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ABSTRACT
The heavy hitter problem is used to assess the frequency of
occurrence of an element in a given data stream. It is one
of the most widely used combinatorial tools in many safety-
critical domains including medicine, telecommunications and
stock exchange markets. Traditionally, the heavy hitter prob-
lem is analyzed using paper-and-pencil proofs, simulation or
computer algebra systems. These techniques are informal and
thus may result in an inaccurate analysis, which poses a seri-
ous threat to the reliability of the underlying applications of
the problem. To overcome this limitation, we present a formal
probabilistic analysis approach for the heavy hitter problem
using a higher-order-logic theorem prover (HOL). The paper
presents the higher-order-logic model of an algorithm for the
heavy hitter problem. This model is then utilized to formally
verify some interesting probabilistic and statistical properties
associated with the heavy hitter problem in HOL.

Index Terms– Higher-order Logic, Probability Theory,
Theorem Proving, Formal Verification, Heavy Hitter Prob-
lem.

1. INTRODUCTION

Given a Universe U , a data stream of length n and a param-
eter λ ∈ [0, 1], the Heavy Hitter problem [3] is to find the
λ-Heavy Hitter list which contains the elements of the Uni-
verse that occur in the data stream at least λn times. The
algorithms for the Heavy Hitter problem are widely used to
identify frequently encountered items of streams in a com-
pact way. For example, they have been used to identify heav-
ily traded stocks in streams of financial transactions, to detect
viruses spread in networks [17], to monitor network traffic for
statistical data collection [4] and to detect Distributed Denial
of Services (DDoS) [16].

An algorithm for the heavy hitter problem is as follows:

Input: the frequency λ, a data stream DS and a Universe U
with length n
Output: the list L of elements from U occurring at least
λ ∗ n times in DS

L← [ ]
for i = 1→ n do

if freq(DS[i]) ≥ λ then
L← L INSERTDS[i]

end if
end for

The major goal of analyzing such a problem is to predict
the behavior of some precise elements in a data stream. For
example, controlling specific transactions in a financial flow.
The biggest challenge in this analysis is the unpredictable na-
ture of the input data stream. Therefore, probabilistic tech-
niques are used for the analysis where the algorithm is mod-
eled by an appropriate random variable.

Due to its extensive usage, the heavy hitter problem and
some of its variants have been extensively analyzed using
probabilistic techniques based on paper-and-pencil proof meth-
ods (e.g., [14]), computer simulations (e.g., [15]), and com-
puter algebra systems (e.g., [12]). The traditional paper-and-
pencil based proof techniques always involve some risk of an
erroneous analysis due to the human-error factor. Computer
simulation cannot guarantee correctness since the fundamen-
tal idea in this approach is to approximately answer a query by
analyzing a large number of samples. Moreover, the random
variables are usually modeled using pseudo random number
generators in simulation based analysis, which further intro-
duces some approximations. Finally, computer algebra sys-
tems also fail to provide precise results because they are con-
structed using extremely complicated algorithms, which are
likely to contain bugs.

The accuracy of the analysis for the heavy hitter prob-
lem has become imperative these days because of its extensive
usage in highly sensitive applications in areas like medicine
and security. Thus, more reliable analysis techniques than the
ones discussed above are required. Higher-order-logic the-
orem proving [5] is capable of conducting precise analysis
and therefore can fulfill the above mentioned requirement.
Higher-order logic is a system of deduction with a precise
semantics and is expressive enough to be used for the precise
specification of almost all classical mathematics theories.

2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) 
978-1-4673-1433-6/12/$31.00 ©2012 IEEE



The foremost requirements for conducting the probabilis-
tic analysis of the heavy hitter problem in a higher-order-
logic theorem prover are (i) to be able to formalize random
variables in higher-order logic, which in turn can be used to
formally model the random input behavior of the algorithm
for the heavy hitter problem, and (ii) to be able to formally
express and verify probabilistic and statistical properties in
order to check the interesting performance characteristics in
a theorem prover. There have been some significant devel-
opments related to the above mentioned criteria in the last
few years. Namely, the extended real number based formal-
ization of measure, probability and Lebesgue integration the-
ory [11]. In this paper, we basically build upon these founda-
tions. We first formalize the above algorithm in higher-order-
logic along with the random input behavior. This is followed
by the formal verification of an interesting performance char-
acteristic, i.e., Chebychev’s inequality based bound on the
probability of identifying a heavy hitter, within the sound en-
vironment of a theorem prover. The analysis results can be
claimed to be 100% precise, which is an achievement that has
not been reported in the open literature so far.

2. RELATED WORK

The foremost requirement for conducting the formal prob-
abilistic analysis of the heavy hitter problem in a theorem
prover is to have access to a higher-order-logic formaliza-
tion of probability fundamentals. Several formalizations of
the probability theory have been reported in the open liter-
ature. Coble [1] formalized the main concepts of Lebesgue
integration and further used these fundamentals to formalize
some information theory in HOL. However, Coble’s formal-
ization of Lebesgue integral can only consider finite-valued
measures, functions and integrals. Mhamdi [11] generalized
Hurd and Coble’s work by introducing a Borel space in HOL.
He defined the extended real numbers (real numbers including
±∞) and used them to formalize measure, Lebesgue, proba-
bility and information Theories. This way, the monotonicity
of the Lebesgue integral could be proved even for the non-
integrable functions, and also the convergence theorem for
non convergent sequences. On similar lines, Hölzl [10] also
formalized the borel σ-algebra as well as its topology con-
cepts in Isabelle/HOL. He used that topology space to formal-
ize measure, probability and Lebesgue integration theory and
some of their useful properties. We utilize Mhamdi’s work
in this paper for formally analyzing the heavy hitter problem.
The prime motivation for this choice is the completeness of
the work and its availability in the HOL theorem prover, with
which we have prior experience.

In the area of higher-order-logic theorem proving based
formal probabilistic analysis of algorithms, Hasan analyzed
the algorithm for the Coupon Collectors problem [7] and also
developed a methodology to analyze the expected time com-
plexity of algorithms [8]. The proposed analysis of the heavy

hitter problem is based upon the work of Mhamdi [11] and
is thus more general. Besides being the first formal analysis
of the famous heavy hitter problem, to the best of our knowl-
edge, the presented work is also the first practical applica-
tion of Mhamdi’s formalization of probability theory and thus
demonstrates its usefulness for analyzing real-world problems.

3. FORMALIZATION OF THE HEAVY HITTER
PROBLEM

As mentioned in [3], The ε-relaxed λ-heavy hitter problem is
to find a set H ⊆ U such that all the elements of H appears
at least λn times

The Heavy Hitter Problem can be formalized in HOL by
modeling the sample set of elements and the data stream as
lists. Then we model a function, freq, that returns the fre-
quency of an element in a list which is defined below,

Definition 1: Frequency of an Element in a List

` ∀ e L. freq e L =
((LENGTH(FILTER(λr.r = e) L)))/
(((LENGTH L)))

where LENGTH returns the length of a list, and FILTER re-
turns a filtered list out of its argument list with elements that
satisfy the given condition. The above function will be re-
quired later, to report the list of the α-heavy hitter elements.
Next, we model another function, HeavyHitter lst, which
takes as parameters two lists and a real value and returns the
list of heavy hitters corresponding to the algorithm of heavy
hitter problem.

Definition 2: The α-Heavy Hitter Algorithm

` ∀ L M α. HeavyHitter lst L M α =
FILTER(λr.α <= (freq (EL r L)M))L

So far, our development has been based on deterministic
functions. We now introduce the randomness in our models
using appropriate random variables and our probabilistic anal-
ysis of the algorithm for the heavy hitter problem would be
based upon the characteristics of these random variables. In
our analysis, we need a Bernoulli variable X , with outcomes
1 or 0. In order to formalize this random behavior, we have to
define a probability space that has the set {0, 1} as its space
and power set, POW {0, 1}, as the events space and the prob-
ability measure will be a new function that returns pr if the
set in parameter implements the fact that f(x), which refers
to our random variable in this case, is equal to 1, and returns
1 − pr otherwise. The corresponding probability measure is
defined in HOL as follows:

Definition 3: The Probability Measure of Bernoulli Random
Variable

` ∀ g pr. mu g pr =
(λa.if (a = x|g x = 1) then pr
else (1 - pr))



The new probability space is formalized as follows:

Definition 4: The Heavy Hitter Probability Space

` ∀ g pr. HH prob space pr g =
({0;1},POW {0;1},mu g pr)

Finally, the new random variable will be modeled as

Definition 5: The Heavy Hitter Random Variable

` ∀ X pb. HH rv X pb = random variable X
(HH prob space pb X) Borel

This completes the formal specification of the algorithm
for the heavy hitter problem in higher-order logic. We will
use these definitions to formally reason about some interest-
ing probabilistic and statistical properties of this algorithm in
the next section.

4. FORMAL ANALYSIS OF THE HEAVY HITTER
ALGORITHM

We have utilized the HOL theorem prover to formally verify
the desired characteristics of the heavy hitter problem. We
begin by first verifying the probability mass function (PMF)
of the heavy hitter random variable (or the Bernoulli random
variable). Since the element of the sample is taken uniformly
at random, Pr[Xi = 1] = λn

n = λ, which is represented
in the HOL specification by pr. This theorem can be easily
proved in HOL using only the definition of the new random
variable as follows:

Theorem 1: PMF of Heavy Hitter Random Variable (RV)

` ∀i X. HH rv (X i) pr ⇒
prob (HH prob space pr (X i))
{x | X i x = 1} = pr

Next, we verify the expectation of the heavy hitter random
variable as the following theorem in HOL.

Theorem 2: Expectation of the Heavy Hitter RV

` ∀s. (HH rv (X i’) pr)∧
(∀i. i ∈ s ⇒
(X i ∈ measurable
(m space (HH prob space pr (X i’)),
measurable sets

(HH prob space pr (X i’))) Borel))) ⇒
expectation (HH prob space pr (X i’))
(λx.

∑
(λi. X i x) s) =

pr * (CARD s)

The assumptions used above refer respectively to our new
random variable defined in Definition 5 and each random vari-
able is measurable with respect to our new probability space
cited in Definition 4. The HOL function CARD is the math-
ematical cardinality operator. The formal reasoning for the
above theorem was based on the definition of the expectation

and some real analysis properties, i.e,
∑n

(i=1) a = na.
Let’s choose the cardinality of s as cs = 4

δ.ε2 . We would
like to prove, using our new formalizations as well as the
Chebyshev’s inequality and some real analysis, the property
saying that: the probability of reporting x is at least (1− δ).

Pr[
∑
iXi > cs ∗ (λ− ε/2)] ≥ 1 - δ

This can be formalized in HOL as follows

Theorem 3: The Upper Bound of the Probability of
Identifying a Heavy Hitter

`(∀ e s pr. (FINITE s) ∧
HH rv (X i’) pr ∧
(∀i. i ∈ s ⇒
X i ∈ measurable
(m space (HH prob space pr (X i’)),
measurable sets
(HH prob space pr (X i’))) (Borel)) ⇒

(1 - 4
(cs×(e2))) <=

prob (HH prob space pr (X i’))
{x|x ∈ p space
(HH prob space pr (X i’)) ∧

cs×(α - ( e2)<(
∑

(λi. X i x) s))}

In order to verify this result, we procede by dividing our main
goal into a number of subgoals. The first subgoal is to verify
the following relationship

{x|E[
∑
iXi]−

∑
iXi < ( e2 )× cs} =

{x|E[
∑
iXi] - ( e2 )× cs) <

∑
iXi}.

The formal reasoning for the above subgoal was based on
Theorem 2 and some properties of the inequalities. The fol-
lowing subgoal extends the previous result by applying the
probability measure and then using the available property of
the probability of the complementary events.

Pr[E[
∑
iXi]−

∑
iXi < ( e2 )× cs] =

1 - Pr[E[
∑
iXi] -

∑
iXi ≥ ( e2 )× cs)].

The next subgoal is to verify the formally probabilistic rela-
tionship

Pr[(E[
∑
Xi] -

∑
Xi)≥ ( e2 )× cs] ≤

Pr[|
∑
Xi) - (E[

∑
Xi]|≥ ( e2 )× cs]

which is expressed in HOL as follows

` ∀ e s pr. (FINITE s) ∧
(HH rv (X i’) pr) ⇒
(prob (HH prob space pr (X i’))
{x|x IN p space
(HH prob space pr (X i’)) ∧

( e2 )× cs ≤
(expectation (HH prob space pr
(X i’)) (λx.

∑
i∈s (X i x))) -

(
∑
i∈s (X i x))} ≤



prob (HH prob space pr (X i’))
{x|x ∈ p space
(HH prob space pr (X i’)) ∧

( e2 )× cs ≤
abs((

∑
i∈s (X i x)) -

(expectation (HH prob space pr
(X i’)) (λx. (

∑
i∈s X i x))))})

The proof of the last subgoal is based on the property, if A1⊆
A2 then Pr[A1] ≤ Pr[A2] and real analysis. Now Theorem 3
can be verified based on the above subgoals and the formally
verified Chebychev’s inequality [11] in addition to some real
analysis.

The proof script of the formalization of the Heavy Hitter
problem presented in this section consists of approximately
530 lines of HOL code. A detailed explanation of the proof
can be found in [9]. It is worthwhile to mention here that the
results presented in this section are not something that is new
and they have been known for quite some time now. The real
contribution of the paper lies in demonstrating the ability to
achieve these results precisely using a computer based tool.

5. CONCLUSIONS

In this paper, we utilized the mathematical probability theory
formalized in the higher-order-logic theorem prover HOL to
conduct the probabilistic analysis of the Heavy Hitter prob-
lem. The main idea behind our approach is to construct a
higher-order-logic model of the algorithm for the Heavy Hit-
ter problem, along with its random components and to verify
interesting probabilistic characteristics in a theorem prover.
We utilize this approach for analyzing the probability bounds
for the Heavy Hitter problem using the Chebychev’s inequal-
ity. Because of the formal nature of the model and the sound-
ness of the mechanical theorem prover, the analysis is guaran-
teed to be free of approximation and precision errors, which
is a novelty that, to the best of our knowledge, has not been
achieved by other probabilistic analysis approaches.

The proposed higher-order-logic theorem proving based
probabilistic analysis approach can be applied for the algo-
rithm analysis of many other problems, such as the hat-check
problem [6], the hiring problem [2], the balls and bins prob-
lem [2], the longest streak of heads problem [2], the on-line
hiring problem [2], the Chinese appetizer problem [6] and the
Quicksort algorithm [13].
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