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Abstract. Continuous probability distributions are widely used to
mathematically describe random phenomena in engineering and phys-
ical sciences. In this paper, we present a methodology that can be used
to formalize any continuous random variable for which the inverse of the
cumulative distribution function can be expressed in a closed mathemat-
ical form. Our methodology is primarily based on the Standard Uniform
random variable, the classical cumulative distribution function properties
and the Inverse Transform method. The paper includes the higher-order-
logic formalization details of these three components in the HOL theorem
prover. To illustrate the practical effectiveness of the proposed method-
ology, we present the formalization of Exponential, Uniform, Rayleigh
and Triangular random variables.

1 Introduction

Theorem proving [7] is an interactive verification approach that can be used to
prove mathematical theorems in a computer based environment. Due to its in-
herent soundness, theorem proving is capable of providing precise answers and is
thus more powerful than testing or simulation-based system analysis techniques.
In this paper, we propose to perform probabilistic analysis within the environ-
ment of a higher-order-logic theorem prover in order to overcome the inaccuracy
and enormous CPU time requirement limitations of state-of-the-art simulation
based probabilistic analysis approaches.

The foremost criteria for constructing a theorem-proving based probabilistic
analysis framework is to be able to formalize the commonly used random vari-
ables in higher-order logic. This formalized library of random variables can be
utilized to express random behavior exhibited by systems and the corresponding
probabilistic properties can then be proved within the sound environment of an
interactive theorem prover. Random variables are basically functions that map
random events to numbers and they can be expressed in a computerized envi-
ronment as probabilistic algorithms. In his PhD thesis, Hurd [14] presented a
methodology for the verification of probabilistic algorithms in the higher-order-
logic (HOL) theorem prover [8]. Hurd was also able to formalize a few discrete
random variables and verify their corresponding distribution properties. On the
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other hand, to the best of our knowledge, no higher-order-logic formalization of
continuous random variables exists in the open literature so far.

In this paper, we propose a methodology for the formalization of continuous
random variables in HOL. Our methodology utilizes Hurd’s formalization frame-
work and is based on the concept of the nonuniform random number generation
[5], which is the process of obtaining random variates of arbitrary distributions
using a Standard Uniform random number generator. The main advantage of
this approach is that we only need to formalize one continuous random variable
from scratch, i.e., the Standard Uniform random variable, which can be used
to model other continuous random variables by formalizing the corresponding
nonuniform random number generation method.

Based on the above methodology, we now present a framework, illustrated in
Figure 1, for the formalization of continuous probability distributions for which
the inverse of the Cumulative Distribution Function (CDF) can be represented
in a closed mathematical form. Firstly, we formally specify the Standard Uni-
form random variable and verify its correctness by proving the corresponding
CDF and measurability properties. The next step is the formalization of the
CDF and the verification of its classical properties. Then we formally specify
the mathematical concept of the inverse function of a CDF. This formal speci-
fication, along with the formalization of the Standard Unform random variable
and the CDF properties, can be used to formally verify the correctness of the
Inverse Transform Method (ITM) [5], which is a well known nonuniform random
generation technique for generating nonuniform random variates for continuous
probability distributions for which the inverse of the CDF can be represented
in a closed mathematical form. At this point, the formalized Standard Uniform
random variable can be used to formally specify any such continuous random
variable and its corresponding CDF can be verified using the ITM.

The rest of the paper is organized as follows: In Section 2, we briefly review
Hurd’s methodology for the verification of probabilistic algorithms in HOL. The
next three sections of this paper present the HOL formalization of the three
major steps given in Figure 1, i.e., the Standard Uniform random variable, the
CDF and the ITM. In Section 6, we utilize the proposed framework of Figure

Fig. 1. Proposed Formalization Framework
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1 to formalize the Exponential, Uniform, Rayleigh and Triangular random vari-
ables. In Section 7, we discuss potential probabilistic analysis applications for
the formalized continuous random variables. A review of related work in the
literature is given in Section 8 and we finally conclude the paper in Section 9.

2 Verifying Probabilistic Algorithms in HOL

In this section, we provide an overview of Hurd’s methodology [14] for the veri-
fication of probabilistic algorithms in HOL. The intent is to introduce the main
ideas along with some notation that is going to be used in the next sections.

Hurd [14] proposed to formalize the probabilistic algorithms in higher-order
logic by thinking of them as deterministic functions with access to an infinite
Boolean sequence B

∞; a source of infinite random bits. These deterministic func-
tions make random choices based on the result of popping the top most bit in
the infinite Boolean sequence and may pop as many random bits as they need
for their computation. When the algorithms terminate, they return the result
along with the remaining portion of the infinite Boolean sequence to be used by
other programs. Thus, a probabilistic algorithm which takes a parameter of type
α and ranges over values of type β can be represented in HOL by the function

F : α → B∞ → β × B∞

For example, a Bernoulli(1
2 ) random variable that returns 1 or 0 with equal

probability 1
2 can be modeled as follows

� bit = λs. (if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence
equivalents of the list operation ’head’ and ’tail’. The probabilistic programs
can also be expressed in the more general state-transforming monad where the
states are the infinite Boolean sequences.

� ∀ a,s. unit a s = (a,s)
� ∀ f,g,s. bind f g s = let (x,s’)← f(s) in g x s’

The unit operator is used to lift values to the monad, and the bind is the
monadic analogue of function application. All monad laws hold for this definition,
and the notation allows us to write functions without explicitly mentioning the
sequence that is passed around, e.g., function bit can be defined as

� bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s, stl s).
Hurd [14] also formalized some mathematical measure theory in HOL in order

to define a probability function P from sets of infinite Boolean sequences to real
numbers between 0 and 1. The domain of P is the set E of events of the prob-
ability. Both P and E are defined using the Carathéodory’s Extension theorem,
which ensures that E is a σ-algebra: closed under complements and countable
unions. The formalized P and E can be used to prove probabilistic properties for
probabilistic programs such as
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� P {s | fst (bit s) = 1} = 1
2

where the function fst selects the first component of a pair. In Hurd’s formal-
ization of probability theory, a set of infinite Boolean sequences, S, is said to be
measurable if and only if it is in E , i.e., S ∈ E . Since the probability measure P

is only defined on sets in E , it is very important to prove that sets that arise in
verification are measurable. Hurd [14] showed that a function is guaranteed to
be measurable if it accesses the infinite Boolean sequence using only the unit,
bind and sdest primitives and thus leads to only measurable sets.

Hurd formalized a few discrete random variables and proved their correct-
ness by proving the corresponding Probability Mass Function (PMF) proper-
ties [14]. The algorithms for these discrete random variables are either guaran-
teed to terminate or satisfy probabilistic termination, meaning that the prob-
ability that the algorithm terminates is 1. Thus, they can be expressed using
Hurd’s methodology by either well formed recursive functions or the probabilis-
tic while loop [14]. On the other hand, the implementation of continuous ran-
dom variables requires non-terminating programs and hence calls for a different
approach.

3 Formalization of the Standard Uniform Distribution

In this section, we present the formalization of the Standard Uniform distribu-
tion that is the first step in the proposed methodology for the formalization of
continuous probability distributions as shown in Figure 1. The Standard Uniform
random variable can be characterized by the CDF as follows:

Pr(X ≤ x) =

⎧
⎨

⎩

0 if x < 0;
x if 0 ≤ x < 1;
1 if 1 ≤ x.

(1)

3.1 Formal Specification of Standard Uniform Random Variable

The Standard Uniform random variable can be formally expressed in terms of
an infinite sequence of random bits as follows [11]

lim
n→∞(λn.

n−1∑

k=0

(
1
2
)k+1Xk) (2)

where, Xk denotes the outcome of the kth random bit; true or false represented
as 1 or 0, respectively. The mathematical expression of Equation (2) can be
formalized in the HOL theorem prover in two steps. The first step is to define a
discrete Standard Uniform random variable that produces any one of the equally
spaced 2n dyadic rationals, of the form i

2n (0 ≤ i ≤ 2n), in the interval [0, 1−(1
2 )n]

with the same probability (1
2 )n using Hurd’s methodology.
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Definition 3.1:
std unif disc: (num → (num → bool) → (real × (num → bool)))
� (std unif disc 0 = unit 0) ∧
∀ n. (std unif disc (suc n) =

bind (std unif disc n) (λm. bind sdest
(λb. unit (if b then ((1

2 )n+1 + m) else m))))

The function std unif disc allows us to formalize the real sequence of Equation
(2) in the HOL theorem prover. Now, the formalization of the mathematical
concept of limit of a real sequence in HOL [10] can be used to formally specify
the Standard Uniform random variable of Equation (2) as follows

Definition 3.2:
std unif cont: ((num → bool) → real)
� ∀ s. std unif cont s = lim (λn. fst (std unif disc n s))

where, lim is the HOL function for the limit of a real sequence [10].

3.2 Formal Verification of Standard Uniform Random Variable

The formalized Standard Uniform random variable, std unif cont, can be verified
to be correct by proving its CDF to be equal to the theoretical value given
in Equation (1) and its Probability Mass Function (PMF) to be equal to 0,
which is an intrinsic characteristic of all continuous random variables. For this
purpose, it is very important to prove that the sets {s | std unif cont s ≤ x}
and {s | std unif cont s = x} arising in this verification are measurable. The
fact that the function std unif disc accesses the infinite Boolean sequence using
only the unit, bind and sdest primitives can be used to prove

Lemma 3.1:
� ∀ x n. {s | fst (std unif disc n s) ≤ x} ∈ E ∧

{s | fst (std unif disc n s) = x} ∈ E

On the other hand, the definition of the function std unif cont involves the lim
function and thus the corresponding sets cannot be proved to be measurable in
a very straightforward manner. Therefore, in order to prove this, we leveraged
the fact that each set in the sequence of sets (λn.{s | fst(std unif disc n s) ≤
x}) is a subset of the set before it. In other words, this sequence of sets is a
monotonically decreasing sequence. Thus, the countable intersection of all sets
in this sequence can be proved to be equal to the set {s | std unif cont s ≤ x}

Lemma 3.2:
� ∀ x. {s | std unif cont s ≤ x} =

⋂
n (λ n. {s | fst (std unif disc n s) ≤ x})

Now the set {s | std unif cont s ≤ x} can be proved to be measurable
since E is closed under countable intersections [14] and all sets in the sequence
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(λn.{s | fst(std unif disc n s) ≤ x}) are measurable according to Lemma 1.
Using a similar reasoning, the set {s | std unif cont s = x} can also be proved
to be measurable.

Theorem 3.1:
� ∀ x. {s | std unif cont s ≤ x} ∈ E ∧

{s | std unif cont s = x} ∈ E

Theorem 3.1 can now be used along with the real number theories [10] to verify
the correctness of the function std unif cont in the HOL theorem prover by
proving its Probability Mass Function (PMF) and CDF properties [11].

Theorem 3.2:
� ∀ x. P{s | std unif cont s = x} = 0 ∧

P{s | std unif cont s ≤ x} =
if (x < 0) then 0 else (if (x < 1) then x else 1)

4 Formalization of the Cumulative Distribution Function

In this section, we present the verification of classical CDF properties in the
HOL theorem prover, which is the second step in the proposed methodology.

4.1 Formal Specification of CDF

The CDF of a random variable, R, is defined by FR(x) = Pr(R ≤ x) for any
real number x, where Pr represents the probability. It follows from this definition
that the CDF can be formally specified in HOL by a higher-order-logic function
that accepts a random variable and a real argument and returns the probability
of the event when the given random variable is less than or equal to the value
of the given real number.

Definition 4.1:
cdf: (((num → bool) → real) → real → real)
� ∀ R x. cdf R x = P {s | R s ≤ x}

4.2 Formal Verification of CDF Properties

Using the formal specification of the CDF, we are able to verify classical CDF
properties [16] (details are given below) in HOL. The formal proofs for these
properties not only ensure the correctness of our CDF specification but also
play a vital role in proving the correctness of the ITM as will be discussed
in Section 5. The formal proofs of these properties are established using the
HOL set, measure, probability [14] and real number [10] theories and under the
assumption that the set {s | R s ≤ x}, where R represents the random variable
under consideration, is measurable for all values of x. The details of the HOL
verification steps for these properties can be found in [12].
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CDF Bounds. (0 ≤ FR(x) ≤ 1)
This property states that if we plot the CDF against its real argument x, then
the graph of the CDF is between the two horizontal lines y = 0 and y = 1.

Theorem 4.1:
� ∀ R x. (0 ≤ cdf R x) ∧ (cdf R x ≤ 1)

CDF is Monotonically Increasing. (if a < b, then FR(a) ≤ FR(b))
For all real numbers a and b, if a is less than b, then the CDF value of a random
variable, R, at a can never exceed the CDF value of R at b.

Theorem 4.2:
� ∀ R a b. a < b ⇒ (cdf R a ≤ cdf R b)

Interval Probability. (if a < b then Pr(a < R ≤ b) = FR(b) − FR(a))
This property is very useful for evaluating the probability of a random variable,
R, lying in any given interval (a,b] in terms of its CDF.

Theorem 4.3:
� ∀ R a b. a < b ⇒ (P {s | (a < R s) ∧ (R s ≤ b)} =

cdf R b - cdf R a)

CDF at Positive Infinity. ( lim
x→∞FR(x) = 1; that is, FR(∞) = 1)

This property states that the value of the CDF for any given random variable,
R, always tends to 1 as its real argument approaches positive infinity.

Theorem 4.4:
� ∀ R. lim (λ n. cdf R (&n)) = 1

where lim M represents the formalization of the limit of a real sequence M
(i.e., lim

n→∞M(n) = lim M) [10] and ”&” represents the conversion function from
natural to real numbers in HOL.

CDF at Negative Infinity. ( lim
x→−∞FR(x) = 0; that is, FR(−∞) = 0)

This property states that the value of the CDF for any given random variable,
R, always tends to 0 as its real argument approaches negative infinity.

Theorem 4.5:
� ∀ R. lim (λ n. cdf R (-&n)) = 0

CDF is Continuous from the Right. ( lim
x→a+

FR(x) = FR(a))

In this property, lim
x→a+

FR(x) is defined as the limit of FR(x) as x tends to a

through values greater than a. Since FR is monotone and bounded, this limit
always exists.

Theorem 4.6:
� ∀ R a. lim (λ n. cdf R (a + 1

&(n+1))) = cdf R a
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CDF Limit from the Left. ( lim
x→a−

FR(x) = Pr(R < a))

In this property, lim
x→a−

FR(x) is defined as the limit of FR(x) as x tends to a

through values less than a.

Theorem 4.7:
� ∀ R a. lim (λ n. cdf R (a - 1

&(n+1))) = P {s | (R s < a})

5 Formalization of the Inverse Transform Method

In this section, we present the formal specification of the inverse function for a
CDF and the verification of the ITM in HOL. It is the third step in the pro-
posed methodology for the formalization of continuous probability distributions
as shown in Figure 1. The ITM is based on the following proposition [21].

Let U be a Standard Uniform random variable. For any continuous CDF
F, the random variable X defined by X = F−1(U) has CDF F, where
F−1(U) is defined to be the value of x such that F (x) = U .

Mathematically,

Pr(F−1(U) ≤ x) = F (x) (3)

5.1 Formal Specification of the Inverse Transform method

We define the inverse function for a CDF in HOL as a predicate inv cdf fn,
which accepts two functions, f and g, of type (real → real) and returns true if
and only if the function f is the inverse of the CDF g according to the above
proposition.

Definition 5.1:
inv cdf fn: ((real → real) → (real → real) → bool)
� ∀ f g. inv cdf fn f g =

(∀x. (0 < g x ∧ g x < 1) ⇒ (f (g x) = x) ∧
(∀x. 0 < x ∧ x < 1 ⇒ (g (f x) = x))) ∧
(∀x. (g x = 0) ⇒ (x ≤ f (0))) ∧
(∀x. (g x = 1) ⇒ (f (1) ≤ x))

The predicate inv cdf fn considers three separate cases, the first one corre-
sponds to the strictly monotonic region of the CDF, i.e., when the value of the
CDF is between 0 and 1. The next two correspond to the flat regions of the
CDF, i.e., when the value of the CDF is either equal to 0 or 1, respectively.
These three cases cover all possible values of a CDF since according to Theorem
4.1 the value of CDF can never be less than 0 or greater than 1.

The inverse of a function f , f−1(u), is defined to be the value of x such
that f(x) = u. More formally, if f is a one-to-one function with domain X and
range Y, its inverse function f−1 has domain Y and range X and is defined by
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f−1(y) = x ⇔ f(x) = y, for any y in Y. The composition of inverse functions
yields the following result.

f−1(f(x)) = x for all x ∈ X, f(f−1(x)) = x for all x ∈ Y (4)

We use the above characteristic of inverse functions in the predicate inv cdf
fn for the strictly monotonic region of the CDF as the CDF in this region is
a one-to-one function. On the other hand, the CDF is not injective when its
value is either equal to 0 or 1. Consider the example of some CDF, F , which
returns 0 for a real argument a. From Theorems 4.1 and 4.2, we know that
the CDF F will also return 0 for all real arguments that are less than a as
well, i.e., ∀x. x ≤ a ⇒ F (x) = 0. Therefore, no inverse function satisfies the
conditions of Equation (4) for the CDF in these flat regions. When using the
paper-and-pencil proof approach, this issue is usually resolved by defining the
inverse function of a CDF in such a way that it returns the infimum (inf) of
all possible values of the real argument for which the CDF is equal to a given
value, i.e., f−1(u) = inf{x|f(x) = u} [5], where f represents the CDF. Even
though this approach has been shown to analytically verify the correctness of
the ITM [5], it was not found to be sufficient enough for a formal definition in
our case. This is due to the fact that in order to simplify the formalization task,
Hurd [14] used the standard real numbers R, formalized in HOL by Harrison
[10], rather than the extended real numbers R = R

⋃
{−∞, +∞} to formalize

the mathematical measure theory. Thus, if the inf function is used to define the
inverse function, then the problem arises for the case when the value of the CDF
is equal to 0. For this case, the set {x|f(x) = 0} becomes unbounded at the
lower end because of the CDF property given in Theorem 4.5 and thus the value
of the inverse function becomes undefined. In order to overcome this problem,
we used two separate cases for the two flat regions in the predicate inv cdf fn.
According to this definition the inverse function of a CDF is a function that
returns the maximum value of all arguments for which the CDF is equal to 0
and the minimum value of all arguments for which the CDF is equal to 1.

5.2 Formal Verification of the Inverse Transform Method

The correctness theorem for the ITM can be expressed in HOL as follows:

Theorem 5.1:
� ∀ f g x. (is cont cdf fn g) ∧ (inv cdf fn f g) ⇒

(P {s | f (std unif cont s) ≤ x} = g x)

The antecedent of the above implication checks if f is a valid inverse function
of a continuous CDF g. The predicate inv cdf fn has been described in the
last section and ensures that the function f is a valid inverse of the CDF g. The
predicate is cont cdf fn accepts a real-valued function, g, of type (real → real)
and returns true if and only if it represents a continuous CDF. A real-valued
function can be characterized as a continuous CDF if it is a continuous function
and satisfies the CDF properties given in Theorems 4.2, 4.4 and 4.5. Therefore,
the predicate is cont cdf fn is defined in HOL as follows:
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Definition 5.2:
is cont cdf fn: ((real → real) → bool)
� ∀ g. is cont cdf fn g =

(∀ x. (λx. g x) contl x) ∧
(∀ a b. a < b ⇒ g a ≤ g b) ∧
(lim (λ n. g (-&n)) = 0) ∧
(lim (λ n. g (&n)) = 1)

where (∀ x.f contl x) represents the HOL definition for a continuous function
[10] such that the function f is continuous for all x.

The conclusion of the implication in Theorem 5.1 represents the correctness
proof of the ITM given in Equation (3). The function std unif cont in this theo-
rem is the formal definition of the Standard Uniform random variable, described
in Section 3. Theorem 3.2 can be used to reduce the proof goal of Theorem 5.1
to the following subgoal:

Lemma 5.1:
� ∀ f g x. (is cont cdf fn g) ∧ (inv cdf fn f g) ⇒

(P {s | f (std unif cont s) ≤ x} =
P {s | std unif cont s ≤ g x})

Next, we use the theorems of Section 3 and 4 along with the formalized measure
and probability theories in HOL [14] to prove the measurability of the sets that
arise in this verification, i.e., they are in E .

Lemma 5.2:
� ∀ f g x. (is cont cdf fn g) ∧ (inv cdf fn f g) ⇒

({s | f (std unif cont s) ≤ x} ∈ E) ∧
({s | std unif cont s) ≤ g x} ∈ E) ∧
({s | f (std unif cont s) = x} ∈ E)

Lemma 5.1 can now be proved using Lemma 5.2, the theorems from Section 3
and 4 and Hurd’s formalization of probability theory in HOL. The details of the
HOL verification steps can be found in [13]. The main advantage of the formally
verified ITM (i.e., Theorem 5.1) is the simplification of the verification task of
proving the CDF property of a random variable. Originally the verification of
the CDF property involves a reasoning based on the measure, probability and
real number theories and the theorems related to the Standard Uniform random
variable. Using the ITM, the CDF verification goal can be broken down to two
simpler sub-goals, which only involve a reasoning based on the real number
theory; i.e., (1) verifying that a function g, of type (real → real), represents a
valid CDF and (2) verifying that another function f , of type (real → real), is a
valid inverse of the CDF g.

6 Formalization of Continuous Probability Distributions

In this section, we present the formal specification of four continuous random
variables; Uniform, Exponential, Rayleigh and Triangular and verify the
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correctness of these random variables by proving their corresponding CDF prop-
erties in the HOL theorem prover.

6.1 Formal Specification of Continuous Random Variables

All continuous random variables for which the inverse of the CDF exists in a
closed mathematical form can be expressed in terms of the Standard Uniform
random variable according to the ITM proposition given in Section 5. We selected
four such commonly used random variables, i.e., Exponential, Uniform, Rayleigh
and Triangular, which are formally expressed in terms of the formalized Standard
Uniform random variable (std unif cont) in Table 1 as HOL functions exp rv,
uniform rv, rayleigh rv and triangular rv, respectively. The functions ln, exp
and sqrt in Table 1 are the HOL functions for logarithm, exponential and square
root, respectively [10].

Table 1. Continuous Random Variables (for which CDF−1 exists)

Distribution CDF Formalized Random Variable

Exponential(l)
0 if x ≤ 0;
1 − exp−lx if 0 < x.

� ∀s l. exp rv l s =
− 1

l
ln(1 − std unif cont s)

Uniform(a, b)
0 if x ≤ a;
x−a
b−a

if a < x ≤ b;
1 if b < x.

� ∀s l. uniform rv a b s =
(b − a)(std unif cont s) + a

Rayleigh(l)
0 if x ≤ 0;

1 − exp
−x2

2l2 if 0 < x.

� ∀s l. rayleigh rv l s =
l ∗ sqrt(−2ln(1 − std unif cont s))

Triangular(0, a)
0 if x ≤ 0;
( 2

a
(x − x2

2a
)) if x < a;

1 if a ≤ x.

� ∀s a . triangular rv l s =
a(1 − sqrt(1 − std unif cont s))

6.2 Formal Verification of Continuous Random Variables

The first step in verifying the CDF property of a continuous random variable,
using the correctness theorem of the ITM, is to express the given continuous
random variable as F−1(U s), where F−1 is a function of type (real → real) and
U represents the formalized Standard Uniform random variable. For example,
the Exponential random variable given in Table 1 can be expressed as (λx. −
1
l ∗ ln(1 − x))(std unif cont s). Similarly, we can express the CDF of the given
random variable as F (x), where F is a function of type (real → real) and x
is a real data type variable. For example, the CDF of the Exponential random
variable can be expressed as (λx. if x ≤ 0 then 0 else 1 − exp−λx)) x.

The next step is to prove that the function F defined above represents a valid
continuous CDF and the function F−1 is a valid inverse function of the CDF F .
The predicates is cont cdf fn and inv cdf fn, defined in Section 5, can be used
for this verification and the corresponding theorems for the Exponential random
variable are given below
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Lemma 6.1:
� ∀ l. is cont cdf fn

(λx. if x ≤ 0 then 0 else (1 - exp (-l * x)))

Lemma 6.2:
� ∀ l. inv cdf fn (λ x. - 1

l * ln (1 - x))
(λx. if x ≤ 0 then 0 else (1 - exp (-l * x)))

The above lemmas along with Theorem 5.1 and Lemma 5.2 can be used to
verify the CDF and the measurability of the sets corresponding to the given
continuous random variable, respectively. These theorems for the Exponential
random variable are given below

Theorem 6.1:
� ∀ l x. (0 < l) ⇒ cdf (λs. exp rv l s) x =

if x ≤ 0 then 0 else (1 - exp (-l * x))

Theorem 6.2:
� ∀ l x. (0 < l) ⇒ ({s | exp rv r s ≤ x} ∈ E) ∧

({s | exp rv r s = x} ∈ E)

The above results allow us to formally reason about interesting probabilistic
properties of continuous random variables within a higher-order-logic theorem
prover. The measurability of the sets {s| F−1(U s) ≤ x} and {s| F−1(U s) = x}
can be used to prove that any set that involves a relational property with the
random variable F−1(U s), e.g., {s | F−1(U s) < x} and {s | F−1(U s) ≥ x},
is measurable because of the closed under complements and countable unions
property of E . The CDF properties proved in Section 4 can then be used to
determine probabilistic quantities associated with these sets [13].

The CDF and measurability properties of the rest of the continuous random
variables given in Table 1 can also be proved in a similar way [13]. For illustration
purposes the corresponding CDF theorems are given below

Theorem 6.3:
� ∀ a b x. (a < b) ⇒ cdf (λs. uniform rv a b s) x =

if x ≤ a then 0 else (if x < b then x−a
b−a else 1)

Theorem 6.4:
� ∀ x l. (0 < l) ⇒ cdf (λs. rayleigh rv l s) x =

if x ≤ 0 then 0 else (1 - exp(x2)
(2l2) )

Theorem 6.5:
� ∀ a x. (0 < a) ⇒ cdf (λs. triangular rv a s) x =

if (x ≤ 0) then 0 else
(if (x < a) then ( 2

a(x - x2

2a)) else 1)
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7 Applications

A distinguishing characteristic of the proposed probabilistic analysis approach
is the ability to perform precise quantitative analysis of probabilistic systems. In
this section, we first illustrate this statement by considering a simple probabilistic
analysis example. Then, we present some probabilistic systems which can be
formally analyzed using the continuous random variables defined in Section 6.

Consider the problem of determining the probability of the event when there is
no incoming request for 10 seconds in a Web server. Assume that the interarrival
time of incoming requests is known from statistical analysis and is exponentially
distributed with an average rate of requests λ = 0.1 jobs per second. We know
from analytical analysis that this probability is precisely equal to ( 1

exp 1 ). This
result can be verified in the HOL theorem prover by considering the probability
of the event when the value of the Exponential random variable, with parameter
0.1 (i.e., λ = 0.1), lies in the interval [10, ∞).

� P {s | 10 < exp rv 0.1 s} = 1
exp 1

The first step in evaluating a probabilistic quantity is to prove that the event
under consideration is measurable. The set in the above proof goal is measurable
since it is the complement of a measurable set {s|exp rv 0.1 s ≤ 10} (Theorem
6.2) and E is closed under complements and countable unions. The next step
is to express the unknown probabilistic quantity in terms of the CDF of the
given random variable. This can be done for the above proof goal by using the
measurability property of the set under consideration and using the complement
law of probability function, i.e., (P(S̄) = 1 − P(S).

� P {s | 10 < exp rv 0.1 s} = 1 - (cdf (λs. exp rv 0.1 s) 10)

The CDF of the Exponential random variable given in Theorem 6.1 can now
be used to simplify the right-hand-side of the above equation to be equal to
( 1

exp 1 ). Thus, we were able to determine the unknown probability with 100%
precision; a novelty which is not available in simulation based approaches.

The higher-order-logic theorem proving based probabilistic analysis can be
applied to a variety of different domains, for instance, the sources of error in
computer arithmetic operations are basically quantization operations and are
modeled as uniformly distributed continuous random variables [24]. A number
of successful attempts have been made to perform the statistical analysis of
computer arithmetic analytically or by simulation (e.g., [15]). These kind of
analysis form a very useful case study for our formalized continuous Uniform
distribution as the formalization of both floating-point and fixed-point numbers
already exist in HOL [1]. Similarly, the continuous probability distributions are
extensively used for the analysis of probabilistic algorithms and network proto-
cols [18]. Using our formalized models, these kind of analysis can be performed
within the sound environment of the HOL theorem prover. The Exponential dis-
tribution in particular, due to its memoryless property and its relationship to
the Poisson process [23], can be used to formalize the Birth-Death process which
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is a Continuous-Time Markov Chain. The higher-order-logic formalization of the
Birth-Death process may open the door for the formalized probabilistic analysis
of a wide range of queuing systems, e.g., the CSMA/CD protocol [6], the IEEE
802.11 wireless LAN protocol [17], etc.

8 Related Work

Hurd’s PhD thesis [14] can be regarded as one of the pioneering works in regards
to formalizing probabilistic programs in a higher-order-logic theorem prover. An
alternative method has been presented by Audebaud et. al [2]. Instead of using
the measure theoretic concepts of probability space, as is the case in Hurd’s ap-
proach, Audebaud et. al based their methodology on the monadic interpretation
of randomized programs as probabilistic distribution. This approach only uses
functional and algebraic properties of the unit interval and has been success-
fully used to verify a sampling algorithm of the Bernoulli distribution and the
termination of various probabilistic programs in the Coq theorem prover. The
main contribution of our paper is the extension of Hurd’s framework to verify
sampling algorithms for continuous probability distributions in HOL, a novelty
that has not been available in any higher-order-logic theorem prover so far.

Another promising approach for conducting formal probabilistic analysis is to
use probabilistic model checking, e.g., [3], [22]. Like traditional model checking,
it involves the construction of a precise mathematical model of the probabilistic
system which is then subjected to exhaustive analysis to verify if it satisfies a
set of formal properties. This approach is capable of providing precise solutions
in an automated way; however, it is limited to systems that can be expressed as
a probabilistic finite state machine. It is because of this reason that probabilistic
model checking techniques are not capable of providing precise reasoning about
quantitative probabilistic properties related to continuous random variables. On
the other hand, it has been shown in this paper that higher-order-logic theorem
proving provides this capability. Another major limitation of probabilistic model
checking is the state space explosion [4], which is not an issue with our approach.

A number of probabilistic languages, e.g., Probabilistic cc [9], λo [19] and
IBAL [20], can be found in the open literature, which are capable of modeling
continuous random variables. These probabilistic languages allow programmers
to perform probabilistic computations at the level of probability distributions
by treating probability distributions as primitive data types. It is interesting to
note that the probabilistic language, λo, is based on sampling functions, i.e., a
mapping from the unit interval [0,1] to a probability domain D and thus shares
the main ideas formalized in this paper. The main benefit of these probabilistic
languages is their high expressiveness but they have their own limitations. For
example, either they require a special treatment such as the lazy list evaluation
strategy in IBAL and the limiting process in Probabilistic cc or they do not
support precise reasoning as in the case of λo. The proposed theorem proving
approach, on the other hand, is not only capable of formally expressing most
continuous probability distributions but also to precisely reason about them.



Formalization of Continuous Probability Distributions 17

9 Conclusions

In this paper, we have proposed to use higher-order-logic theorem proving for
probabilistic analysis as a complementary approach to state-of-the-art simulation
based techniques. Because of the formal nature of the models the analysis is free
of approximation errors, which makes the proposed approach very useful for the
performance and reliability optimization of safety critical and highly sensitive
engineering and scientific applications.

We presented a methodology for the formalization of continuous probabil-
ity distributions, which is a significant step towards the development of formal
probabilistic analysis methods. Based on this methodology, we described the
construction details of a framework for the formalization of all continuous prob-
ability distributions for which the inverse of the CDF can be expressed in a closed
mathematical form. The major HOL definitions and theorems in this framework
have been included in the current paper and more details can be found in [13].
We demonstrated the practical effectiveness of our framework by formalizing four
continuous probability distributions; Uniform, Exponential, Rayleigh and Trian-
gular. To the best of our knowledge, this is the first time that the formalization
of these continuous random variables has been presented in a higher-order-logic
theorem prover.

For our verification, we utilized the HOL theories of Boolean Algebra, Sets,
Natural Numbers, Real Numbers, Measure and Probability. Our results can there-
fore be used as an evidence for the soundness of existing HOL libraries and
the usefulness of theorem provers in proving pure mathematical concepts. The
presented formalization can be utilized for the formalization of a number of
other mathematical theories as well. For example, the CDF properties can be
used along with the derivative function [10] to formalize the Probability Den-
sity Function, which is a very significant characteristic of continuous random
variables and can be used to formalize the corresponding statistical quantities.
Similarly, the formalization of the Standard Uniform random variable can also
be transformed to formalize other continuous probability distributions, for which
the inverse CDF is not available in a closed mathematical form. This can be done
by exploring the formalization of other nonuniform random number generation
techniques such as Box-Muller and acceptance/rejection [5]. Another interesting
area that needs to be explored is the support of multiple independent continuous
random variables.
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