Equality in Boolean domain

!x.t ∀x.t for all x : t

λx.t λx.t Function that maps x to t(x)

num {0, 1, 2, . . .} Positive Integers data type

real All Real numbers Real data type

complex All complex numbers Complex data type

suc n (n+ 1) Successor of natural number

abs x |x| Absolute function

&a N → R Typecasting from Integers to Reals

Cx a R → C Typecasting from Reals to Complex

A**B [A][B] Matrix-Matrix or Matrix-Vector multiplication

4 Proposed Formalization Framework

In this section, we briefly describe the formalization flow to analyze the imag-
ing properties of optical systems using cardinal points. The whole development
mainly consists of the following steps (as shown in Figure 3):

Formalization of the Optical System Architecture: The main task of this
step is to describe the notion of optical interfaces, free space (both are col-
lectively called an optical component) and optical systems. We also need
the formal definitions of some useful functions to check the architectural va-
lidity of optical system by ensuring that each component constitutes valid
parameters.

Formalization of Light Rays: In the ray optics literature, light rays have
been modeled in various ways [6](e.g., sequence of points and wavefront nor-
mals etc.). In this step, we formalize the notion of light rays as a sequence of
points which is required for the case of matrix modeling of optical systems
also called Gaussian Optics. Furthermore, we specify the behavior of these
rays when they propagate through optical components and free space.

Verification of Matrix Models: Building upon the above two steps, the next
requirement is to verify that any optical component and optical system can
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Matrix / Gaussian Optics
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Points

Nodal 
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Focal 
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Optical System Light Rays

Applications
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Components

Plane
Interface
Spherical
Interface
Thin Lens
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Ball Lens
Meniscus
Lens

HOL Light

Composed Systems

Fig. 3. Framework for the Formalization of the Optical Imaging Systems

be represented as a ray-transfer matrix as given in Equation 1. This step also
involves the verification of some helper theorems and lemmas about matrices
in HOL Light.

Formalization of Composed Optical Systems: Many optical systems are
composed of subsystems and we formalize the notion of composed optical
systems in this step. We also need to specify the behavioral characteristics
of ray during the propagation through each subsystem.

Formalization of Cardinal Points: We formalize the physical behavior of
cardinal points (i.e., principal, nodal and focal points) in object and im-
age space. We then verify the analytical expressions for each of these pair of
points for an arbitrary optical system.

Development of a Component Library: It is quite natural to develop a li-
brary of the frequently used optical components (e.g., spherical interface,
thin lens and thick lens) which mainly consist of the formal modeling, ver-
ification of ray-transfer matrix relation and corresponding cardinal points.
Finally, the availability of such a library is quite handy to apply our frame-
work to verify the properties of practical optical systems such as visual opti-
cal systems (as described in Section 8).
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We now present the summary of the first three steps by presenting most
important definitions and theorems in the following subsections.

4.1 Modeling of Optical System Structure

Ray optics explains the behavior of light when it passes through a free space and
interacts with different interfaces like spherical and plane as shown in Figure 4
(a). We can model free space by a pair of real numbers (n, d), which are essentially
the refractive index and the total width, as shown in Figure 1 (a). For the sake of
simplicity, we consider only two fundamental interfaces, i.e., plane and spherical
which are further categorized as either transmitted or reflected. Furthermore, a
spherical interface can be described by its radius of curvature (R). We formalize
the above description in HOL Light as follows:

( )

( )

( )

( )

Optical System

(a) Sequence of Optical Interfaces

(b) Ray as Sequence of Points (c) Matrix Mode of Optical Systems

Fig. 4. Schematic Representation of Optical System, Ray and Matrix Model

Definition 1 (Optical Interface and System)
define type "optical interface = plane | spherical R"

define type "interface kind = transmitted | reflected"

new type abbrev ("free space",‘:R × R‘)

An optical component is made of a free space (free space) and an optical
interface (optical interface) as defined above. Finally, an optical system is
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a list of optical components followed by a free space. When passing through
an interface, the ray is either transmitted or reflected (it is because of the fact
that we are only considering sequential ray tracing). In our formalization, this
information is also provided in the type definition of optical components, as
shown by the use of the type interface kind as follows:

Definition 2 (Optical Interface and System)
new type abbrev ("optical component",

‘:free space × optical interface × interface kind‘)

new type abbrev ("optical system",

‘:optical component list × free space‘)

Note that this datatype can easily be extended to many other optical components
if needed such as new types of lenses or mirrors.

The next step in our formalization is to define some predicates to ensure
the validity of free space, optical components and systems. A value of type
free space does represent a real space only if the refractive index is greater than
zero. We also need to assert the validity of a value of type optical interface

by ensuring that the radius of curvature of spherical interfaces is never equal to
zero. This yields the following predicates:

Definition 3 (Valid Free Space and Valid Optical Interface)
� is valid free space ((n,d):free space) ⇔ 0 < n

� (is valid interface plane ⇔ T) ∧
(is valid interface (spherical R) ⇔ 0 �= R)

Then, by ensuring that this predicate holds for every component of an optical
system, we can characterize valid optical systems as follows:

Definition 4 (Valid Optical Component)
� ∀fs i ik. is valid optical component ((fs,i,ik):optical component)

⇔ is valid free space fs ∧ is valid interface i

Definition 5 (Valid Optical System)
� ∀cs fs. is valid optical system ((cs,fs):optical system) ⇔

ALL is valid optical component cs ∧ is valid free space fs

where ALL is a HOL Light library function which checks that a predicate holds
for all the elements of a list.

4.2 Modeling of Ray Behavior

We can now formalize the physical behavior of a ray when it passes through
an optical system. We only model the points where it hits an optical interface
(instead of modeling all the points constituting the ray). So it is sufficient to
just provide the distance of all of these hitting points to the axis and the angle
taken by the ray at these points as shown in Figure 4 (a) and (b). Consequently,
we should have a list of such pairs (distance, angle) for every component of a
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system. In addition, the same information should be provided for the source of
the ray. For the sake of simplicity, we define a type for a pair (distance, angle)
as ray at point. This yields the following definition:

Definition 6 (Ray)
new type abbrev ("ray at point",‘:R×R‘)
new type abbrev ("ray",

‘:ray at point × ray at point ×
(ray at point × ray at point) list‘)

The first ray at point is the pair (distance, angle) for the source of the ray,
the second one is the one after the first free space, and the list of ray at point

pairs represents the same information for the interfaces and free spaces at every
hitting point of an optical system.

Once again, we specify what is a valid ray by using some predicates. First of
all, we define what is the behavior of a ray when it is traveling through a free
space. In paraxial limit, ray travels in a straight line in free space and thus its
distance from the optical axis and angle can be related as y1 = y0 + d ∗ θ0 and
θ1 = θ0 (as shown in Figure 1), respectively [20]. In order to model this behavior,
we require the position and orientation of the ray at the previous and current
point of observation, and the free space itself. We encode above information in
HOL Light as follows:

Definition 7 (Behavior of a Ray in Free Space)
� is valid ray in free space

(y0,θ0) (y1,θ1) ((n,d):free space) ⇔ y1 = y0 + d * θ0 ∧ θ0 = θ1

where (y0,θ0), (y1,θ1) and ((n,d):free space) represent the ray orientation at
previous and current point, and free space, respectively.

Similarly, we define what is the valid behavior of a ray when hitting a partic-
ular interface and the propagation in the optical system. Table 2 provides the
summary of theses definitions and more implementations details can be found
in [23].

Table 2. Some Useful Functions of Ray Optics Formalization

Function Description

head index Provides the refractive index of next free space
in the optical system

is valid ray in free space Provides the mathematical description of ray in
free space

is valid ray at interface Provides the relationship of input and output ray
at each interface

is valid ray in system Ensures that valid behavior of a ray at each
interface in the optical system
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4.3 Verification of Ray-Transfer Matrices

The main strength of the ray optics is its matrix formulation [26], which provides
a convenient way to model all the optical components in the form of a matrix.
Indeed, matrix describes a linear relation among input and the output ray as
shown in Figure 4 (c). For example, in the case of a free space, the input and
output ray parameters are related by two linear equations, i.e., y1 = y0 + d ∗ θ0
and θ1 = θ0, which further can be described in a matrix form as follows:

Theorem 1 (Ray-Transfer-Matrix for Free Space)
� ∀n d y0 θ0 y1 θ1.

is valid free space (n,d) ∧
is valid ray in free space (y0,θ0)

(y1,θ1) (n,d)) =⇒
[
y1
θ1

]
=

[
1 d

0 1

]
**

[
y0
θ0

]

The first assumption ensures the validity of free space and the second assumption
ensures the valid behavior of ray in free space. We use the traditional mathemat-
ical notation of matrices for the sake of clarity, whereas we define these matrices
using the HOL Light Vectors library. We prove the above theorem using the
above mentioned definitions and properties of vectors. Similarly, we prove the
ray-transfer matrices of plane and spherical interfaces for the case of transmission
and reflection [23].

5 Formalization of Composed Optical Systems

We can trace the input ray Ri through an optical system consisting of n optical
components by the composition of ray-transfer matrices of each optical compo-
nent as described in Equation 1. It is important to note that in this equation,
individual matrices of optical components are composed in reverse order. We
formalize this fact with the following recursive definition:

Definition 8 (Optical System Model)
� system composition ([],n,d) ⇔ free space matrix d ∧

system composition (CONS ((nt,dt),i,ik) cs,n,d) ⇔
(system composition (cs,n,d) **

interface matrix nt (head index (cs,n,d)) i ik) **

free space matrix dt

General ray-transfer-matrix relation is then given by the following theorem:

Theorem 2 (Ray-Transfer-Matrix for a Single Optical System)
� ∀sys ray. is valid optical system sys ∧

is valid ray in system ray sys =⇒
let (y0,θ0),(y1,θ1),rs = ray in

let yn,θn = last ray at point ray in[
yn
θn

]
= system composition sys **

[
y0
θ0

]
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Here, the parameters sys and ray represent the optical system and the ray
respectively. The function last ray at point returns the last ray at point of
the ray in the system. Both assumptions in the above theorem ensure the validity
of the optical system and the good behavior of the ray in the system. The theorem
is easily proved by induction on the length of the system and by using previous
results and definitions.

The above described model and corresponding ray-transfer matrix relation
only hold for a single optical system consisting of different optical components.
Our main requirement is to extend this model for a general system which is
composed of n optical subsystems as shown in Figure 5. We formalize the notion
of composed optical system as follows:

Ri

System i System i+1 System i+2 System n

Composed Optical System

A       B
C       D

A       B
C       D

A       B
C       D

A       B
C       D

Ri+1 Ri+2 Rn

Fig. 5. Ray Propagation through Composed Optical Systems

Definition 9 (Composed Optical System Model)
� composed system [] = I ∧

composed system (CONS sys cs) =

composed system cs ** system composition sys

where I represents the identity matrix and function composed system accepts a
list of optical systems :(optical system)list and returns the overall system
model by the recursive application of the function system composition (Def-
inition 8). We define the validity of composed optical system by ensuring the
validity of each involved optical system as follows:

Definition 10 (Valid Composed Optical System)
� ∀(sys:optical system list). is valid composed system sys ⇔

ALL is valid optical system sys

In order to reason about composed optical systems, we need to give some new
definitions about the ray behavior inside a composed optical system. One of the
easiest ways is to consider n rays corresponding to n optical systems individually
and then make sure that each ray is the same as the one applied at the input.
This can be done by ensuring that the starting point of each ray is equal to the
ending point of the previous ray as shown in Figure 5. We encode this physical
behavior of ray as follows:
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Definition 11 (Valid General Ray)
�is valid genray ([]:ray list) ⇔ F ∧

is valid genray (CONS h t) ⇔
(last single ray h = fst single ray (HD t) ∧
is valid genray t)

where fst single ray, last single ray and HD, provides the first and last
single ray at a point and first element of a list, respectively. On the similar lines,
we also specify the behavior of ray when it passes through each optical systems
by a function is valid gray in system. Finally, we verify that the ray-transfer-
matrix relation holds for composed optical systems which ensures that all valid
properties for a single optical system can be generalized to the composed system
as well.

Theorem 3 (Ray-Transfer-Matrix for Composed Optical System)
� ∀(sys: optical system list) (ray: ray list).

is valid composed system sys ∧
is valid gray in system ray sys ∧
is valid genray ray =⇒
let (y0,θ0) = fst single ray (HD ray) in

let (yn,θn) = last single ray (LAST ray) in[
yn
θn

]
= composed system sys **

[
y0
θ0

]

6 Formalization of Cardinal Points

We consider a general optical imaging system as shown in Figure 6. In this
context, the first and the last points of the ray represent the location of object
and image. As shown in Figure 6, object (P0) is located at a distance of d0 from
the optical system and image (P1) is formed at the distance of dn. The object
and image heights are y0 and yn, respectively. The ratio of image height to the
object height is called lateral magnification which is usually denoted by β. A ray
in the object space which intersects the optical axis in the nodal point N at an
angle θ intersects the optical axis in the image space in the nodal point N ′ at
the same angle θ′. The ratio of θ and θ′ is called angular magnification. In our
formalization this corresponds to the angle of the first single and and last single
ray, respectively. For the sake of generality, we formalize the general notion of
optical system as shown in 6, as follows:

Definition 12 (General Optical System Model)
� ∀ sys d0 dn ni nt

gen optical system sys d0 dn ni nt ⇔
[([ ], (ni, d0)); sys; ([ ], (nt, dn))]
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Here, the overall system consists of 3 sub-systems, i.e., free space with (ni, d0),
and general system sys and another free space (nt, dn).

Optical System

P0

Pn

yn

yo

do

dn

A       B
C       D

Fig. 6. General Optical System

Our next step is to verify the ray-transfer matrix relation of general optical
systems by using Theorem 2, as follows:

Theorem 4 (Matrix for General Optical System)
� ∀sys ray d0 dn.

is valid optical system sys ∧ 0 < ni ∧ 0 < nt ∧
is valid gray in system ray sys ∧
is valid genray ray (gen optical system sys d0 dn ni nt) =⇒
let (y0,θ0) = fst single ray (HD ray) in

let (yn,θn) = last single ray (LAST ray) in[
yn
θn

]
=

[
A+ Cdn (Ad0 + B+ Cd0dn + Ddn)

C Cd0 + D

]
**

[
y0
θ0

]

Next, we formalize the notion of image and object height, image and object
angle, lateral and angular magnification, as follows:

Definition 13 (Lateral and Angular Magnification)
� ∀ray. object height ray = FST (fst single ray (HD ray))

� ∀ray. image height ray = FST (last single ray (LAST ray))

� ∀ray. object angle ray = SND (fst single ray (HD ray))

� ∀ray. image angle ray = SND (last single ray (LAST r))

� ∀ray. lateral magnificationray=
object height ray

image height ray

� ∀ray. angular magnificationray=
object angle ray

image angle ray
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where object height and image height accept a ray and return the lateral
distance of image and object from the optical axis, respectively. Similarly,
image angle and object angle return the image and object angle, respectively.

The location of all the cardinal points can be found on the optical axis as
shown in Figure 2. In case of general optical systems (Figure 6), these can be
defined using the distances di and dn, by developing some constraints.

Principal Points: In order to find principal points, the image has to be formed
at the same height as of the object in the object space, i.e., the lateral magnifi-
cation should be one. This means that all the rays, starting from certain height,
will have same height regardless of the incident angle. Mathematically this leads
to the fact that the second element of 2 × 2 matrix, representing the optical
system has to be 0. We package these constraints into the following predicate:

Definition 14 (Principle Points Specification)
� ∀(sys: optical system list).

principal points spec sys ⇔
(∀ray. is valid gray in system ray sys ∧ is valid genray ray =⇒
(let M = composed system sys and

yn = image height ray and

y0 = object height ray in

y0 �= 0 ∧ M(2,1) �= 0 ⇒
M(1,2) = 0 ∧ lateral magnification ray = 1))

The function principal points spec accepts an arbitrary composed system
sys and ensures that for any ray the constraints holds as described above. Here,
M(i,j) represents the elements of a square matrix M. Now we can define the prin-
ciple points as the pair of points (dU ,dU ′) which satisfy the above constraints
as follows:

Definition 15 (Principle Points of a System)
� ∀(sys: optical system list) dU dU’ ni nt.

principal points (dU,dU’) sys ni nt⇔
principal points spec (gen optical system sys dU dU’ ni nt)

We used the reasoning support developed in the last section to prove the ana-
lytical expressions for the principal points of general optical system described in
Figure 6.

Theorem 5 (Principal Points of General System)
� ∀ni nt sys.

is valid optical system sys ∧ 0 < ni ∧ 0 < nt ∧
let M = system composition sys in

(principle points

((
M(2,2)
M(2,1)

∗ (M(1,1) − 1)− M(1,2)), (
1−M(1,1)
M(2,1)

)) ni nt sys)
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Nodal Points: The second cardinal points of an optical system are the nodal
points N (in the object space) and N ′ (in the image space) as shown in Figure
2. A ray in the object space which intersects the optical axis in the nodal point
N at an angle θ intersects the optical axis in the image space at the nodal point
N ′ at the same angle θ′, which implies that angular magnification should be 1.
We encode these constraints as as follows:

Definition 16 (Nodal Points Specification)
� ∀(sys: optical system list).

nodal points spec sys ⇔
(∀ray. is valid gray in system ray sys ∧ is valid genray ray =⇒
(let M = composed system sys and

yn = image height ray and

yn = image height ray and

θ0 = object angle ray and

θn = image angle ray in

y0 = 0 ∧ yn = 0 ∧ θ0 �= 0∧ M(2,1) �= 0 ⇒
M(1,2) = 0 ∧ angular magnification ray = 1))

The function nodal points spec accepts an arbitrary composed system sys and
ensures that for any ray the constraints holds as described above. Consequently,
we can define the nodal points as the pair of points (dN ,dN ′) which satisfy the
above constraints as follows:

Definition 17 (Nodal Points of a System)
� ∀(sys: optical system list) dU dU’ ni nt.

nodal points (dN,dN’) sys ni nt⇔
nodal points spec (gen optical system sys dU dU’ ni nt)

The corresponding analytical expressions for the Nodal points of general optical
system described are proved in following theorem.

Theorem 6 (Nodal Points of General System)
� ∀ni nt sys.

is valid optical system sys ∧ 0 < ni ∧ 0 < nt ∧
let M = system composition sys in

(nodal points

((
1−M(2,2)
M(2,1)

), (
M(1,1)
M(2,1)

∗ (M(2,2) − 1)− M(1,2))) ni nt sys)

Focal Points: The focal points F (in the object space) and F ′ (in the image
space), have two properties: A ray starting from the focus F in the object space
is transformed into a ray which is parallel to the optical axis in the image space.
Similarly, a ray which is parallel to the optical axis in the object space intersects
the focus F ′ in the image space. We define the following predicate using the
above description:
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Definition 18 (Focal Points Specification)
� ∀(sys: optical system list).

focal points spec sys ⇔
(∀ray. is valid gray in system ray sys ∧ is valid genray ray =⇒
(let M = composed system sys and

yn = image height ray and

yn = image height ray and

θ0 = object angle ray and

θn = image angle ray in

M(2,1) �= 0 ⇒
(θn = 0 ∧ y0 = 0 ⇒ M(1,1) �= 0) ∧
(θ0 = 0 ∧ yn = 0 ⇒ M(2,2) �= 0)

Finally, we can define the focal points (dF ,dF ′) as follows:

Definition 19 (Focal Points of a System)
� ∀(sys: optical system list) dU dU’ ni nt.

focal points (dF,dF’) sys ni nt⇔
focal points spec (gen optical system sys dU dU’ ni nt)

We also verify the corresponding analytical expressions for the focal points points
in the following theorem.

Theorem 7 (Focal Points of General System)
� ∀ni nt sys.

is valid optical system sys ∧ 0 < ni ∧ 0 < nt ∧
let M = system composition sys in

(focal points ((
−M(2,2)
M(2,1)

), (
−M(1,1)
M(2,1)

)) ni nt sys)

This completes the formalization of cardinal points of the optical systems.
Theorems 5,6 and 7 are powerful results as they simplify the calculation of
cardinal points to just finding an equivalent matrix of the given optical system.

7 Cardinal Points of Frequently Used Optical Components

In this section, we present the summary of the formal verification of the cardinal
points of widely used optical components. Generally, lenses are characterized
by their refractive indices, thickness and radius of curvature in case of spherical
interface. Some of the components are shown in Figure 7, i.e., refracting spherical
interface, thick lens, ball lens and plano convex lens. Note that all of these
components are composed of two kinds of interfaces, i.e., plane or spherical
and free spaces of different refractive indices and widths. We use our developed
infrastructure to formalize these components and verify the ray-transfer-matrix
relation for each model. Consequently, we can easily derive the cardinal points
using already verified theorems. For the sake of conciseness, we only present the
formalization of thick lens and the verification of its principal points. A thick
lens is a composition of two spherical interfaces separated by a distance d as
shown in Figure 7 (b). We formalize thick lenses as follows:
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Definition 20 (Thick Lens)
� ∀R1 R2 n1 n2 d. thick lens R1 R2 n1 n2 d =

([(n1,0),spherical R1,transmitted;

(n2,d),spherical R2,transmitted],(n1,0))

where n1 represents the refractive index before and after the first and the second
interface, respectively. Whereas n2 represents the refractive index between the
two spherical interfaces which have the radius of curvatures R1 and R2, respec-
tively.

We then verify the general expression for the principal points of a thick lens
in the following theorem.

Theorem 8 (Principal Points of Thick Lens)
�∀R1 R2 n0 n1 d. R1 �= 0 ∧ R2 �= 0 ∧ 0 < n1 ∧ 0 < n2 ∧

(d * (n1 - n2) �= -n2 * (R1 - R1)) =⇒
(let dU = (n * d * R1) / (n2 * (R2 - R1) + (n2 - n1) * d) and

dU’ = -(n * d * R2) / (n2 * (R2 - R1) + (n2 - n1) * d) in

principal points (dU,dU’) (thick lens R1 R2 n1 n2 d) n1 n1)

Here, the first four assumptions are required to verify the validity of the thick
lens structure and the last assumption specifies the condition about thick lens
parameters which is required to verify the principal points dU and dU’. Similarly,
we verify the principal points for other optical component as given in Table 3.
Moreover, we also formalize some other optical components such as thin lens
and parallel plate where complete details can be found in the source code [24].

n0 n1
Optical axis 

Ray y0 y1

0

1

1

0

d

R1 R2

R

d

R

d

(a) Spherical Refracting Interface (b) Thick Lens

(c) Ball Lens (d) Plano Convex Lens

Fig. 7. Frequently used Optical Components [26]
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Table 3. Principal Points of Some Optical Components

Optical Component Principal Points

Spherical Interface (transmitted)
dU = 0 ∧ dU ′ = 0

Spherical Interface (Reflected)
dU = 0 ∧ dU ′ = 0

Ball Lens
dU = −R ∧ dU ′ = −R

Meniscus Lens
dU = R

nL−1
∧ dU ′ = − R

nL−1

Plano Convex Lens
dU = 0 ∧ dU ′ = − d

nL

This completes the formal verification of the cardinal points of the optical
imaging systems which to the best of our knowledge is done for the first time
using theorem proving. Due to the formal nature of the model and the inherent
soundness of higher-order logic theorem proving, we have been able to verify
generic results such as Theorems 5,6 and 7. This improved accuracy comes at
the cost of the time and efforts spent, while formalizing the underlying theory
of geometrical optics and composed optical systems. Interestingly, the availabil-
ity of such a formalized infrastructure significantly reduces the time required
to analyze the cardinal points of the frequently used optical components. An-
other contribution of our work is to bring out all the hidden assumptions about
the physical models of lenses and mirrors which otherwise are not mentioned
in the optics literature (e.g., [26]). Moreover, we automatized parts of the ver-
ification task by introducing new tactics. Some of these tactics are specialized
to verify (or simplify) the proofs related to our formalization of ray optics (e.g.,
VALID OPTICAL SYSTEM TAC [24]). However, some tactics are general and can be
used in different verification tasks involving matrix/vector operations. An ex-
ample of such tactic is COMMON TAC, which allows us to verify the ray-transfer
matrices in our development.

8 Formal Analysis of Visual Optical System for an Eye

Human eye is a complex optical system which processes light rays through
different biological layers such as cornea, iris and crystalline lens which is lo-
cated directly behind the pupil. There are different eye diseases some of them
are age related and others are caused due to the malfunctioning of some tis-
sues inside the eye. Myopia (or near-sightedness) is a commonly found eye dis-
ease which is caused due to the wrong focus of the incoming light inside the
eye. In general, myopia is considered as a significant issue due to its high preva-
lence and the risk for vision-threatening conditions as described in the guidelines
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by American Optometric Association [2]. The most commonly used method to
avoid this problem is by the use of corrective lenses or eye surgery [2]. Math-
ematically, different conditions for myopia can be analyzed using geometrical
optics and cardinal points [10]. We consider the general description of the visual
optical system of eye as shown in Figure 8. The visual optical system of an eye
is described by S and an optical device is represented by SD. The parameter
SG is a homogeneous gap between SD and the eye, SE is the combination of
SD and SG. Similarly, SC is the combination of SE and S. The points Q0 and
Q1 are the incident and emergent special points of S and QC0 and QC1 are the
corresponding cardinal points (can be either principal, nodal and focal points) of
SC . When, we place SD in front of the eye, it causes Q0 to be displaced by ΔQC0

and Q1 to be displaced by ΔQC1. In this design, the entrance plane T0 is located
immediately anterior to the first surface of the tear layer on the cornea and the
exit plane T1 is located immediately anterior to the retina of the eye. Our main
goal is to formally derive the cardinal points for this systems description. We
proceed by the formal model which consists of three main subsystems:

Fig. 8. Visual Optical System for an Eye [10]

– The visual optical system of the eye S.
– Homogeneous distance SG: it can be modeled using a free space of width zG.
– Any corrective optical device SD: it can be a contact lens or some surgical

equipment.

The corresponding HOL Light definition is as follows:

Definition 21 (Model of the Optical Corrective Setup for Myopia)
� ∀ system eye zG device

EYE corrective sys system eye zGdevice ⇔
[system eye; ([ ], (1, zG)); device]
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We now derive the general expressions for the cardinal points as follows:

Theorem 9 (Cardinal Points of General System)
� ∀ system eye zG device.

is valid optical system system eye ∧
is valid optical system device =⇒
let

[
Ac Bc
Cc Dd

]
=

composed system (EYE corrective sys system eye zG device) in

principle points (( Dc
Cc

∗ (Ac − 1)− Bc), (
1−Ac
Cc

))
ni nt EYE corrective sys system eye zG device ∧
nodal points (( 1−Ac

Cc
), ( Ac

Cc
∗ (Dc − 1)− Bc))

ni nt EYE corrective sys system eye zG device ∧
focal points ((− Dc

Cc
), (− Ac

Cc
))

ni nt EYE corrective sys system eye zG device

Given the structure of the corrective device, we can easily find the location
of QC0 and QC1, i.e., cardinal points which help to estimate the shifts in the
cardinal points of the visual system of eye. Furthermore different decisions about
the diagnoses of a disease can be made based on the equivalent composed system.
For example, the element Ac is the direct measure of the myopia of the eye, i.e.,
the eye is myopic, emmetropic or hyperopic if Ac is negative, zero or positive,
respectively [10]. All the results are derived in general form which can be directly
used for particular corrective devices and the parameters of eye.

9 Conclusion

In this paper, we reported a new application of formal methods to verify the imag-
ing properties of optical systems. In particular, we provided a brief introduction
of the current state-of-the-art and highlighted their limitations. We formalized
the notion of composed optical systems and verify that composed systems inherit
the same linear algebraic properties as for the case of a single optical system.
Consequently, we formalized the notion of cardinal points of an optical systems
along with the verification of the generic expressions for the case of an arbitrary
optical system. Finally, we presented the formal analysis of a vision corrective
biomedical device to analyze the myopia. The main challenge of the reported
work is its interdisciplinary nature due to the involvement of optical physics,
mathematics and interactive theorem proving. Based on our experience, we be-
lieve that there is a lot of potential to apply formal methods to verify biomedical
systems in general and surgical devices in particular. One obvious hurdle is the
gap among the theorem proving and other physical sciences such as biology,
optics and fluid dynamics.

Our future work is to formalize and verify the correctness and soundness of
the ray tracing algorithm [26], which is included in almost all optical systems
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design tools. Other future directions include the application of our work in the
analysis of ophthalmic devices which are both cost and safety critical.
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