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Abstract. Many components of engineering systems exhibit random
and uncertain behaviors that are normally distributed. In order to con-
duct the analysis of such systems within the trusted kernel of a higher-
order-logic theorem prover, in this paper, we provide a higher-order-logic
formalization of Lebesgue measure and Normal random variables along
with the proof of their classical properties. To illustrate the usefulness of
our formalization, we present a formal analysis of the probabilistic clock
synchronization in wireless sensor networks.

1 Introduction

Many engineering systems exhibit normally distributed elements of random-
ness. Some notable examples include noise in communication channels, lengths
and weights of manufactured goods, message arrival times in communication
networks, blood pressure readings of a general population, lifetimes of an elec-
tric bulb and maximum speed of a car. The importance of normal distribution
is also evident from its relationship with the central limit theorem [2], which
states that, given certain conditions, the arithmetic mean of a sufficiently large
number of iterations of independent random variables, each with a well-defined
expected value and variance, is approximately normally distributed, regardless
of the underlying distribution [20]. Therefore, if the sample size is large enough,
the sample mean of other distributions may also be treated as normal.

Traditionally, paper-and-pencil based approaches are used for carrying out
probabilistic analysis. This method, however, is prone to human error and is
not scalable to deal with large systems. Similarly, simulation cannot provide
accurate results due to approximations in numerical computations and its in-
completeness, which is an outcome of enormous processing time requirements.

Given the safety-critical nature of present age engineering systems, these
inaccuracies cannot be tolerated. Higher-order-logic theorem proving, which pro-
vides computerized mathematical proofs, can overcome the above-mentioned
limitations and has been used to formalize probability theory [16], Markov
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Chains [10,12] and discrete [8] and continuous [7] random variables. These foun-
dations have been used to formally analyze many aspects of engineering appli-
cations, including the Stop-and-Wait protocol [9], wireless sensor networks [3],
anonymity and confidentiality protocols [17], oil and gas pipelines [1], multi-
processor systems [13] and reconfigurable memory arrays [6]. However, to the
best of our knowledge, no system, exhibiting the Normal random variables,
has been reported in the literature. In Isabelle/HOL, there is a formalization
of exponential, uniform and normal distributions [19], however, they lack the
notion of probability density function and random variables, which play a vital
role in analyzing real-world systems. To overcome this limitation, we ported
Lebesgue-Borel measure from Isabelle/HOL [11] to HOL4 theorem prover and
built upon Mhamdi’s formalization of measure, Lebesgue and probability theo-
ries [16], available in the HOL4 theorem prover, to formalize probability density
function and Normal random variables. We formally verify the correctness of our
formalization of Normal random variables by verifying their various properties.
These formalizations allow us to formally reason about the correctness of many
engineering systems that involve Normal random variables. For illustration pur-
poses, we present a formal analysis of the probabilistic clock synchronization in
wireless sensor networks.

2 Preliminaries

2.1 Measure Theory

A measure assigns a number to a set corresponding to its size. Formally, a
function defined on a set is a measure if it is positive and countably additive [16].

Definition 1 (Measure Space).
A triplet (X,A, μ) is a measure space iff (X,A) is a σ-field and μ : A → R (i.e.,
R ∪ {-∞,+∞}) is a non-negative and countably additive measure function.
� measure space (X,A,μ) =

sigma algebra (X,A) ∧ positive (X,A,μ) ∧ countably additive (X,A,μ)

The pair (X,A) is called a σ-field or a measurable space and A is called a sigma
algebra over X or a set of measurable sets.

Definition 2 (Sigma Algebra).
Let A be a collection of subsets (or subset class) of a space X. A defines a sigma
algebra on X iff A contains the empty set {}, and is closed under countable
unions and complementation within the space X.
� sigma algebra (X,A) = subset class X A ∧ (∀s. s ∈A ⇒ X DIFF s ∈A) ∧

{} ∈ A ∧ (∀c. countable c ∧ c ⊆ A ⇒ BIGUNION c ∈A)

where subset class and countable are defined as:

� subset class X A = ∀s. s ∈ A ⇒ s ⊆ X

� countable s = ∃f. ∀x. x ∈s⇒ ∃(n:num). f n = x
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For any collection G of subsets of X, there is at least one sigma algebra on
X containing G, namely the powerset of X. The smallest sigma algebra on X
containing G is an intersection of all those sigma algebras, and is called the
sigma algebra on X generated by G. This notion is defined in HOL as:

� sigma X G = (X, BIGINTER {s | G ⊆ s ∧ sigma_algebra (X,s)})
Some helper functions [16] for a σ-field or a measure space are

� space (X,A) = X ∧subsets (X,A) = A

� m space (X,A,μ) = X ∧ measurable sets (X,A,μ) = A ∧ measure (X,A,μ) = μ

For measurable functions, the inverse image of each measurable set is measurable.

Definition 3 (Measurable Functions).
Let (X1,A1) and (X2,A2) be two measurable spaces. A function f : X1 → X2 is
called measurable with respect to (A1,A2) (or (A1,A2) measurable) iff f−1(A) ∈
A1 for all A ∈ A2.
� f ∈measurable a b =

sigma algebra a ∧ sigma algebra b ∧ f ∈(space a → space b) ∧
∀s. s ∈ subsets b ⇒ PREIMAGE f s ∩ space a ∈subsets a

2.2 Lebesgue Integration Theory

Similar to the way in which step functions are used in the development of the
Riemann integral, the Lebesgue integral makes use of a special class of functions
called positive simple functions. In HOL [15] a positive simple function g is
represented by the triplet (s, a, α) as a finite linear combination of indicator
functions of measurable sets (ai) that form a partition of the space X.

∀x ∈ X, g(x) =
∑

i∈s

αiIai(x), αi ≥ 0 (1)

where s is a set of partition tags, ai is a sequence of measurable sets, αi is a
sequence of real numbers and Iai

is an indicator function on ai:

� indicator fn A = (λx. if x ∈ A then 1 else 0)

The Lebesgue integral is first defined for positive simple functions and then
extended to non-negative functions.

Definition 4 (Lebesgue Integral of Positive Simple Functions).
Let (X,A, μ) be a measure space. The integral of the positive simple function g
with respect to the measure μ is defined as

∫
X

g dμ =
∑

i∈s αiμ(ai).
� pos simple fn integral m s a α = SIGMA (λi. αi * measure m (a i)) s

Definition 5 (Lebesgue Integral of Non-Negative Measurable Functions).
Let (X,A, μ) be a measure space. The integral of a non-negative mea-
surable function f is defined as

∫
X

f dμ = sup {∫
X

g dμ | g ≤
f and g positive simple function}.
� pos fn integral m f = sup {r | ∃g. r ∈ psfis m g ∧ ∀x. g x ≤ f x}
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where r ∈ psfis m g is equivalent to r = pos simple fn integral m s a α
and g is a positive simple function represented by (s, a, α).

2.3 Probability Theory

The probability space is defined in HOL [16] as a measure space, i.e., (Ω,F, p),
where Ω is the sample space, F is a set of events and p is the probability measure
such that p(Ω) = 1. A random variable is defined as a measurable function.

Definition 6 (Random Variable).
� random variable X p s ⇔

prob space p ∧ X ∈ measurable (p space p,events p) s

where p space is a renaming of m space and events is a renaming of
measurable sets. The probability distribution of a random variable X is defined
as the function assigning to A the probability of the event {X ∈ A}.

∀A ∈ B(R), p({X ∈ A}) = p(X−1(A))

Definition 7 (Probability Distribution).
� distribution p X = (λA. prob p (PREIMAGE X A ∩ p space p))

3 Formalization of Lebesgue-Borel Measure

For evaluating an integral using the Lebesgue integral [16], a suitable Lebesgue
measure is required. For this purpose, we have defined a Lebesgue measure based
on the Gauge integral. Our formalization is greatly inspired from the formaliza-
tions of Lebesgue measure in Isabelle/HOL [11].

3.1 Gauge Integral

Definition 8 (Gauge Integral).
Let f:[a,b]→ R be some function, and let y be some number. We say that y is
the Gauge integral of f over i written y =

∫
i

f(x) dx, if for each number e > 0
there exists a Gauge d such that | ∑

p f - y | < e, where, p is a tagged division
of i and p is δ-fine with respect to p.
� (f has integral compact interval y) i = ∀e. 0 < e ⇒ ∃d. gauge d ∧

∀p. p tagged division of i ∧ d fine p ⇒
abs (sum p (λ(x,k). content (k) * f(x)) - y) < e

An alternate definition of the Gauge integral that simplifies the proof steps for
integration over intervals is given as:

� (f has_integral y) i =

if ∃a b. i = interval [a,b] then (f has_integral_compact_interval y) i

else ∀e. 0 < e ⇒ ∃B. 0 < B ∧ ∀a b. ball (0,B) SUBSET interval [a,b] ⇒
∃z. ((λx. if x ∈ i then f x else 0) has_integral_compact_interval z)

(interval [a,b]) ∧ abs (z - y) < e
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The functional form of the above definition, using the Hilbert choice operator
(@), is as follows,

� integral i f = @y. (f has_integral y) i

3.2 Borel Measurable Sets

A collection of all borel measurable sets on the real line forms a sigma alge-
bra, called the Borel sigma algebra. It allows us to prove various properties of
measurable functions. The Borel sigma algebra is defined as the smallest sigma
algebra generated by the open sets of the real line. Mhamdi [16] formalized Borel
sigma algebra in the Measure theory as a sigma algebra generated by open inter-
vals of extended real numbers R. Because the Gauge integral is formalized for
real numbers R and we are working with Borel measurable functions, we had
to formalize real valued Borel sigma algebra in addition to extended real valued
Borel sigma algebra. We formalize the real valued Borel sigma algebra in HOL
with the help of the sigma function, defined in Sect. 2.1.

� borel = sigma UNIV {s | open s}

where UNIV is the universal set of real numbers R and open is defined as:

Definition 9 (Open Set).
A set s is called open if, given any point x ∈ s, there exists a real number ε > 0
such that, given any point y ∈ R whose distance from x is smaller than ε, y ∈ s.
� open s = ∀x. x ∈ s ⇒ ∃ ε. ε> 0 ∧ ∀y. dist (y,x) < ε ⇒ y ∈s

Using the above definition of borel, we proved that all open and closed sets are
in Borel sigma algebra.

Theorem 1. All open and closed sets of R are in B(R).
� ∀s. {s | open s} ∈ subsets borel ∧{s | closed s} ∈subsets borel

In order to reuse the proof steps of Mhamdi for proving various properties of
our Borel sigma algebra, generated by open sets of real numbers R, we proved
that our Borel sigma algebra can also be generated by open intervals of real
numbers R.

Theorem 2. B(R) is also generated by open intervals of real numbers.
� borel = sigma UNIV (IMAGE (λ(a,b). interval (a,b)) UNIV)

Real-Valued Borel Measurable Functions: For a function to be integrable
over a Borel measurable set, it has to be Borel measurable, i.e., the inverse image
of the function should belongs to the Borel sigma algebra.
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Theorem 3. If f and g are (A,B(R)) measurable and c ∈ R then c∗ f , |f |, fn,
f + g, f ∗ g and max(f, g) are (A,B(R) measurable.
� ∀a f g h c. sigma algebra a ∧

f ∈measurable a Borel ∧g ∈measurable a Borel ⇒
((λx. c * f x) ∈measurable a Borel) ∧
((λx. abs(f x)) ∈measurable a Borel) ∧
((λx. f x pow n) ∈measurable a Borel) ∧
((λx. f x + g x) ∈measurable a Borel) ∧
((λx. f x * g x) ∈measurable a Borel) ∧
((λx. max (f x) (g x)) ∈measurable a borel)

Theorem 4. Every continuous functions is (B(R),B(R)) measurable.
� ∀g. g continuous UNIV(:real) ⇒g ∈ measurable borel Borel

Notice that borel is our Borel sigma algebra generated by open sets of real
numbers R and Borel is the Borel sigma algebra of Mhamdi [16] generated by
open intervals of extended real numbers R.

3.3 Lebesgue Measure

The Lebesgue measure is defined as the supremum of Gauge integrals of Xa for
all intervals [-n,n] (or line n), where Xa is the indicator function of a set A.
We define it as a triplet by pairing it with the Lebesgue space and Lebesgue
measurable sets, i.e., all sets for which their indicator function is integrable with
respect to the inertval [-n,n].

Definition 10 (Lebesgue Measure).
� lebesgue = (univ(:real), {A | ∀n. indicator A integrable on line n},
(λA. sup {Normal (integral (line n) (indicator A)) | n IN univ(:real)}))

where the function Normal is used to map real numbers to their corresponding
extended real numbers. We prove that Borel measurable sets are also Lebesgue
measurable.

Theorem 5. borel ⊂ lebesgue
� ∀s. s ∈subsets borel ⇒s ∈ measurable sets lebesgue

3.4 Lebesgue-Borel Measure

A Lebesgue measure assigned to Borel measurable sets is called a Lebesgue-
Borel measure. We work with the Lebesgue-Borel measure to leverage upon the
available formally verified properties of Borel sigma algebra and Borel measur-
able functions. Thus, we define the triplet of Lebesgue-Borel measure by pairing
Lebesgue measure with Borel space and Borel sigma algebra. Also, we prove that
Lebesgue-Borel is a sigma finite measure.

Definition 11 (Lebesgue-Borel Measure).
� lborel = (space borel, subsets borel, measure lebesgue)
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Theorem 6. Lebesgue-Borel measure is σ-finite.
� sigma finite measure lborel

where sigma finite measure is defined in HOL as:

� sigma_finite_measure (X,A,u) =
∃s. countable s ∧ s SUBSET A ∧ (BIGUNION A = X) ∧

(∀a. a ∈ A ⇒ (u a �= PosInf))

4 Formalization of Normal Random Variables

Like any other continuous distribution, normal distribution is generally defined
by its probability distribution function (PDF) [20]:

N(μ, σ) =
1

σ
√
2π

exp
(− (x−μ)2

2σ2 ) (2)

where μ represents its mean and σ is the standard deviation.

4.1 Radon Nikodym Theorem

The Radon-Nikodym derivative of a measure ν with respect to the measure
μ is defined as a non-negative measurable function f , satisfying the following
formula [5], for any measurable set A:

∫

A

f dμ = ν(A) (3)

� RN_deriv m v = @f. f IN measurable (X,S) Borel ∧ ∀x ∈ X, 0 ≤ f x ∧
∀a ∈ S, integral m (λx. f x × Ia x) = v a

The existence of the Radon-Nikodym derivative is guaranteed for absolutely con-
tinuous measures by the Radon-Nikodym theorem stating that if ν is absolutely
continuous with respect to μ, then there exists a non-negative measurable func-
tion f satisfying Eq. (3) for any measurable set A. Mhamdi [16] proved the Radon
Nikodym theorem for finite measures. Our main objective is to define the prob-
ability density function as a Radon Nikodym derivative of probability measure
with respect to the Lebesgue-Borel measure. However, since the Lebesgue-Borel
measure is not finite so we have to first generalize the Radon-Nikodym theorem
for sigma finite measures.

Theorem 7. Given a measurable space (X,S), if a measure ν on (X,S) is
absolutely continuous with respect to a sigma-finite measure μ on (X,S), then
there is a measurable function f, such that for any measurable subset A ⊂ X,∫
A
f dμ = ν(A).

� ∀u v X S. sigma_finite_measure (X,S,u) ∧
measure_space (X,S,u) ∧ measure_space (X,S,v) ∧
measure_absolutely_continuous (X,S,u) (X,S,v) ⇒
∃f. f ∈ measurable (X,S) Borel ∧ ∀x ∈ X, 0 ≤ f x ∧

∀a ∈ S, pos_fn_integral u (λx. f x × Ia x) = v a
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where measure absolutely continuous is defined in HOL as:

Definition 12 (Absolutely Continuous Measures).
If u and v are two measures on a measure space (X,S), then v is absolutely
continuous with respect to u if v(A) = 0 for any A ∈ S such that u(A) = 0.
� ∀u v. measure absolutely continuous u v =

∀A. A ∈ measurable sets u ∧ (measure v A = 0) ⇒ (measure u A = 0)

4.2 Probability Density Function

The distribution of a continuous random variable is usually defined by its PDF:

P (x1 < x < x2) =
∫ x2

x1

p(x) dx

where p(x) represents the PDF of the random variable x. Formally, the PDF can
be defined as a Radon-Nikodym derivative. The distribution of random variables
paired with Borel space and Borel sigma algebra gives the probability measure.
The PDF of a random variable X is the derivative of the probability measure
with respect to the Lebesgue-Borel measure.

Definition 13 (Probability Density Function).
� PDF X p = RN deriv lborel

(space borel, subsets borel, measurable distr p X)

where measurable distr is the same as the distribution in the Probability the-
ory but limited to sets measurable with respect to the Lebesgue-Borel measure.
We introduced measurable distr because it is not possible to find the distrib-
ution of non-measurable sets.

Definition 14 (Measurable Distribution).
� measurable distr p X =

(λA. if A ∈ measurable sets lborel then distribution p X A else 0)

With the help of the Radon-Nikodym Theorem, discussed in Sect. 4.1, the fol-
lowing properties of PDF were proved in HOL.

Theorem 8. PDF of a random variable is always positive.
� ∀p X v. (v = (space borel, subsets borel, measurable distr p X)) ∧

measure space v ∧ measure absolutely continuous v lborel ⇒
∀x. 0 ≤ PDF p X x

Theorem 9. Integral of PDF over the whole space is equal to 1.
� ∀p X v. (v = (space borel, subsets borel, measurable distr p X)) ∧

prob space v ∧ measure absolutely continuous v lborel ⇒
(integral m (PDF p X) = 1)
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4.3 Normal Random Variables

From Eq. (2), it is clear that the probability density of a Normal random variable,
called normal density, is defined by its mean μ and variance σ2.

Definition 15 (Normal Density).
� normal density μ σ x =

1 / sqrt (2 * π * σ pow 2) * exp (- (x - μ) pow 2 / 2 * σ pow 2)

We verified the following useful properties of the normal density.

Theorem 10. Normal density is always positive.
� ∀ μ σ x. 0 ≤ normal density μ σ x

Theorem 11. If 0 < σ, then normal density is also greater than 0.
� ∀ μ σx. 0 < σ ⇒0 < normal density μ σ x

Theorem 12. Normal density is a Borel measurable function.
� ∀ μ σ. (λx. Normal (normal density μ σ x)) ∈
measurable (m space lborel, measurable sets lborel) Borel

where the function Normal is used to map real numbers to their corresponding
extended real numbers. To prove various properties of Normal random variables,
it is required to perform Lebesgue integration on normal density and since the
Lebesgue Integral is defined for extended real valued functions, we have to use
the function Normal in our formalization of normal density.

Now we formalize the probability that an event A (i.e., P (X ∈ A)) will occur
for a Normal random variable X.

Definition 16 (Normal Probability Measure).
� normal pmeasure μ σA =

if A ∈ measurable sets lborel

then pos fn integral lborel

(λx. Normal (normal density μ σ x) * indicator fn A x) else 0

Our definition is limited to measurable functions since it is not possible to eval-
uate the integral of a function over non-measurable sets.

Definition 17 (Normal Random Variable).
� normal rv X p μ σ=

random variable X p borel ∧ (measurable distr p X = normal pmeasure μ σ)

The first conjunct indicates that X is a real random variable, i.e., it is measurable
from the probability space to Borel space and the second conjunct ensures that
it is a Normal random variable.
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4.4 Properties of Normal Random Variables

In this section, we prove some interesting properties of Normal random variables.
These properties are going to be very useful in minimizing the formal reasoning
effort while conducting the formal analysis of real-world applications involving
Normal random variables.

Theorem 13. PDF of a Normal random variable is non-negative.
� ∀X p μ σ. normal rv X p μ σ ⇒ ∀x. 0 ≤ PDF p X x

Theorem 14. PDF interval over the whole space is equal to 1
� ∀X p μ σ. normal rv X p μ σ ⇒ (integral lborel (PDF p X) = 1)

Theorem 15. For a Normal random variable X,
∫ µ

µ−a

PDF p X dx =
∫ µ+a

µ

PDF p X dx

� ∀X p μ σ a. normal_rv X p μ σ ⇒
pos_fn_integral lborel

(λx. PDF p X x * indicator_fn {x | μ-a ≤ x ∧ x ≤ μ} x) =

pos_fn_integral lborel

(λx. PDF p X x * indicator_fn {x | μ ≤ x ∧ x ≤ μ+a } x)

Theorem 16. For a normal random variable X with p(x) = N(μ, σ),
∫ ∞

−∞
p(x) dx =

∫ µ

−∞
p(x) dx +

∫ ∞

µ

p(x) dx

� ∀X p μ σ. normal_rv X p μ σ ∧
(A = {x | x ≤ μ}) ∧ (B = {x | μ ≤ x}) ⇒
pos_fn_integral lborel (λx. PDF p X x) =

pos_fn_integral lborel (λx. PDF p X x * indicator_fn A x) +

pos_fn_integral lborel (λx. PDF p X x * indicator_fn B x)

Theorem 17. For a normal random variable X with p(x) = N(μ, σ),
∫ µ

−∞
p(x) dx =

∫ ∞

µ

p(x) dx =
1
2

� ∀X p μ σ. normal rv X p μ σ ∧A = {x | x ≤ μ} ∧B = {x | μ ≤x} ⇒
(pos fn integral lborel (λx. PDF p X x * indicator fn A x) = 1 / 2) ∧
(pos fn integral lborel (λx. PDF p X x * indicator fn B x) = 1 / 2)

Theorem 18. If X is a Normal random variable with mean μ and standard devi-
ation σ, then Y = b + a ∗ X is also a Normal random variable with mean b + a * μ
and standard deviation | a | * σ.
� ∀X p μ Y a b. normal rv X p μ σ ∧ (∀x. Y x = b + a * X x) ∧

a �= 0 ∧ 0 < σ ∧ ⇒ normal rv Y p (b + a * μ) (abs a * σ)
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Theorem 19. Convolution of Normal density with mean μ = 0.
� ∀ σ1 σ2 p X Y x. 0 < σ1 ∧0 < σ2 ∧ normal rv X p 0 σ1 ⇒
pos fn integral lborel

(λy. Normal (normal density 0 σ1 (x - y) *

Normal (normal density 0 σ2 y))) =

Normal (normal density 0 (sqrt (σ1 pow 2 + σ2 pow 2)) x)

Theorem 20. If X ∼ N(μ1,σ12) and Y ∼ N(μ2, σ22) are two independent
Normal random variables, then Z = X + Y is also normal with mean (μ1 + μ2)
and variance (σ12 + σ22).
� ∀p X Y μ1 μ2 σ1 σ2. prob space p ∧0 < σ1 ∧0 < σ2 ∧
indep var p borel triplet X borel triplet Y ∧
normal rv X p μ1 σ1 ∧ normal rv Y p μ2 σ2 ⇒
normal rv (λx. X x + Y x) p (μ1 + μ2) (sqrt (σ1 pow 2 + σ2 pow 2))

where borel triplet represents (borel space, subsets borel, (λx. 0)).

Theorem 21. If Xi ∼ N(μi,σ2
i ) is a finite set of independent Normal random

variables, and Z = Σ Xi then, Z ∼ N(Σ μi, Σ σ2
i ).

� ∀p X μ σ I. prob space p ∧ FINITE I ∧ ∧ I �= {} ∧
indep vars p (λi. borel triplet) X I ∧ (∀i, i ∈ I ⇒ 0 < σ i) ∧
(∀i, i ∈ I ⇒ normal rv (X i) p (μ i) (σ i)) ⇒
normal rv (λx. sum I (λx. X i x)) p (sum I μ)

(sqrt (sum I (λi. (σ i) pow 2)))

where indep vars and indep sets are defined as:

� indep_vars p M X I =

(∀i. i ∈ I ⇒
random_variable (X i) p (m_space (M i), measurable_sets (M i))) ∧

indep_sets p

(λi. PREIMAGE X A INTER p_space p | A ∈ measurable_sets (M i)) I

� indep_sets p F I = prob_space p ∧
(∀i. i ∈ I ⇒ F i SUBSET events p) ∧
(∀J. J SUBSET I ∧ J �= {} ∧ FINITE J ⇒)

∀A. A ∈ (Pi J F) ⇒ (prob p (BIGINTER A j| j ∈ J) =

Normal (product J (λj. real (prob p (A j)))))

where Pi J F represents {f | ∀x. x ∈ J ⇒ f(x) ∈ F (x)}. Using above definition
of indep vars, two independent random variables are defined as:

� indep_var p M_a A M_b B =

indep_vars p (λi. if i = 0 then M_a else M_b)

(λi. if i = 0 then A else B) UNIV

In the proof of above properties, the theories of Extended Real, Measure,
Lebesgue Integral and Probability from HOL4 along with the theory of Lebesgue
measure ported from Isabelle/HOL were used. Also, the tactics SET TAC and
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Induct (on Borel measurable functions) proved to be very useful and were ported
from HOL Light and Isabelle/HOL theorem provers. The proof script of the for-
malization and verification of the notions presented in this paper required around
17500 lines of HOL4 code.

5 Application: Probabilistic Clock Synchronization in
Wireless Sensor Networks

Wireless sensor networks involve highly accurate clock synchronization protocols,
which require more processing and hence more energy consumption. Due to these
unique characteristics, it is difficult to apply traditional approaches for clock
synchronization. Elson et al. [4] presented an analytical way to convert service
specifications to protocol parameters, called Reference Broadcast Sychronization
(RBS). PalChaudhuri et al. [18] extended this work and provided probabilistic
bounds on clock synchronization error for single and multi-hop networks. We
conduct the formal analysis for both of these cases as an illustrative example.

The main cause of error in clock synchronization is the non-determinism
in message delivery latency. The RBS protocol entails synchronizing a set of
receivers with each other, in contrast to synchronizing with the sender. For
this reason, the time required to build the message at the sender node and the
waiting time required to get access to the transmission channel are identical for
all receivers. While the time required for the message to reach the receiver and
the processing time required at the receiver may vary.

5.1 Single-Hop Network

Elson et al. [4] discovered the distribution of the synchronization error among
receivers. Multiple pulses are sent from the sender to the set of receivers. The
difference in actual reception time at the receivers is plotted. As each of these
pulses are independently distributed, the difference in reception times gives a
normal distribution with zero mean. PalChaudhuri et al. [18] extended this work
and provided probabilistic bounds on clock synchronization error. If the maxi-
mum error that is allowed between two sensors is εmax, then the probability of
synchronization with an error ε ≤ εmax is given as

P (|ε| ≤ εmax) =

∫ εmax

−εmax
exp− x2

2

√
2π

(4)

For n reference packets from the sender, the receivers exchange their observa-
tions. The slope of the skew between the receivers is found by a least square
linear estimation using the n data points. The calculated slope of the skew has
an associated error in it. This error is the difference in phase between the calcu-
lated slope and the actual slope. As the points have a normal distribution, this
error can be calculated as

P (|ε| ≤ εmax) = 2 erf

(√
nεmax

σ

)
(5)
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where ε is the synchronization error, i.e., difference in packet reception time
between two sensors, εmax is the maximum allowable error, n is the minimum
number of synchronization messages to guarantee the specified error, σ2 is the
variation of the distribution and erf is the error function given as

erf (z) =

∫ z

0
exp− x2

2 dx√
2π

(6)

Definition 18 (Error Function).
� err func z = pos fn integral lborel

(λx. Normal (1 / sqrt (2 * π) * exp (-(x pow 2) / 2)) *

indicator fn {x | 0 ≤ x ∧ x ≤ z} x)

Now we formally verify the result of Eq. (5).

Theorem 22. Probability of synchronization error for single hop network
� ∀p X μ σ n Emax. prob space p ∧ (I = (1 .. n)) ∧

(0 < σ) ∧ (0 < n) ∧ (∀i. i ∈ I ⇒ sync error (X i) p μ σ) ∧
(Z = (λx. sum I (λi. X i x) / n)) ∧ (μ = 0) ∧ 0 ≤ Emax ⇒
(prob sync error p Z {x | abs (x) ≤ Emax} =

2 * err func (Emax * sqrt n / σ))

where sync error is a Normal random variable, Z is the average error for n
reference packets, prob sync error p Z represents the distribution of random
variable Z, i.e., measurable distr p Z and Emax is the maximum allowable
synchronization error.

5.2 Multi-hop Network

For this protocol, the senders are considered at various levels. A sender which
does not need any synchronization is called a sender at level 0. A sensor node
which is within the broadcast region of a sender at level 0 can behave as a
sender in order to synchronize sensor nodes, which are two hops away from the
sender at level 0. Such a sender is called a sender at level 1. Receivers within
the broadcast region of the sender at level 0 are synchronized using the same
method discussed in the previous section. Once these receivers get synchronized,
each receiver starts behaving as a sender at level 1. In the same manner, suitable
time transformations can be performed all along the routing path of the message.
We define the transformation for multi-hops in HOL as the sum of synchro-
nization errors and find the maximum synchronization possible along with the
probability that the error will stay within bounds for k hops.

Definition 19 (Transformation).
� transformation X k = (λx. sum (1 .. k) (λi. X i x))

Theorem 23. If Emax is the max allowable error for a single hop, then the
maximum error between two sensor nodes, k hops apart, is k * Emax.
� ∀X Emax k. 0 ≤ Emax ⇒
(∀x. (∀i. (X i) x ∈ {x:real | abs (x) ≤ Emax}) ⇒
transformation X k x ∈ {x:real | abs (x) ≤ Emax * &k})
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Theorem 24. If we consider the error over a single hop to Emax then the error
over k hops will be sqrt (k) * Emax.
� ∀p X μ σ k Emax.

prob space p ∧ (I = (1 .. n)) ∧ (0 < σ) ∧
indep vars p (λi. borel triplet) X I ∧
(0 < k) ∧ (∀i. i ∈ I ⇒ sync error (X i) p μ σ) ∧
(Z = (λx. sum I (λi. X i x))) ∧ (μ = 0) ∧ (0 ≤ Emax) ⇒
(prob sync error p Z {x | abs (x) ≤ Emax * sqrt(k)} =

prob sync error p (X k) {x | abs (x) ≤ Emax})

5.3 Discussion

In this case study, we were able to formally reason about the probabilities of clock
synchronization error in single-hop and multi-hop wireless sensor networks with
universally quantified variables for various design. This is a novelty which is not
available in the simulation based approaches. This added benefit comes at the cost
of a significant amount of time and effort spent, while formalizing the systems
behavior, by the user. However, the formalization of Normal random variables,
presented in Sect. 4 of this paper, greatly facilitated the reasoning process and the
proof script corresponding to the application, which only consists of 500 lines of
HOL4 code. Besides simulation and testing, the analysis of clock synchronization
algorithms for WSN has been sometimes performed using timed automata model
checking (e.g. [14,21,22]). However, both probability modeling and scalability in
these works were very limited. For example, only a 7 node network was analysed
in [14], which is very restricting for wireless sensor networks.

6 Conclusion

The analysis of engineering systems used in safety critical domains, such as trans-
portation and medicine, is usually done using informal techniques. The unreli-
able results produced using such techniques may lead to heavy financial loss, or
even the loss of human lives. Therefore, in this paper we propose to conduct the
probabilistic analysis of engineering systems exhibiting normally distributed ran-
domness using higher-order-logic theorem proving. To do so, we have provided a
formalization of Normal random variables along with the mathematical notions
required to formalize them. Compared to the standard techniques of computer
simulation and paper-and-pencil analysis, our approach provides more accurate
and trusted results by exploiting the soundness of theorem proving. It also allows
to provide generic results instead of proving the properties for specific instances
of the system. To prove the usefulness of our formalization, we conducted the
formal analysis of the probabilistic clock synchronization in wireless sensor net-
works. This application highlight the feasibility and benefits of conducting a for-
mal probabilistic analysis using a higher-order-logic theorem prover. Our HOL4
proof script is available for download at http://hvg.ece.concordia.ca/projects/
prob-it/pr7.html, and thus can be used for further developments and analysis of
different engineering systems.

http://hvg.ece.concordia.ca/projects/prob-it/pr7.html
http://hvg.ece.concordia.ca/projects/prob-it/pr7.html
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