Enabling Symbolic and Numerical Computations
in HOL Light

Ons Seddiki®), Cvetan Dunchev, Sanaz Khan-Afshar, and Sofiene Tahar

Department of Electrical and Computer Engineering, Concordia University,
1455 de Maisonneuve W., Montreal, QC H3G 1M8, Canada
{o_sed,dunchev,s_khanaf,tahar}@ece.concordia.ca

Abstract. Verifying mathematical statements by interactive theorem
provers often requires algebraic computation. Since many Mechanized
Mathematical Systems (MMS) support the OpenMath standard, we pro-
pose to link the HOL Light theorem prover to other MMSs via Open-
Math. In particular, we present an interface between HOL Light and
Mathematica enabling HOL Light users to evaluate arithmetic, tran-
scendental and linear algebraic expressions, using Mathematica.

1 Introduction

Theorem proving is a technique which proves or checks the validity of logical
statements. It is based on sequential applications of sound inference rules to a
given axiomatic system. The statements proved by the theorem prover, accept-
ing that its core is sound, are absolutely accurate in contrast to paper-and-pencil
methods or computer simulations. Often in the process of interactive theorem
proving one needs to perform a symbolic computation which might be a tedious
task requiring hundreds of inference rules. For example, computing the value
of a polynomial over R needs many inference rules and auxiliary theorems over
the theory of real numbers. Furthermore, computing the roots of the same poly-
nomial by the theorem prover is a very hard task. To avoid such limitations,
one may make use of a Computer Algebra System (CAS) which has the needed
functionality to perform the computation. The result of the CAS is transformed
to an axiom which is added to the list of axioms and used by the theorem prover.

Many researchers have addressed the issue of combining symbolic/numeric
computation with logical reasoning. One solution is building a CAS inside a
theorem prover (e.g., [7]) or building a theorem prover inside a CAS (e.g., [2,10]).
The second approach implements a bridge between theorem provers and CAS
(e.g., PVS and Maple [1], Isabelle and Maple [3], and HOL and Maple [6]). This
connection involves a master-slave relation in which the theorem prover is usually
considered as a master and the CAS as a slave, with the assumption that there
is no trust in the CAS. The third approach (e.g. Mathscheme!) is to build an
integrated framework that provides the functionalities of both CAS and theorem
proving integrating them into a single tool without sacrificing the soundness

! http://www.cas.mcmaster.ca/research /mathscheme/.

© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNATI 9150, pp. 353-358, 2015.
DOI: 10.1007/978-3-319-20615-8_27

http://www.cas.mcmaster.ca/research/mathscheme/

354 0. Seddiki et al.

and without using an intermediate language. Finally, the fourth approach is
to define a framework using a standard for mathematical information (such as
MathML? and OpenMath?) that can be exchanged between different Mechanized
Mathematical Systems (MMS). For instance, in [4] the authors used OpenMath
to develop a Java client-server applet between Maple as a client and the Lego
theorem prover as a server.

In this paper, we propose a tool linking HOL Light* to Mathematica® through
the OpenMath standard. In contrast to [4] where the authors present a Java
applet which takes a Maple expression as input and returns a Lego expression
through the translation to OpenMath, our work is a combination between two
external tools where OpenMath is used as a middleware. Another difference
between our approach and [4] is that we do not rely on the communication layer
established between the client and the server, but on the direct translation of
a HOL Light statement to a Mathematica term and vice-versa. Therefore, the
performance of the computation is increased.

The proposed tool is part of a general framework providing a heterogeneous
problem-solving environment, which connects HOL Light to any MMS. Figure 1
illustrates the general approach of this framework which encompasses a variety of
MMSs that support OpenMath such as the theorem provers LEGO® and COQ7,
the CASs Maple®, Gap? and Mathematica, or the numerical solver Mupad’
with the intention of solving and reasoning over larger sets of problems.

HOL Light

A
i

: Returned result

Mathematical
Standard Openiath

Numerical approaches:
MuPAD, CodeV

Computer Algebra Systems:
Mathematica, Maple

Theorem Provers:
Lego, Coq

Fig. 1. Connecting Different MMS to HOL Light using OpenMath

2 http://www.w3.org/Math//.
3 http://www.openmath.org/overview /index.html.
* http://www.cl.cam.ac.uk/~jrh13/hol-light /.
5 http://www.wolfram.com/.
5 http://www.dcs.ed.ac.uk/home/lego/ .
" https://coq.inria.fr/.
8 http://www.maplesoft.com/products/maple/.
9 http://www.gap-system.org)/.
10 http://de.mathworks.com/discovery /mupad.html.

http://www.w3.org/Math/
http://www.openmath.org/overview/index.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://www.wolfram.com/
http://www.dcs.ed.ac.uk/home/lego/
https://coq.inria.fr/
http://www.maplesoft.com/products/maple/
http://www.gap-system.org/
http://de.mathworks.com/discovery/mupad.html

Enabling Symbolic and Numerical Computations in HOL Light 355

2 Tool Description

The proposed linkage tool starts by translating the HOL Light statement into
an OpenMath object. Then, a Java phrasebook [5], which is a collection of
encoding/decoding methods between OpenMath and Mathematica, converts the
OpenMath object into an expression, that is passed to Mathematica. The com-
putation of Mathematica is translated back to an OpenMath object using again
the Java phrasebook. Finally, the latter is parsed by our tool and converted to
a HOL Light axiom. We developed a translator from HOL Light to OpenMath
and visa-versa, which enables HOL Light users to access Mathematica’s kernel
using the Phrasebook OpenMath-Mathematica proposed by Caprotti [5]. After
the computation, the returned result from Mathematica is represented as an
axiom in HOL Light tagged by Mathematica in the form Mathematica F ¥,
where ¥ is the expression performed by Mathematica. Moreover, each theorem
derived from this axiom inherits the tag Mathematica. This procedure helps to
easily trace the axioms created from the interaction with an external tool. After
the computation, the returned result can also be represented in another form as
a sub-goal and added to the assumption of a main goal. One needs to prove it
in order to pursue further proofs. Figure 2 depicts the structure of the tool con-
necting HOL Light to Mathematica, which is comprised of the following three
modules:

) Parser & Splitter Parser & Collector
HOL Light input P P HOL Light output
string [IK—> Content |{<—> n " axiom >
l Parsing HOL Light input I ok Parsing XML file
Mathematica Function Dictionarie HOL Light output
string]” | 1 Mapping to OpenMath objects I l [Mapping to HOL Light I subgoa >
v A
OpenMath-Mathematica
OpenMath input Phrasebook OpenMath output
XML file > | Coding Mathematica Functions XML file
N I Encoding/ Decoding Functions |

N

Mathematica kernel

Fig. 2. Tool structure

The Parser & Splitter transforms the HOL Light statement into a corre-
sponding OpenMath object as understood by means of the Content Dictionaries
(CDs)!L. First, it parses the HOL Light expression according to a grammar [9]
which converts a HOL Light expression to the corresponding OpenMath object.
Then, it decomposes the HOL Light input statement into a list of operations and
operands. Thereafter, it maps each element of the list with the corresponding
OpenMath symbol as understood by means of the related CDs. Finally, it stores
the description of the OpenMath object in an XML file.

" http://www.openmath.org/cd/.

http://www.openmath.org/cd/

356 0. Seddiki et al.

The OpenMath-Mathematica Phrasebook? defines a collection of Java classes,
which provide two sets of methods. The first set represents the encoding and
decoding methods between OpenMath and Mathematica based on the declara-
tion of the corresponding CDs. The second one describes the built-in Mathe-
matica call function with the tag already specified by the user. The phrasebook
translates the XML file that describes the OpenMath input object into a Math-
ematica statement, which is then passed to the Mathematica kernel through a
Mathematica service. (See footnote 12) This service allows users to remotely call
the Mathematica kernel as a computational engine using MathLink.'® This con-
nection is established via the TCP/IP protocol. Once the result is computed, the
Mathematica output statement is translated back to OpenMath and an XML
file is generated.

The Parser & Collector translates the OpenMath object which encodes the
output of Mathematica into the corresponding HOL Light symbols in the rel-
evant CDs. Then, it collects all the HOL Light symbols and returns an axiom
tagged by the name of the CAS (i.e., Mathematica). In other cases, we can gen-
erate the returned result as a sub-goal and prove it in HOL Light. This provides
some kind of a determinism to the proof process, because when one knows the
result of the computation, finding the proof is more straightforward rather than
searching for the result during the whole process of proof derivation.

The above process is sound in the sense that it preserves the types during the
parsing and passing of the data. The HOL Light statements are by definition well
typed. For example, the HOL Light expression “x pow 3 + (&2 * x) pow 2 +
x” represents the polynomial “z3+ (2z)%+2” over the field of the reals. Based on
this fact, the Parser & Splitter module converts the HOL Light expression into
the corresponding OpenMath object preserving the types. The Java Phrasebook
also preserves the types. Finally, the OpenMath object obtained from Mathe-
matica is converted to a HOL Light axiom and all types are preserved because
we know in advance the types of all supported functions.

3 Applications

We have used our tool on several examples like solving or evaluating non-closed
form formulas such as arithmetic or polynomial manipulations or matrix opera-
tions, simplifying integrals, derivatives and transcendental functions, computing
eigenvectors, checking inequalities, finding roots and factorization of complex
polynomials. In the following, we give two simple examples. The input is a string
which represents an expression given to HOL Light. The expression consists of
two parts. The first part is an ordinary HOL Light expression, whereas the second
part represents the built-in Mathematica symbol such as “Factor”, “Simplify”,
etc. The output is an axiom in HOL Light. For example, using the built-in sym-
bol “FullSimplify” we show the computation of the integral fllo(x + 1) da:

2 http://mathdox.org/new-web /index.html.
13 http:/ /reference.wolfram.com/mathematica,/tutorial /Introduction ToMathLink.
html.

http://mathdox.org/new-web/index.html
http://reference.wolfram.com/mathematica/tutorial/IntroductionToMathLink.html
http://reference.wolfram.com/mathematica/tutorial/IntroductionToMathLink.html

Enabling Symbolic and Numerical Computations in HOL Light 357

Input:

#call mathematica “real_integral (real_interval [&1,&10]) (\z.x + &1)”
“FullSimplify”;;

The computed result, 117/2, is returned to HOL Light as an axiom:

Output:

val it: thm = Mathematica - real_integral (real_interval [&1,&10])
\z.x + &1) =&117/&2

The next example shows the factorization of the polynomial 2% + 2.22 + z:
Input:

#call mathematica “z pow 3+ &2 x* (z pow 2) + 2" “Factor”;;

The expected result, x.(z + 1)2, is returned as a HOL Light axiom:

Output:

val it: thm = Mathematical z pow 3+&2x(z pow 2) +x = x*(&1+x) pow 2

We have conducted several more comprehensive experiments, which can be
found in [9]. Moreover, our tool was successfully applied in the formal verifica-
tion of optical systems [8], where we send from HOL Light the expression of a
boundary condition of an optical interface described with electromagnetic fields
to Mathematicia in order to be simplified. Details of these experiments can be
found in [9]. These examples emphasize not only the benefits of computing such
Mathematica expressions within HOL Light but also the efficient performance of
our tool in terms of execution time. Our tool, called HolMatica, is implemented
in a way that we can easily adapt it to any other CAS or theorem provers that
support OpenMath. The HolMatica tool and running examples can be down-
loaded from http://hvg.ece.concordia.ca/research/tools/holmatica/

References

1. Adams, A., Dunstan, M.N., Gottliebsen, H., Kelsey, T., Martin, U., Owre, S.:
Computer algebra meets automated theorem proving: integrating maple and PVS.
In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 27-42.
Springer, Heidelberg (2001)

2. Bauer, A., et al.: Analytica - an experiment in combining theorem proving and
symbolic computation. JAR 21(3), 295-325 (1998)

3. Ballarin, C., et al.: Theorems and Algorithms: An Interface between Isabelle and
Maple. In: ISSAC, pp. 150-157. ACM (1995)

4. Caprotti, O., Cohen, A.M.: Integrating computational and deduction systems using
OpenMath. ENTCS 23(3), 469-480 (1999)

5. Caprotti, O., Cohen, A.M., Riem, M.: Java phrasebooks for computer algebra and
automated deduction. SIGSAM Bulltin 34, 33-37 (2000)

6. Harrison, J., Théry, L.: A skeptic’s approach to combining HOL and maple. JAR
21, 279-294 (1998)

7. Kaliszyk, C., Wiedijk, F.: Certified computer algebra on top of an interactive
theorem prover. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.)
MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 94-105. Springer,
Heidelberg (2007)

8. Afshar, S.K., et al.: formal analysis of optical systems. MCS 8(1), 39-70 (2014)

http://hvg.ece.concordia.ca/research/tools/holmatica/

358 0. Seddiki et al.

9. Seddiki, O.: Linking HOL Light to Mathematica using OpenMath. Master’s thesis,
Concordia University, Montreal, QC, Canada, October 2014

10. Windsteiger, W.: Theorema 2.0: a graphical user interface for a mathematical
assistant system. CEUR Workshop Proceedings, vol. 118, pp. 73-81 (2012)

	Enabling Symbolic and Numerical Computations in HOL Light
	1 Introduction
	2 Tool Description
	3 Applications
	References

