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Dynamic fault trees (DFTs) have become one of the commonly used modeling techniques that capture
the dynamic failure behavior of systems. Recently, DFTs have been formalized in higher-order logic (HOL),
which allows performing DFT analysis within the sound core of a HOL theorem prover. However, due to
the interactive nature of HOL theorem proving, the proof process involves significant user guidance. In this
paper, we propose to use machine learning techniques to facilitate automating the proof of the subgoals. The
machine learning can use the existing proofs of these goals as well as the verification steps being performed
at runtime to come up with reasoning to verify the remaining subgoals. This kind of support from machine
learning can lead to the creation of a tool for DFT analysis that requires minimum user intervention in the
formal DFT analysis and thus can facilitate the industry to benefit from a sound DFT analysis approach.

Dynamic Fault Trees A dynamic fault tree (DFT) is a graphical representation of the sources of system
failure in a tree format [12]. The system modeling starts with a top event that represents an undesired failure
event, then the sources that lead to the occurrence of this top event are modeled using fault tree gates. The
importance of DFTs lies in the fact that they can capture the failure dependencies among system components
using DFT gates, which is suitable for analyzing real-world systems specially the safety-critical ones.

Formal DFT Analysis Giving the safety-critical nature of the applications of DFT analysis, we have
recently provided the formalization of DFT in HOL4 [7], which allows conducting the DFT analysis in a sound
theorem prover (TP) [4, 3] based on the algebraic approach [9]. However, due to the interactive nature of
HOL TP, using our formalization for DFT analysis is limited to users with a considerable experience in HOL
TP. Our formalization is based mainly on verifying the probabilistic behavior of DFT gates and utilizing the
probabilistic principle of inclusion and exclusion (PIE) to express the probability of the top event of a given
DFT. The number of subgoals to verify a given DFT depends on the number of subevents to be included in
the PIE. For example, if the PIE is used with 7 subevents, it is required to verify 127 different subgoals. We
have verified several intermediate lemmas that facilitate the proof process of DFT case studies. Moreover,
we have identified certain patterns in the proof process of these lemmas that enable extending them to cover
larger case studies. However, so far there is no automation involved in this process, as the generated subgoals
are different since they represent the different combinations of intersection of the subevents of the PIE.

Using Machine Learning in Formal DFT Analysis In this project, we propose to use machine learning
to facilitate automating the proofs of DFT analysis. These proofs deal mainly with iterated Lebesgue integrals
and their measurability. Although these proofs are complex, there are some common patterns that can be
utilized in the automation process. This automation enables using this formalization by other users that are
not experts in TP. Ultimately, we plan to develop a tool that would provides the user with an interface for
conducting the analysis without getting involved into the details of the proofs.

Related Work Machine learning (ML) is used with automated TP to select the heuristic for proof search
based on features of the conjecture to be proved [2]. Recently, ML has been proposed to be used with HOL
TP. For example, in [8], a dataset is created for the proof steps based on the multivariate theory and the proof
of the Kepler conjecture [6] in HOL Light TP [1]. This dataset and similar ones can be utilized in classifying
useful steps in proving a certain conjecture.

Proposed Methodology We propose to create a similar dataset for the proof steps of the measure, Lebesgue
integral and probability theories [10, 11] of HOL4 TP, since these theories form the basis of our proofs for
DFTs, as depicted in Figure 1. In this dataset, we will also include our formalization for DFT, particularly
the intermediate lemmas that have certain patterns in their proof steps. This dataset will be divided into two
subsets; a training and a testing set. Based on the created set, we plan to use ML in the premise selection of
the proper verified theorems that can be helpful in verifying a given conjecture. This is basically a classification
problem of whether a certain theorem is helpful or not for proving the current conjecture. Therefore, including
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Figure 1: Proposed Methodology

our intermediate lemmas of DFT analysis in the training set is of a great importance, as the patterns that
we identified can facilitate determining the right steps and theorems to verify similar conjectures. This task
requires creating an ML model, such as convolutional neural networks [13], in order to classify the theorems.
We plan to consider features related to DFT gates that can further help in the classification process, as the
proofs that we developed differ depending on the DFT gate. In addition, we will make use of the TacticToe
approach implemented in [5] that automates the selection of the proper tactics to prove a conjecture in HOL4.

After successfully implementing the above-mentioned steps, we plan to enhance the learning process by
enabling learning on the fly, i.e., continuously enabling learning while conducting new proofs. This step will
positively impact the classification results as the training set will be continuously improved with each new
proven conjecture. We believe that implementing this automation for formal DFT analysis will allow end users
that are unfamiliar with TP to benefit from our DFT formalization to provide sound analysis.
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