
Real Time Verification of Firewalls with Dynamic
Rulebase Update

Amjad Gawanmeh
Department of Electrical and Computer Engineering

Khalifa University of Science, Technology and Research,
Abu Dhabi, UAE

Email: amjad.gawanmeh@kustar.ac.ae

Sofiène Tahar
Department of Electrical and Computer Engineering

Concordia University
Montreal, Quebec, Canada

Email: tahar@ece.concordia.ca

Abstract—Firewalls provide the required security for private
communication networks since they protect them from undesired
traffic and unauthorized access. They are required to implement
several security policies that are specified at a high level of
abstraction. The verification of firewalls and the security policies
they implement is a challenging problem because of the critical
role of their dynamic operation. In this work, we introduce a
novel method for verifying the correct implementation of security
policies in firewalls. The method is used to show that, during the
firewall runtime, security policies are implemented in the firewall
rulebase with no conflicts. The method is tested on synthetic
firewalls of practical size. The evaluation of this method shows
its ability to verify real time security policy implementation in
firewalls during their runtime.

Index Terms—Firewall Security, Formal Methods, Policy Ver-
ification

I. INTRODUCTION AND MOTIVATION

Firewalls [1] are the most widely adopted technology for
the protection of networks in the theme of enterprise secu-
rity. Firewalls provide security through rules that implement
policies. Hence, their quality is affected by the quality of
these policies. A security policy contains high level rules
about the security and the privacy of the network. These
rules are implemented with firewalls by stating the desirable
actions with regard to a certain network traffic. However,
when policies are implemented as a set of rules, conflicts may
arise between various rules because many policies may have
a wide range of addresses, ports, or protocols and only two
possible actions. This issue occurs because firewall rules are
defined based on higher level security policies, and are updated
frequently either by adding new rules or changing the order
of rules. Therefore, it is essential to detect conflicting rules in
firewalls when new rules are implemented.

Formal methods [2] use rigorous mathematical reasoning to
verify design specifications and implementations of a variety
of hardware, security, software, and several other types of
systems [3]. This work presents a novel method for the
verification of correct security policies implementation during
firewalls runtime. In [4], [5] we presented a formal model
for firewall rulebase, a domain restriction method, and an
algorithm that can identify conflicting rules in firewalls with
an embedding in Event-B method [6] at the network address
level of abstraction. The Event-B framework was used because

it provides the necessary constructs to directly implement
domain restriction operations. However, there were several
limitations up to that point. For instance, the embedding in
Event-B did not allow automatic rulebase verification since we
had to define all rules manually into the Event-B model. This
also prevented the verification of large rulebases. Moreover,
the Event-B model could not be integrated into the firewall
models themselves, hence making it inappropriate for runtime
verification. Despite all of these limitations, the Event-B
embedding illustrated the applicability and feasibility of the
method.

This paper extends our previous work with a formal model
and the conflict detecting algorithm to handle firewall rules
based on ranges of network addresses, protocol types and port
numbers. In addition, this work introduces theorems about
the completeness, soundness and termination of the method
are defined and proven. The implementation of the proposed
algorithm is tested on a large firewall rulebase. Finally, the
algorithm is used for the real time verification of firewalls
that are dynamically updated with new security policies, and
then tested on a rulebase of more than 40000 rules.

The performance of the verification algorithm is tested on
various rulebases of sizes that range between 2000 rules and
44000 rules. The algorithm identified several conflicting rules
and terminated in less than 30 seconds for the largest rulebase.
This time is needed in order to establish the rulebase abstract
domains, which is practically done at the initialization step. In
addition, the runtime verification can be conducted in less than
0.03 seconds where the algorithm could verify that a rulebase
is conflict free when a new rule that implements a security
policy is added to the rulebase. This time needs to be as short
as possible in order to identify possible conflicts when a new
policy is to be implemented in the firewall during its real time
operation.

The rest of the paper is organized as follows: Section II
provides a review on formal verification of firewalls. Section
III presents the formal model. Section IV describes the con-
flict detection algorithm in the firewall rulebase. Section V
elaborates on termination, soundness, and completeness proofs
of the algorithm. Section VI presents the runtime verification
of security policies with related experimental results. Finally,
Section VII concludes the paper.

CCECE 2014 1569880057

1

978-1-4799-3010-9/14/$31.00 ©2014 IEEE - 000276 - CCECE 2014 Toronro, Canada

II. RELATED WORK

This section presents the state of the art on the verifi-
cation of firewalls. A thorough review on related work on
firewalls modeling and verification could be found in [4]. We
address here the most pertinent ones. For instance, Abbes et
al. [7] presented a method for detecting conflicts between
packet filters that are defined within one single firewall. The
work in [8] provided a method for certifying that a firewall
configuration is sound and complete with respect to a given
high level security policy. Brucker et al. [9] used higher-
order logic (HOL) to model security policies and firewalls.
Matoušek et al. [10] provided a method to verify that security
constraints are preserved within a network that runs dynamic
routing protocols. The work in [11] presented a deterministic
algorithm based on a projection pass, a division pass, and
a probe procedure that checks if a firewall satisfies a given
property. Kotenko and Polubelova [12] used a model checking
approach for detection and resolution of filtering anomalies in
high security policies.

Liu [13] addressed the problem of conflicts between rules
defined by a decision path of the firewall decision diagram.
Jeffery and Samak [14] used Boolean satisfiability solvers for
the analysis of firewall policy with regards to reachability and
cyclicity properties. More recently, [15] presented a model
checking based technique and a tool for verifying access-
control policies, where a set of policies are translated into the
NuSMV model checker language and then formally verified.

Souayeh and Bouhoula [16] and Alsaleh [17] proposed
methods for verifying that a firewall configuration respects
the security policy it implements. Khorchani et al. [18] used
a modal logic, called Visibility Logic, to define arbitrary
patterns between rules inside a firewall and verify any formula
expressed in visibility logic using model checking. The work
of Windmuller [19] handled the problem of defining the
required rule set based on an existing, informal security con-
cept and in validating the resulting rulebase. Finally, Kotenko
and Polubelova [20] used model checking techniques for the
verification of firewall security policy.

In the aformentioned works, the focus was mainly on
two issues, the first was verifying that a firewall’s rulebase
is anomality free, while the second was verifying that the
rulebase correctly implements security policies. However, a
firewall rulebase is dynamic, where new rules can be added,
or existing rules can be edited. Therefore, verifying that this
change creates no anomalities and, at the same time, maintains
the correct implementation of security policies is a problem
that has not been addressed.

Al-Shaer et al. [21], [17], introduced a method to identify
anomalies that could exist in a single and multi-firewall
environment along with a set of techniques to discover pol-
icy anomalies in centralized and distributed firewalls. The
algorithm is only tested on a small number of rules, and
its efficiency is not convenient and cannot be applied during
firewalls operation. On the other hand, identifying anomalies
in rules can be misleading because certain security policies can

be implemented only by introducing anomalies. For instance,
in order to block traffic from a specific address on certain
port and allow all other traffic from that same address into
any other port, two rules with anomalies must be used. Yet,
the inspection sequence matters in this case.

Since conflicts may arise when implementing a new policy,
the updated rulebase needs to be verified. This particular
problem has not been addressed so far. The work we present
in this paper, compared to the above described state of the art,
proposes a method that can be used for runtime verification
of correct security policy implementation, and hence, it can
validate firewall rulebases with regard to their security policy
during their runtime. Therefore, it can be used to identify any
conflicts that may occur when implementing a new policy or
editing an existing one during the runtime of firewalls.

III. MODELING FIREWALL RULES

When packets arrive at a firewall, they are inspected based
on their contents of source and destination addresses. The
firewall will either accept or deny an incoming and outgoing
packet based on the first rule that matches the address of
the packet, the firewall is assumed to be stateless where no
history information is kept. Network addresses are formally
defined as Na, where every address, a source or a destination,
is composed of three parts: IP address (ip), protocol type (p),
and port number (t), hence, s = (ip, p, t) and d = (ip, p, t)
are source and destination network addresses, respectively,
where, s ∈ Na and d ∈ Na. The address ip can represent
a single address, a network address, or an address range. We
assume that a source and destination network address pair in
a firewall rule cannot be empty. We use N to represent the
set of network address pairs such that (s, d) ∈ N , where s is
for the source address and d is for the destination address.
We use A to denote the set of possible firewall actions:
A = {accept, deny}. Firewall rules are defined as a mapping
relation from between elements in N and an action element
in A, formally, r : n �→ a, where n ∈ N , a ∈ A, and �→
is a mapping relation from addresses to actions that maps
one element in N to an element in A, which indicates that
if the address n matches the address of the packet, then
action a is taken for that packet. We use σ(r) and δ(r) to
denote a function that extracts the set of source and destination
addresses that appear in rule r, respectively. We also use α(r)
to denote the action that appears in rule r. The set of all
possible firewall rules is defined as R : N × A. We use Ns

and Nd to denote the set of source and destination addresses,
respectively, where each is a subset of Na.

We formally define a firewall rulebase as a finite set of
rules: R: {r1, r2, . . . rn}, such that R ⊂ R. In firewalls, R is
inspected in an arbitrary order. On the other hand, a firewall
that implements certain security policies, F , is an ordered
sequence of rules in the form: F = r1, r2, . . . , rn such that
r1 ∈ R ∧ r2 ∈ R ∧ . . . rn ∈ R. We use R(F) to denote R
for a given firewall rulebase F .

Equality between addresses is modeled using a predicate
function that represents network address comparison such that

2

978-1-4799-3010-9/14/$31.00 ©2014 IEEE - 000277 - CCECE 2014 Toronro, Canada

Na × Na → B, where, B = {True, False}, and we use the
operator == to denote this predicate function. This definition
covers all possible cases of single address, network address,
or a range of addresses. ipi == ipj iff ∃x, y · x ∈ ipi∧ y ∈
ipj ∧x == y, where x == y is true if and only if both single
addresses are identical.

The conflict set, S, is a set of all conflicting rules in the
firewall and is formally defined as:
S = {(ri, rj)|ri ∈ R∧ ∈ rjR∧ ri == (si, di) �→ ai ∧ rj ==
(sj , dj) �→ aj ∧ si == si ∧ di == dj ∧ ai �= aj}.

A given firewall correctly implements a security policy if
there are no conflicts in its rules with regard to the rules that
implement the new policy. When the address of the packet
that is being inspected matches two different rules, then the
resulting firewall action will depend on the sequence of these
rules. If rules give different actions, the action of the first rule
inspected will be applied.

We model the correct implementation of a security policy
using a set of rules as a property, φ, over the set of firewall
rules, F , hence, if a given firewall rulebase correctly imple-
ments a security policy, then we state it as: φ |= F .

IV. ALGORITHM FOR DETECTING CONFLICTS IN

FIREWALL RULES

The methodology we use in order to verify the consistency
of the rulebase is based on the formal model for firewall
rules that defines domain and codomain restriction operators
[5]. Figure 1 illustrates the methodology to calculate the
conflict set, S, for the firewall rulebase, denoted as R(F), by
applying domain restriction on every rule ri in R(F). First,
domain rules sets, Rs and Rd are calculated for source and
destination address of rule ri using domain restriction. Next,
co-domain restriction is applied on the latter sets, Rs and Rd,
in order to calculate co-domain rule sets, denoted as Rsx and
Rdx. Finally, we check conflicts for source and destination
addresses depending on whether the rule contains both source
and delineation address or only one of them, and update the
conflict set. This operation is repeated for all rules. At the end
of the algorithm, S shall contain the set of all conflicting rules.

The rulebase is consistent and conflict free if and only if
the conflict set calculated by the second part is empty. Then,
source and destination addresses are extracted for every rule in
R(F), ri, and domain restriction sets, called Rsx and Rdx, are
calculated for ri and R(F). This is achieved by obtaining the
source address ns, the destination address, nd, and the action
of the rule ar = α(ri), then the domain restriction operator �
is applied on R(F) and both ns and nd separately in order
to obtain two subsets of R(F) named Rs and Rd. Then co-
domain restriction operator, �, is applied on both Rs and Rd

and either Aa or Ad based on the action in the rule, ar, in
order to obtain Rsx from Rs and ar, and Rdx from Rd and
ar.

Finally, S is updated based on source and destination
addresses existence of the rule ri, where three cases are
distinguished: in the first, where ri contains both, ri is mapped
into every common rule in Rsx and Rdx, to create pairs of

Fig. 1. Detecting Conflicts Methodology

rules in the form (ri, rj) and add them to S. The operator 	
denotes the mapping between the rule ri and the set of rules
conflicting with it, i.e., Rsx∩Rdx. In the second case in which
ri contains only a source address, we add ri	Rsx into S, and
finally, in the third case in which ri contains only a destination
address, we add ri 	Rdx into S.

The algorithm has n2 complexity, since domain restriction
operators have a complexity of n, where n represents the
number of rules. Hence it can be efficiently used for runtime
verification of firewalls. In fact, the above algorithm is used for
firewalls verification at runtime, where a new rule (ri) defines

3

978-1-4799-3010-9/14/$31.00 ©2014 IEEE - 000278 - CCECE 2014 Toronro, Canada

the security policy to be implemented in the firewall. The algo-
rithm then generates conflicts with the firewall rulebase, R(F),
if they exist. On the other hand, the absence of conflicts proves
that the policy can be safely implemented in the firewall. In
addition, it is required to prove the termination of the algorithm
in order to avoid deadlock situations. Therefore, in the next
section soundless and completeness of the algorithm shall be
discussed.

V. SOUNDNESS AND COMPLETENESS OF THE METHOD

A firewall configuration is conflict-free if its calculated
conflict set is empty, therefore, we need to generate the conflict
set for the given set of rules in order to verify the property.
Let R be a firewall rulebase, φ be a conflict-free property, and
S be the conflict set for R. Then φ |= R states that property
φ is correct for R, and S can be calculated from R using the
above algorithm. Based on this notation, theorems about the
correctness of the algorithm are defined and proven.

Theorem V.1. Soundness.
Let R be a firewall rulebase, φ be a consistency property,

and S be the conflict set for R, then, if the conflict set for F
is not empty, then, there exist conflicts in R. Formally, S �=
∅ ⇒ φ � R.

Given: S �= ∅, Goal: φ � R
Proof:

S �= ∅ ⇒ ∃ri, rj · ri ∈ R ∧ rj ∈ R ∧ (ri, rj) ∈ S
three cases are identified:
(1) σ(ri) = ∅ ⇒ rj ∈ Rdx ∧ δ(ri) �= ∅ ,
(2) δ(ri) = ∅ ⇒ rj ∈ Rsx ∧ σ(ri) �= ∅, and
(3) σ(ri) �= ∅ ∧ δ(ri) �= ∅ ⇒ rj ∈ Rsx

⋂
Rdx

For case (1): from the co-domain restriction operator (�), it
can be deduced that
if α(ri) = accept, then rj ∈ Rdx ⇒ Rj ∈ Rd ∧ α(rj) =
deny, and
if α(ri) = deny, then rj ∈ Rdx ⇒ Rj ∈ Rd ∧ α(rj) =
accept.
For both cases, it can be deduced from domain restriction that
Rj ∈ Rd ⇒ δ(rj) = δ(ri) ∧ α(ri) �= α(rj), therefore, R is
not conflict-free, and, φ does not hold, hence φ � F .
For case (2):
if α(ri) = accept, then rj ∈ Rsx ⇒ Rj ∈ Rs ∧ α(rj) =
deny, and ifaction(ri) = deny, then rj ∈ Rsx ⇒ Rj ∈
Rd ∧ action(rj) = accept.
For both cases, Rj ∈ Rs ⇒ σ(rj) = σ(ri) ∧ α(ri) �=
action(rj), therefore, R is not conflict-free, and φ does not
hold, hence φ � F .
For case (3):
if α(ri) = accept, then rj ∈ Rsx

⋂
Rdx ⇒ Rj ∈ Rs ∧ Rj ∈

Rd ∧ α(rj) = deny,
if α(ri) = deny, then rj ∈ Rsx

⋂
Rdx ⇒ Rj ∈ Rs ∧ Rj ∈

Rd ∧ α(rj) = accept.
For both cases, Rj ∈ Rs ∧ Rj ∈ Rd ⇒ (σ(rj) ==
σ(ri)) ∧ (δ(rj) == δ(ri)) ∧ (α(ri) �= α(rj)),
therefore, R is not conflict-free, and φ does not hold, hence
φ � R.

Corollary V.1. Absence of Conflicts.
Assuming the same conditions as Theorem V.1, if the there is
no conflict in R, then the conflict set of R is empty. Formally,
φ |= R ⇒ S = ∅.

This corollary is deduced from Theorem V.1 above and
illustrates the ability of the algorithm to prove that the firewall
rulebase is conflict-free.

Theorem V.2. Completeness.
Let F be a firewall configuration, φ be a consistency property,
and S be the conflict set for R. If the conflict set is empty,
then there exist no conflicts in R. Formally, S = ∅ ⇒ φ |= R.

Given: S = ∅, Goal: φ |= R
Proof:

S = ∅ ⇒ ∀ri · ri ∈ R, then
(1) σ(ri) = ∅ ⇒ Rdx = ∅ , or
(2) δ(ri) = ∅ ⇒ Rsx = ∅, or
(3) σ(ri) �= ∅ ∧ δ(ri) �= ∅ ⇒ Rsx

⋂
Rdx = ∅

For case (1):
if α(ri) = accept, then it can be deduced from the co-domain
restriction operator, (�), that
Rdx = ∅ ⇒ �rj · rj ∈ R ∧ α(rj) = deny ∧ rj ∈ Rd.
Similarly, if α(ri) = deny, then
Rdx = ∅ ⇒ �rj · rj ∈ R ∧ α(rj) = accept ∧ rj ∈ Rd.
For both cases, it can be deduced from the above and the
domain restriction operator definition, �, that σ(ri)neqσ(rj),
or the co-domain restriction operator � that α(ri) == α(rj).
Therefore, R is conflict-free, and, φ does hold, hence φ |= R.
For case (2):
if α(ri) = accept, then
Rsx = ∅ ⇒ �rj · rj ∈ R ∧ α(rj) = deny ∧ rj ∈ Rs.
Similarly, if α(ri) = deny, then
Rsx = ∅ ⇒ �rj · rj ∈ R ∧ α(rj) = accept ∧ rj ∈ Rs.
For both cases, σ(ri) �= σ(rj), or α(ri) == α(rj), therefore,
R is conflict-free, and φ does hold, hence φ |= R.
For case (3):
if α(ri) = accept, then
Rsx

⋂
Rdx = ∅ ⇒ �rj · rj ∈ R ∧ α(rj) = deny ∧ rj ∈

Rs ∧ rj ∈ Rd.
Similarly, if α(ri) = deny, then
Rsx = ∅ ⇒ �rj ·rj ∈ R ∧ α(rj) = accept ∧ rj ∈ Rs ∧ rj ∈
Rd.
For both cases, σ(ri) �= σ(rj), or δ(ri)neqδ(rj), or α(ri) =
α(rj), therefore, R is conflict-free, and φ does hold, hence
φ |= R.

Corollary V.2. Detecting Conflicts.
Assuming the same conditions as Theorem V.2, if there are
conflicts in R, then the conflict set of R is not empty. Formally,
φ � R ⇒ S �= ∅.

This corollary is deduced from Theorem V.2 above, and
states that when there are conflicts in the rulebase, then the
conflict set is not empty. This illustrates the ability of the
algorithm to detect conflicts.

4

978-1-4799-3010-9/14/$31.00 ©2014 IEEE - 000279 - CCECE 2014 Toronro, Canada

Theorem V.3. Termination.
The Algorithm terminates in polynomial time.

We construct the proof for termination showing in every
iteration in the algorithm, there is at least one single depen-
dence solved, that the space is finite and it is decreasing in
every iteration.

Proof:
Starting with a set of rules, R(F) contains a finite number of
elements.
Every iteration in the algorithm executes R(F) = R(F) −
{ri}, where ri ∈ R(F).
This implies that the space is decreasing, and eventually,
R(F) becomes ∅, which is the precondition for algorithm
termination.

In the next section, we consider an application for the
proposed method, where the algorithm is implemented and
tested on a synthetic firewall.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 2 illustrates an application of the proposed method-
ology. When a new security policy is to be implemented in
a firewall, the domain restriction method is used in order to
confirm that the new policy creates no conflicts in the rulebase
during runtime. On the other hand, the method can identify the
conflicting rules if they exist. Hence, this method can be used
in the iterative process of firewall policy implementation, ver-
ification, and maintenance. In order to illustrate the efficiency
of this method, a C++ implementation is developed for the
method presented in this paper. For experimental purpose, the
implementation is run on a machine with an Intel Core 2 Duo
3 GHz processor and 4GB of RAM.

Due to security concerns, firewalls and their rulebase are
considered confidential, therefore, we run the algorithm on
synthetic firewalls of huge sizes in order to evaluate their

Fig. 2. Real-time Verification of New Security Policies in Firewalls

performance. Rules that have different fields are generated:
source IP address, destination IP address, network address, IP
address range, source port number, destination port number,
and common protocol types with their default port numbers.
In order to vary rules to mimic a practical firewall rulebase,
we considered different types of rules that may or may not
contain any of the above fields. For these experiments, we run
the algorithm on rulebases of 2000 rules, and incremented the
number by 2000 up to 44000 rules, which is larger than what a
typical firewall can handle [22]. For every case, the algorithm
was run a specific number of times where the conflict set was
constructed and execution time was measured.

Table I displays the average execution time for generating
the conflict set and the number of conflicting rules in the
generated rulebase for the implementation. Table I shows
that the algorithm can identify conflicts when they exist in a
reasonable time. The largest rulebase consisting of 44000 rules
could be run in the implementation in less than 30 seconds.

Number Execution Number of
of Rules Time (second) Conflicts

4000 0.29 0
8000 0.92 0
12000 1.85 1
16000 3.29 1
20000 5.14 1
24000 7.34 2
28000 10.50 3
32000 13.17 3
36000 17.01 5
40000 20.60 6
44000 24.80 8

TABLE I
EXPERIMENTAL RESULTS: EXECUTION TIME VS TOTAL NUMBER OF RULES

In addition, we tested the algorithm by defining a number of
rules that implement a certain security policy and generating
a firewall rulebase of 40000 rule. We considered a security
policy of a various number of rules and run the method in
order to obtain the time needed to process it. Table II shows
the verification time for the security policy vs number of rules
in the policy. We observe that the method could terminate in
less than 0.03 seconds for a security policy of 20 rules tested
on a rulebase of 40000 rules. This proves that the algorithm
we present in this work is practical and can be used in real
time verification of firewalls, and hence, verify the consistency
of the rulebase right after any dynamic modification on the
rulebase. Therefore, it can be integrated into firewalls without
affecting their efficiency, while at the same time preventing
undesired security holes.

VII. CONCLUSION

The verification of firewall rulebase is essential, in particular
during their real time operation due to their dynamic char-
acteristics. In this paper, we presented a method for runtime
verification of security policies implemented in firewalls taking
into consideration their dynamic operations. In this paper, we
extended our previous work in [4], [5] by considering the

5

978-1-4799-3010-9/14/$31.00 ©2014 IEEE - 000280 - CCECE 2014 Toronro, Canada

Number Verification
of Rules Time (milisecond)

2 2.18
4 4.34
6 6.63
8 8.67
10 10.84
12 12.98
14 15.08
16 17.27
18 19.40
20 21.09

TABLE II
EXPERIMENTAL RESULTS: EXECUTION TIME VS NUMBER OF RULES IN

THE POLICY

firewall rulebase at a lower level of abstraction where rules
can have port types and port numbers. We also provided an
implementation for the algorithm and used it to test a generated
firewall rulebase that ranges between 2000 rules and 44000
rules. The algorithm is shown to be efficient in detecting all
conflicting rules and their performance shows that they can
be used in real time verification of firewalls. In addition, the
algorithm was used to conduct runtime verification of firewalls
considering the dynamic sequence of the rulebases, where it
was able to detect any conflicts for newly added rules in less
than 0.03 seconds. Finally, we presented and proved three
theorems related to termination, soundness and completeness
of the proposed algorithm.

Compared to the state of the art work, the performance
of the algorithm shows that it can be used for the runtime
verification of firewalls while they are dynamically configured
or modified, an issue that has not been addressed properly
in the state of the art. On the other hand, the proposed
method can verify the consistency of new security policies
when implemented in a firewall. As future work, we plan to
investigate this issue further and utilize the efficiency of the
conflict method in order to provide a real-time consistency
check for dynamic firewalls during runtime operation.

REFERENCES

[1] A. X. Liu, Firewall Design and Analysis, World Scientific Publishing
Inc., 2011.

[2] J.R. Abrial, “Faultless Systems: Yes We Can!,” IEEE Computer Journal,
vol. 42, no. 9, pp. 30–36, 2009.

[3] P. Boca and J.P. Bowen J. Siddiqi, Formal Methods: State of the Art
and New Directions, Springer-Verlag London Limited, 2010.

[4] A. Gawanmeh and S. Tahar, “Domain Restriction based Formal Model
for Firewall Configurations,” International Journal for Information
Security Research, vol. 2, no. 1–2, pp. 294–302, 2012.

[5] A. Gawanmeh and S. Tahar, “Novel Algorithm for Detecting Conflicts
in Firewall Rules,” in IEEE Canadian Conference on Electrical and
Computer Engineering. 2012, pp. 1–4, IEEE Press.

[6] J.R. Abrial, Modelling in Event-B: System and Software Engineering,
Cambbridge University Press, 2009.

[7] T. Abbes, A. Bouhoula, and M. Rusinowitch, “An Inference System for
Detecting Firewall Filtering Rules Anomalies,” in ACM Symposium on
Applied Computing. 2008, pp. 2122–2128, ACM Press.

[8] N. Ben Youssef, A. Bouhoula, and F. Jacquemard, “Automatic Verifica-
tion of Conformance of Firewall Configurations to Security Policies,” in
IEEE Symposium on Computers and Communications. 2009, pp. 526–
531, IEEE Press.

[9] A. Brucker, L. Brügger, and B. Wolff, “Model-Based Firewall Confor-
mance Testing,” in Testing of Software and Communicating Systems.
2008, vol. 5047 of LNCS, pp. 103–118, Springer-Verlag.

[10] P. Matoušek, J. Ráb, O. Ryšavý, and M. Švéda, “A Formal Model for
Network-Wide Security Analysis,” in IEEE International Conference
on Engineering of Computer Based Systems. 2008, pp. 171–181, IEEE
Press.

[11] H. Acharya and M. Gouda, “Projection and Division: Linear-Space Ver-
ification of Firewalls,” in IEEE International Conference on Distributed
Computing Systems. 2010, pp. 736–743, IEEE Press.

[12] I. Kotenko and O. Polubelova, “Verification of Security Policy Filtering
Rules by Model Checking,” in IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing Systems. 2011,
pp. 706–710, IEEE Press.

[13] A.X. Liu, “Formal Verification of Firewall Policies,” in IEEE Inter-
national Conference on Communications. 2008, pp. 1494–1498, IEEE
Press.

[14] A. Jeffrey and T. Samak, “Model Checking Firewall Policy Configu-
rations,” in IEEE Symposium on Policies for Distributed Systems and
Networks. 2009, pp. 60–67, IEEE Press.

[15] Karthick Jayaraman, Mahesh Tripunitara, Vijay Ganesh, Martin Rinard,
and Steve Chapin, “MOHAWK: Abstraction-Refinement and Bound-
Estimation for Verifying Access Control Policies,” ACM Transactions
on Information and System Security, vol. 15, no. 4, pp. 18, 2013.

[16] N. Souayeh and A. Bouhoula, “A Fully Automatic Approach for
Fixing Firewall Misconfigurations,” in IEEE International Conference
on Computer and Information Technology. 2011, pp. 461–466, IEEE
Press.

[17] E. Al-Shaer and M.N. Alsaleh, “ConfigChecker: A Tool for Com-
prehensive Security Configuration Analytics,” in IEEE Symposium on
Configuration Analytics and Automation. 2011, pp. 1–2, IEEE Press.

[18] B. Khorchani, S. Halle, and R. Villemaire, “Firewall Anomaly Detection
with a Model Checker for Visibility Logic,” in IEEE Network Operations
and Management Symposium. 2012, pp. 466–469, IEEE Press.

[19] S. Windmuller, “Offline Validation of Firewalls,” in IEEE Software
Engineering Workshop. 2011, pp. 36–41, IEEE Press.

[20] I. Kotenko and O. Polubelova, “Verification of Security Policy Filtering
Rules by Model Checking,” in IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing Systems. 2011,
pp. 706–710, IEEE Press.

[21] E. Al-Shaer and H. Hamed, “Discovery of Policy Anomalies in Dis-
tributed Firewalls,” in Annual Joint Conference of the IEEE Computer
and Communications Societies. 2004, vol. 4, pp. 2605–2616, IEEE Press.

[22] A. Wool, “Trends in Firewall Configuration Errors: Measuring the Holes
in Swiss Cheese,” IEEE Journal of Internet Computing, vol. 14, no. 4,
pp. 58–65, 2010.

6

978-1-4799-3010-9/14/$31.00 ©2014 IEEE - 000281 - CCECE 2014 Toronro, Canada

