
A NOVEL ALGORITHM FOR DETECTING CONFLICTS IN FIREWALL RULES

Amjad Gawanmeh1 and Sofiène Tahar2

1Department of Electrical and Computer Engineering,
Khalifa University of Science, Technology and Research, Sharjah, UAE

amjad.gawanmeh@kustar.ac.ae
2Department of Electrical and Computer Engineering,

Concordia University, Montreal, Québec, Canada
tahar@ece.concordia.ca

ABSTRACT

Firewalls are widely adopted for protecting private net-
works by filtering out undesired network traffic in and out of
secured networks. Therefore, they play an important role in
the security of communication systems. The verification of
firewalls is a great challenge because of the dynamic char-
acteristics of their operation, their configuration is highly er-
ror prone, and finally, they are considered the first defense to
secure networks against attacks and unauthorized access. In
this paper, we present a formal model for firewalls rulebase
and a novel algorithm for detecting and identifying conflicts
in firewalls rulebase. Our algorithm is based on calculating
the conflict set of firewall configurations using the domain
restriction. We show that the algorithm terminates, then we
apply it on a firewall rulebase example.

Index Terms— Fireall security, Formal model, Formal
verification, Rulebase conflict

1. INTRODUCTION

Firewalls [1] are part of network security that were designed
to enable secure connections between private and outside net-
works. The growing complexity of networks made them in-
dispensable to control information flow within a network, and
they are widely adopted technologies for protecting private
networks. Therefore, firewalls have been the frontier defense
for secure networks against attacks and unauthorized traffic
by filtering out unwanted network traffic coming into or go-
ing from the secured network. Testing and verification of
firewalls is a great challenge because of the dynamic char-
acteristics of their operation, their configuration is highly er-
ror prone, and finally, they are considered the first defense to
secure networks against attacks and unauthorized access. In
addition, firewalls can be used extensively before it turns out
that they are vulnerable to attacks, even though they receive
intensive analysis, and are thought to be correct. Most firewall
operations depend on an existing sequence of rules, which

is intentionally made dynamic in order to eliminate certain
denial of service (DoS) attacks. Therefore, it is essential to
detect conflicting rules in firewalls configurations, and at the
same time be able to decide if they conform to the security
requirement of the firewall.

Formal methods [2] are based on using mathematical rea-
soning to verify that design specifications comprehend certain
design requirements. Formal methods have been successfully
used for the precise analysis of a variety of hardware and soft-
ware systems [3]. In this paper we extend our previous work
in [4] by proposing a formal model for firewalls rulebase and
a novel algorithm for the verification of firewalls rulebase that
can efficiently detect conflicts in firewall rules. In [4], we pre-
sented the domain restriction method implemented in Event-
B [5], while in this work, the algorithm is based on formally
calculating the conflict set for a given firewall rulebase. In
addition, the algorithm can verify rulebase consistency, and
identify conflicting rules, if they exist. The formal model is
also used in order to prove three properties for the algorithm:
termination, correctness, and soundless.

The rest of the paper is organized as follows: Section 2
provides a brief literature review on verification of firewall
related properties. In Section 3, we present the formal model
and domain restriction method. Section 4 presents our algo-
rithm for detecting conflicts in firewall rules illustrated on a
firewall rulebase example. Finally, Section 5 concludes the
paper with future work hints.

2. RELATED WORK

In this section we discuss related work on using formal meth-
ods for verification of firewalls and their configurations. Abbes
et al. [6] proposed a method to detect overlaps between packet
filters within one firewall, they classify rules based on the
conditions of each filtering rule to separate non-overlapping
rules. Ben Youssef et al. [7] proposed a method for checking
whether a firewall reacts correctly with respect to a security
policy given in high level declarative language. The method

2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)
978-1-4673-1433-6/12/$31.00 ©2012 IEEE

is implemented in satisfiability solver modulo theories (SAT
solver). These works focus on validating firewall rulebase
with regard to their security policy, while our focus will be on
the consistency of the rulebase.

In another approach, Brucker et al. [8] presented a case
study to model firewalls and their policies in higher-order
logic (HOL) throughout a set of derived theories for simplify-
ing policies. Matoušek et al. [9] introduced a formal method
approach for verification of security constraints on networks
with dynamic routing protocols in use. We believe a formal
model that captures the details of firewall rulebases is neces-
sary prior to the definition of an effecting algorithm in this
particular case. Acharya and Gouda [10] proposed a verifi-
cation algorithm that takes a firewall F and a property R, and
determines whether or not the firewall F satisfies the property
R. Kotenko and Polubelova [11] used Promela for detecting
anomalies in the specification of the security policy of com-
puter networks with model checking, the method is imple-
mented in the SPIN model checker.

Liu [12] verified in his work whether a firewall policy sat-
isfies a given property. The method is based on showing that a
property about rules does not conflict with any rule defined by
a decision path of the firewall decision diagram. Jeffery and
Samak [13] used SAT solvers for the model analysis of reach-
ability and cyclicity properties of interest in firewall policies.
The model for network configurations is based on a single
firewall model and is shown to be efficient compared to BDD
based approaches. The use of model checking has the prob-
lem of state space explosion, specially for a large number of
firewall rules.

Most of above the approaches only check for conflicts
between rules which is obtained by inspecting certain fields
in the policy, rather than checking them in the rulebase, in
addition, it considers only firewall policies at high level of
abstraction. They also ignored the dynamic update of these
rules, and did not consider the sequence at which these rules
are inspected. Therefore the verification of firewalls rulebase,
considering their dynamic sequence, is essential and have not
been yet explored thoroughly.

3. A FORMAL MODEL FOR FIREWALL RULES

Firewalls inspect a set of rules in order to filter traffic based
on protocol type, port used, or source and destination IP ad-
dresses. Firewall actions are either to accept, or deny incom-
ing and outgoing traffic. We assume a finite domain contain-
ing the possible network addresse pairs in a firewall rulebase
⟨s, d⟩, i.e., source and destination, where either s or d can be
empty. Let N be the set of possible network address pairs for
packets incoming to and outgoing from a network such that
⟨s, d⟩ ∈ N . We define two sets based on N , the first, Ns,
is for source addresses, and the second, Nd, is for destina-
tion addresses. N is an abstract set that represents that actual
network addresses, which can be further refined to represent
protocol type or port numbers in a network address. Let A be

the abstract set of all possible actions a firewall can perform,
this set can be defined as follows: A = {accept, deny}. We
define every firewall rule to be a mapping relation from an
address pair in N into an action in A, formally, r = n 7→ a,
where n ∈ N , a ∈ A and 7→ is a mapping relation from ad-
dresses to actions that maps one element in N to an element
in A. n may contain either source or destination or both. We
use source(r) and dest(r) to denote the address that appears
in rule r. We use R to denote the set of all possible firewall
rules such that R = N ×A.

A firewall rulebase, R, is a finite set of rules: {r1, r2, . . . rn},
such that R ⊂ R. A firewall is configured so that R is in-
spected in an arbitrary order. A firewall configuration, F , is
an ordered sequence of rules in the form: F = r1, r2, . . . , rn
such that r1 ∈ R ∧ r2 ∈ R ∧ . . . rn ∈ R. We use R(F) to
denote R for a given firewall configuration F .

For a given firewall rulebase with a set of rules, a packet
with a source address, a destination address, or both, is checked
by inspecting the rules in sequence. The basic principle of
firewalls operation states that the order in which rules are in-
spected should not affect the result. F ′ is an arbitrary firewall
configuration for F if every rule in F is also in F ′ and every
rule in F ′ is also in F , ∀ri · ri ∈ R(F) ⇒ ri ∈ R(F ′)∧ ri ∈
R(F ′) ⇒ ri ∈ R(F), and there are at least two rules that are
inspected in different order: F ̸= F ′

Conflict set, CS , is a set of all rules such that, (1) ∀r ·
r ∈ CS ⇒ r ∈ R(F), and consequently r ∈ R(F ′), (2)
∃n ·n ∈ N ∧n = < source(r), dest(r) >, and (3) ∃r′ ·r′ ∈
R(F) ∧ r′ ̸= r ∧ n = < source(r′), dest(r′) >.

A given firewall configuration is considered consistent if
there are no conflicts in its rules. The inconsistency occurs
when two different rules match the packet being inspected,
and each rule gives a different action. The consistency prop-
erty is denoted as ϕ. If a given firewall configuration is con-
sistent then we can write: ϕ |= F .

The domain of firewall rules, D, is defined as:
D(F) = {n|n ∈ N ∧ ∃a, r · (a ∈ A∧ r ∈ R(F)∧ r = n 7→
a)}

Furthermore, two domains can be defined for source and
destination addresses, Ns and Nd, respectively, as:
Ds(F) =
{s|n = ⟨s, d⟩ ∧ n ∈ N ∧ s ∈ Ns ∧ d ∈ Nd ∧ ∃a, r · (a ∈
A ∧ r ∈ R(F) ∧ r = n 7→ a)}
Dd(F) =
{d|n = ⟨s, d⟩ ∧ n ∈ N ∧ s ∈ Ns ∧ d ∈ Nd ∧ ∃a, r · (a ∈
A ∧ r ∈ R(F) ∧ r = n 7→ a)}

Similarly, the configuration co-domain, C, defined as:
C(F) = {a|a ∈ A∧∃n, r·(n ∈ N∧r ∈ R(F)∧r = n 7→ a)}

Domain restriction is applied on firewall rulebase in order
to obtain a subset of R(F). The operators � and � are used
to represent domain restriction and co-domain restriction over
a set of firewall rules, respectively. First, we formally define
domain restriction based on a set of network address pairs,
then we refine ir further for source and destination addresses.

Domain restriction is defined using the operator � over
a given set of network addresses, N , where N ∈ P(D(F)),
and a set of firewall rules R(F) as follows:
N �R(F) =

{n 7→ a|n ∈ N ∧a ∈ A∧∃r ·(r ∈ R(F)∧r = n 7→ a)}
Domain restriction of firewall configurations network source

and destination addresses, Ns and Nd, where Ns ∈ P(Ds(F))
and Nd ∈ P(Dd(F)), and N ∈ P(D(F)), is defined respec-
tively as:
Ns �R(F) = {n 7→ a|n ∈ N ∧ a ∈ A ∧ ∃r · (r ∈ R(F) ∧
∃d · (d ∈ Dd ∧ n = ⟨s, d⟩ ∧ r = n 7→ a))}
Nd �R(F) = {n 7→ a|n ∈ N ∧ a ∈ A ∧ ∃r · (r ∈ R(F) ∧
∃s · (s ∈ Ds ∧ n = ⟨s, d⟩ ∧ r = n 7→ a))}

Co-domain restriction is defined for a chosen set of ac-
tions A ∈ P(A), the operator ◃ is used to represent this oper-
ation, which is formally defined as follows:
A◃R(F) = {n 7→ a|n ∈ N ∧a ∈ A∧∃r · (r ∈ R(F)∧r =
n 7→ a))}

4. DETECTING CONFLICTS IN FIREWALL RULES

Domain restriction operation is closed under N , Ns, and Nd.
In addition N �R(F), Ns �R(F), and Nd �R(F) obtain
the same set, namely, R(F). Similarly, co-domain restric-
tion is closed under A, this property helps in the definition of
the properties of the algorithm we propose here. We divide
our algorithm into two steps, the first one, as shown below, is
used to model consistency of firewall configurations based on
conflict set:

Algorithm 1 Detecting Conflicts in Firewall Configurations
Input: Firewall Configuration F
Output: Consistency of F : ϕ |= F
Calculate Conflict Set for F : CS using Algorithm 2
if CS == ∅ then

ϕ ⊢ F
else

ϕ 0 F
end if

The second one is used to calculate the conflict set, CS , of
a given firewall configuration F , or alternatively, R(F). The
algorithm works by inspecting all rules in R(F) and obtain-
ing source and destinations addresses for every rule, then two
simple sets of actions Aa = {accept} and Ad = {deny} are
defined. Then we calculate the set of rules that occur in the
domain of this network address for source, Rs, and another
for destination, Rd, by applying domain restriction method:
Rs = Ns � R and Rd = Nd � R. Next, co-domain re-
striction operator applied on Rs and Rd in order to calculate
two sets of rules using co-domain restriction for Aa, called
Rsa and Rda, and two for Ad, called Rsd and Rdd. Where,
Rsa = Aa � Rs, Rsd = Ad � Rs, Rda = Aa � Rd, and
Rdd = Ad � Rd. Finally, we check for existing conflicts for
source and destination and update the conflict set. This oper-
ation is repeated for all rules. Algorithm 2 below:

Algorithm 2 Calculating Conflict Set
Input: Firewall Configuration F
Output: Conflict Set: CS
Initialize:

CS = ∅
Aa = {accept}
Ad = {deny}

REPEAT
• Chose rule ri ∈ R(F) and obtain network addresses for ri

ns = source(ri)
nd = dest(ri)

• Apply domain restriction:
Rs = ns �R(F) ; Source address
Rd = nd �R(F) ; Destination address

• Apply co-domain restriction:
Rsa = Aa �Rs ; Accept action
Rda = Aa �Rd

Rsd = Ad �Rs ; Deny action
Rdd = Ad �Rd

• Check for conflicts for ri :
if Rsa ̸= ∅ ∧Rsd ̸= ∅ then

CS = CS
∪
{ri}

else
No conflict for source address

end if
if Rda ̸= ∅ ∧Rdd ̸= ∅ then

CS = CS
∪
{ri}

else
No conflict for destination address

end if
R(F) = R(F)− {ri}

UNTIL R(F) == ∅
END

The algorithm has n2 complexity, since domain restric-
tion operators have a complexity of n, where n represents
the number of rules. It is essential to show that the algorithm,
once applied on a finite number of rules will terminate. Termi-
nation is constructed by observing the behavior of each step in
the algorithm, and showing that one dependence is solved in
every iteration, the space is finite, and it is decreasing in every
iteration, starting with a set of rules, in every iteration of the
algorithm this set will be reduced in R(F) = R(F) − {ri},
and eventually, R′(F) becomes ∅, which is the precondition
for algorithm termination.
Firewall Rulebase Example. An example of a firewall rule-
base is given below, where the firewall, once a packet is re-
ceived, checks its corresponding chain of rules and decides if
the packet must be dropped or allowed to pass.

r1 = If source IP address = 10.*.*.*, DENY
r2 = If source IP address = 192.168.*.*,ACCEPT
r3 = If source IP address = 0.0.0.0, DENY
r4 = If source IP address = 10.1.*.* to 10.3.*.*,

DENY
r5 = If source IP address = 60.40.*.*, ACCEPT
r6 = If source IP address = 1.2.3.4, DENY
r7 = If destination IP address = 60.47.3.9 AND

destination port=80 OR 443, ACCEPT
r8 = If destination IP address = 60.47.3.*

AND destination port= 21, ACCEPT
DENY ALL default rule

For the above firewall, F = r1, r2, . . . , r8, and the set of
rules R(F) = {r1, r2, . . . , r8}. Applying the algorithm for
the first iteration, ri = r1, ns = 10. ∗ . ∗ .∗, and nd is empty.
Applying domain restriction, Rs = {r1, r4}, Rd = ∅, then,
applying co-domain restriction, Rsa = ∅, Rsd = {r1, r4},
Rda = ∅, and Rdd = ∅, and therefore CS = ∅, then R(F) =
{r2, . . . , r8}. Repeat the above procedure for all rules, CS
will remain empty, which indicates that there is no conflict in
the above rulebase. Considering an additional rule, r9:

r9 = If source IP address = 10.40.*.*, ACCEPT

we apply the algorithm again, then R(F) = {r1, r2, . . . , r9},
then starting with ri = r1, we obtain ns = 10. ∗ . ∗ .∗, and
nd = null, then Rs = {r1, r4, r9}, Rd = ∅, next step, Rsa =
{r9}, Rsd = {r1, r4}, Rda = ∅, and Rdd = ∅. Since Rsa ̸=
∅ ∧ Rsd ̸= ∅ then, CS = {r1}, which indicates that this rule
has conflict with another one in the rulebase.

This algorithm can be applied dynamically while updating
the rulebase. In this case, the complexity of the algorithm
is reduced to linear for a newly added rule. The algorithm
can verify consistency of firewall rulebase, and in addition,
identify all the rules with conflicts if they occur.

5. CONCLUSION

Firewall configuration and the maintenance of their rulebase
is highly error prone, therefore, the verification of their cor-
rectness is essential. In this paper, we present an algorithm
for detecting conflicts in firewall configurations rules that can
be used to verify the consistency of these configurations tak-
ing in consideration their dynamic operation. The algorithm
is based on a formal model that utilizes the domain restriction
method we presented in our previous work [4]. Compared
to [4], this work presents an implementation independent al-
gorithm based on a formal model for firewalls rulebase. The
algorithm is supported with an intuitive proof of termination.

This method can model firewall configuration rules at the
network address level of abstraction, which we believe is the
major domain where most conflicts happen to be in firewalls
rulebase. However, the method can still be modified to sup-
port detecting conflicts in rules at the protocol and ports level
of abstraction. This requires modifying the formal model and
hence, the above algorithm. Yet the conflict set based method
can still be applied with the same level of complexity. The
algorithm can be implemented in any existing SAT solver.
Alternatively, it can be integrated into an existing theorem
prover that supports first-order set theory operations such as
Event-B or HOL theorem provers.

6. REFERENCES

[1] D. Chapman and E. Zwicky, Building Internet Fire-
walls, Orielly & Associates Inc., 2000.

[2] J.R. Abrial, “Faultless Systems: Yes We Can!,” IEEE
Computer Journal, vol. 42, no. 9, pp. 30–36, 2009.

[3] P. Boca and J.P. Bowen J. Siddiqi, Formal Methods:
State of the Art and New Directions, Springer-Verlag
London Limited, 2010.

[4] A. Gawanmeh and S. Tahar, “Modeling and Verifica-
tion of Firewall Configurations Using Domain Restric-
tion Method,” in IEEE International Conference on In-
ternet Technology and Secured Transactions. pp. 642–
647, IEEE Computer Society Press, 2011.

[5] J.R. Abrial, Modelling in Event-B: System and Software
Engineering, Cambbridge University Press, 2009.

[6] T. Abbes, A. Bouhoula, and M. Rusinowitch, “An In-
ference System for Detecting Firewall Filtering Rules
Aanomalies,” in ACM Symposium on Applied comput-
ing. pp. 2122–2128, ACM press, 2008.

[7] N. Ben Youssef, A. Bouhoula, and F. Jacquemard, “Au-
tomatic Verification of Conformance of Firewall Con-
figurations to Security Policies,” in IEEE Symposium
on Computers and Communications. pp. 526–531, IEEE
Computer Society Press, 2009.

[8] A. Brucker, L. Brügger, and B. Wolff, “Model-Based
Firewall Conformance Testing,” in Testing of Software
and Communicating Systems. vol. 5047 of LNCS, pp.
103–118, Springer-Verlag, 2008.

[9] P. Matoušek, J. Ráb, O. Ryšavý, and M. Švéda, “A For-
mal Model for Network-Wide Security Analysis,” in
IEEE International Conference on Engineering of Com-
puter Based Systems. pp. 171–181, IEEE Computer So-
ciety Press, 2008.

[10] H. Acharya and M. Gouda, “Projection and Division:
Linear-Space Verification of Firewalls,” in IEEE Inter-
national Conference on Distributed Computing Systems.
pp. 736–743, IEEE Computer Society Press, 2010.

[11] I. Kotenko and O. Polubelova, “Verification of Security
Policy Filtering Rules by Model Checking,” in IEEE In-
ternational Conference on Intelligent Data Acquisition
and Advanced Computing Systems. pp. 706–710, IEEE
Computer Society Press, 2011.

[12] A.X. Liu, “Formal Verification of Firewall Policies,” in
IEEE International Conference on Communications. pp.
1494–1498, IEEE Computer Society Press, 2008.

[13] A. Jeffrey and T. Samak, “Model Checking Firewall
Policy Configurations,” in IEEE Symposium on Policies
for Distributed Systems and Networks. pp. 60–67, IEEE
Computer Society Press, 2009.

