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Abstract-Pipeline systems are an essential component of the 
oil and gas supply chain today. Although considered among 
the safest transportation methods, pipelines are still prone to 
failure due to corrosion and other types of defects. Such failures 
can lead to serious accidents resulting in big losses to life and 
the environment. It is therefore crucial for pipeline operators 
to reliably detect pipeline defects in an accurate and timely 
manner. Because of the size and complexity of pipeline systems, 
however, relying on human operators to perform the inspection 
is not possible. Automating the inspection process has been an 
important goal for the pipeline industry for a number of years. 
Significant progress has been made in that regard, and available 
techniques combine analytical modeling, numerical computations, 
and machine learning. This paper presents a survey of state
of-the-art methods used to assess the safety of the oil and gas 
pipelines. The paper explains the principles behind each method, 
highlights the setting where each method is most effective, and 
shows how several methods can be combined to achieve a higher 
level of accuracy. 

I. INTRODUCTION 

Transporting oil and gas from remote extraction sites all 
the way to the consumer is a very delicate and important part 
of the energy business. The oil and gas industry uses a variety 
of means to transport its products (e.g. , trains, ships, and 
trucks) , but pipelines are thought to be the safest. In Canada 
for example, 97% of all Canadian natural gas and crude oil 
production is transported by pipeline [I]. 

Oil and gas pipelines do have some drawbacks, however. 
They do go, for example, through fragile ecosystems, or nearby 
urban areas, which makes any failure or fuel spillage extremely 
harmful. Moreover, oil and gas pipelines are very complex 
systems and their inspection is very difficult. They stretch very 
long distances, and comprise a large number of components, all 
of which can be a potential source of failure. Their inspection 
is not a small challenge, and requires highly sophisticated tech
nology. In general terms, the inspection consists of analyzing 
scans of the pipeline walls, and recognizing certain patterns 
that would indicate the presence of defects. The vast majority 
of encountered inspection methods revolve around the use of 
Artificial Neural Networks (ANNs) [3], [4], [5], and machine 
learning techniques in general. ANNs are particularly suited 
for this type of applications thanks to their ability of learn 
and recognize patterns. In this paper we present a survey of 
ANN-based techniques used to assess the safety of oil and gas 
pipelines. 

The remainder of this paper is organized as follows. In 
Section II, we describe the overall pipeline inspection process, 
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and explain the main idea behind Magnetic-Flux-Leakage 
(MFL) inspection - currently the most common inspection 
method used in the industry. In Section III, we enumerate 
the four main classes of pipeline safety-related problems 
that appear in the machine-learning literature. Section IV is 
dedicated to one of the most challenging tasks in the pipeline 
inspection process, namely the sizing of defects from MFL 
sensor data. We survey a whole set of techniques used to 
that effect: analytical modeling, numerical methods, algebraic 
techniques, and show how they can be combined with ANNs 
to achieve an accurate and computationally-efficient solution. 
In Section V, we present a slightly different approach that 
combines analytical modeling and numerical techniques. This 
approach is less general than the one based on neural networks, 
but is more computationally efficient. Finally, in Section VI, 
we summarize our findings, and provide recommendations on 
the best approaches to assess the safety of oil and gas pipelines. 

II. PRELIMINARIES: PIPELINE SYSTEMS AND THEIR 

INSPECTION 

A. Pipeline Inspection: The Overall Process 

The inspection process consists mainly of sending a robot 
inside the pipeline to scan its walls. The recorded sensor
data is then analyzed in order to detect signs of defects. 
The oil and gas industry has several scanning techniques at 
its disposal. These include Ultrasound, X-ray, and Magnetic 
Flux Leakage (MFL)-based techniques. MFL-scanning is by 
far the most widely used [1]. MFL-based inspection works 
as follows. A tool called Pipeline Inspection Gauge (PIG) 
is sent inside the pipeline. The tool magnetizes the walls of 
the pipeline, and measures any Magnetic Flux that may leak 
from the pipe wall. The presence of Magnetic Flux Leakage 
indicates a possible defect in the pipe wall. (In Section II-B, 
we explain the principle behind MFL-based inspection, and 
explain how the recorded MFL data can be used to detect 
defects and characterize their geometric properties. ) 

Once a pipeline defect is detected, one has to estimate its 
length and depth, which in turn will serve to determine its 
severity level, according to safety standards such as AS ME 
B31G [2]. 

B. Magnetic-Flux-Leakage Inspection 

In MFL-based pipeline inspection, the walls of the pipeline 
are first magnetized. If a crack or a metal defect is present on 
surface or inside the wall of a pipe, then a bulging of magnetic 



flux occurs at the surface of the pipe (See Fig. 1) .  This bulging 
of magnetic flux is called Magnetic Flux Leakage (MFL), and 
is due to the difference in magnetic permeability between the 
steel of the pipe wall and the air gap created by the defect. 
MFL-based inspection tools such as the one shown in Fig. 2 
are equipped with sensors to measure this flux leakage. Fig. 3 
shows a sample MFL diagram, along with pictures of metal 
defects and their corresponding MFL signatures. 

Magnetic Flux Leakage 
\ Air gap 
I Magnetic Flux 

Forromagnetic Material / 
Fig. 1. Magnetic Flux Leakage around a metal loss feature 

Fig. 2. MFL-based pipeline inspection tools (Source: Baker Hugues Inc., 
www.bakerhughes.com) 
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Fig. 3. Sample MFL measurements with corresponding metal loss defects 
(Source: Pure Technologies Ltd., www.puretechltd.com) 

III. ANNs AS A TOOL FOR REASONING ABOUT PIPELINE 

SAFETY 

ANNs [3], [4], [5] can be defined as a computational tool 
that mimics the ability of the human brain to recognize and 

predict patterns based on learning and recalling processes. It 
is an effective tool for reasoning and prediction because of its 
ability to learn from historical data. An ANN is made of a large 
number of simple processing units, the artificial neurons, that 
are randomly arranged and connected in different layers (input, 
hidden and output) . Neural networks are especially well suited 
for solving problems for which no analytical solution is known, 
or in cases where the analytical solution is too expensive to 
compute. Sadiq, Kleiner, and Rajani [6] state that ANN is 
a modeling technique that is useful for applications where 
causal relationships among variables are unknown. Sawhney 
and Mund [7] add that ANN is especially useful to represent 
problems where solutions are not clearly articulated or where 

the relationships among inputs and outputs are not adequately 
identified. 

Oil and gas pipelines are a notable example of systems that 
are too complex to model. Coming up with general analytical 
solutions to reason about their safety has been a real challenge. 
Neural networks, on the other hand, have been quite effective at 
solving similar complex problems, and a lot of research effort 
has been therefore dedicated to the use of neural networks in 
the assessment of pipeline safety. Below is a brief summary 
of the literature in this area. 

Neural networks in pipeline safety: Four major classes 
of problems: The use of neural networks in the area of pipeline 
safety has been quite extensive [8], [9], [10], [II], [I2], [13], 
[14], [15]. Their use spans a large number of applications and 
problems. The types of problems that were addressed by neural 
networks, however, can be reduced to four major classes: 

1) Predicting the probability of failure of a pipeline 
2) Predicting the causes of failure of a pipeline 
3) Classification of metal defects on a pipeline 
4) Detection and sizing of metal defects on a pipeline 

In the next sections, we will introduce each one of these 
classes, and will illustrate it with a representative work from 
the literature. The subsequent sections of the paper will be 
dedicated to the fourth type of problems, since it is the most 
challenging of all four, and also because information about 
defect sizes is exactly what the pipeline inspection industry 
relies on to assess the severity of pipeline defects, and ensure 
the operational safety of pipelines. 

A. Predicting the Probability of Failure of a Pipeline 

The work in [8] uses Probabilistic Neural Networks [3] 
to predict the probability of failure of pipelines from material 
properties and dimensions of the pipeline, as well as statistical 
information on metal defects present in the pipeline. More 
precisely, the input parameters to the neural network are: the 
yield strength of the pipe, pipe wall thickness, pipe outer 
diameter, average crack depth, standard deviation of crack 
depth, average crack length, standard deviation of crack 
length, and operating pressure. The proposed PNN shows 
better precision than other types of neural networks (radial 
basis, back-propagation neural network, general regression 
neural network) and more efficiency (fewer iterations) than 
back-propagation neural networks. 

Along the same lines, the authors in [13] use neural 
networks to predict the reliability of a buried network of 



connected pipelines, when subjected to an earthquake. More 
precisely, following an earthquake, large lateral and axial 
movements of the soil can lead to a deformation of the walls of 
the buried pipes, and hence to a reduction of the hollow section 
of these pipes. This can result in a decrease of the maximum 
possible flow inside this network of pipes. The work in [13] 
tries, for different levels of operational performance (i. e. , ratio 
between the maximum allowable flow in the pipeline before 
and after the earthquake) , to estimate the probability of failure 
of the pipeline network, given input parameters such as: 

• The physical properties of the soil: angle of internal 
friction of the soil, the soil's specific weight, the shear 
wave velocity in the soil, etc. 

• The dynamic properties of the earthquake: verti
cal and horizontal soil displacements caused by the 
earthquake, etc. 

B. Predicting the Causes of Failure of a Pipeline 

Being able to identify factors that are likely to cause 
failures in a pipeline is a very valuable tool to the oil and gas 
industry. The work in [14] describes techniques to develop 
models that can predict the causes of oil and gas pipeline 
failures (e. g. , mechanical, operational, corrosion, third party, 
and natural hazards) from data such as: (l) type of product 
carried by the pipe, (2) pipe location, (3) pipe age, (4) land 
use and (5) pipe diameter. 

The paper develops models based on two different tech
niques, namely: 

• ANNs. (Already introduced in Section III) 

• Regression analysis. Regression analysis [17] is a sta
tistical methodology that utilizes the relationship be
tween two or more quantitative or qualitative variables 
to predict dependent variables from the independent 
variables. 

The two types of models, obtained through regression 
analysis and ANNs, were developed based on historical data 
of pipeline accidents. The two models were able to predict 
possible causes of pipeline failures with an average validity of 
90% for the regression model and 92% for the ANN model. 

C. Classification of Metal Defects on a Pipeline 

The author in [18] presents a technique to recognize cor
rosion in oil and gas pipelines, and distinguish it from healthy 
steel and geometric defects (such as gouging, dents, cracks, 
etc. ) .  The proposed technique works as follows. First, a model 
for each of the target classes is developed, namely "corrosion", 
"geometric defect", and "healthy steel". These models are 
obtained through the use of parametric modeling and opti
mization techniques [19]. The class models are then fed into a 
Fuzzy-Logic classifier, which uses them as a blueprint to detect 
and classify defects in ultrasonic pipeline scans. The author 
in [18] reports success rates in the range of 87% for correct 
corrosion classification, 100% for correct defect classification, 
and 94% for correct healthy metal detection. Misclassification, 
and false alarm rates, for defect or corrosion, were at 3% and 
5.4%, respectively. According to [18], the level of performance 
achieved is in line with acceptable industry standards. It 

remains to be seen however if fuzzy-logic predictors can attain 
comparable levels of accuracy when considering the more 
challenging task of estimating the size of metal defects from 
acoustic or MFL signals. 

D. Detection and Sizing of Metal Defects on a Pipeline: The 
Forward and Inverse Problems 

The detection and sizing of pipeline defects is one of the 
most challenging and valuable tasks when it comes to assessing 
the operational safety of pipelines. The goal here is to answer 
the following two questions, just by analyzing MFL sensor 
data: 

• Are there any metal defects on the pipeline? And what 
is their location? 

• What is the topology of those defects (their shapes, 
lengths, widths, and depths)? 

Once the dimensions of a defect are known, safety codes 
such as ASME B31G [2] are used to determine the severity 
of the defect, and decide on the urgency of performing 
reparations. 

The problem of defect detection and sizing has been 
addressed by many researchers in the literature [11], [20], [16], 
[12]. The general approach has been to split the problem in 
two smaller sub-problems, and to solve them in sequence. The 
two sub-problems are namely: 

• The forward problem: Consists of predicting the 3D 
representation of the MFL field generated by a known 
volumetric defect. 

• The inverse problem: Consists of predicting the 3D 
location and geometric topology of a defect based on 
measured MFL sensor data. 

The usual approach is to start by studying the forward prob
lem, and then use the gained knowledge (i. e. , the understanding 
of how MFL fields react to defects with different geometries) 
to solve the inverse problem. 

More details on the defect detection and sizing problems 
are given in Sections IV and V, respectively. 

IV. DEFECT CHAR ACTERIZ ATION USING THE 

ANN-BASED APPROACH 

Defect characterization consists of (1) detecting the pres
ence of metal defects along the pipeline, (2) locating them, and 
(3) estimating their geometric shape and size. In this context, 
we assume a setting where an MFL-based inspection tool, 
such as the one shown on Fig. 2, travels inside a pipeline 
and measures MFL signals at the surface of the pipeline wall. 
For ANN-based defect characterization to work, one needs to: 

1) Understand the general behavior of the MFL field. 
2) Identify metrics that relate specific geometric prop

erties of the defect to specific properties of the MFL 
field. 

3) Using the above, infer defect topology from MFL 
measurements. 

One of the most prominent approaches to handle defect 
characterization was put forward by Dutta et al. [11], [20], 



[J 6], and consists of dividing the defect characterization prob
lem into the forward and inverse sub-problems. They first start 
by deriving a solution to the forward problem, and then use 
it to solve the inverse problem. The next subsections describe 
how these two problems are handled. The approach in [I J] is 
based essentially on ANNs, but uses the analytical modeling 
and FEM techniques as initial steps (1) to better understand the 
defect characterization problem, and (2) to generate training 
data for the neural networks. 

A. Solving the Forward Problem 

One of the first and obvious approaches that may come 
to mind when trying to solve the forward problem is to 
rely on experimental MFL sensor data measured for various 
defects with different geometric topologies. Unfortunately, this 
approach, however logical, is not always effective. This is 
due in part to the complexity of the sensing apparatus, and 
also to the noise that can affect the actual MFL signal. It is 
worth noting also that MFL sensor data is not easy to obtain 
from pipeline operators and inspection service providers due to 
intellectual property and regulatory constraints. The alternative 
to the experimental approach is based on analytical modeling 
and simulation. 

Section IV-AI describes an analytical model of Magnetic 
Flux Leakage based on the idea of magnetic dipoles [21], 
while Section IV-A2 presents a modeling approach based on 
the Finite Elements Method [22]. 

1) Dipole Modeling of Magnetic Flux Leakage: The analyt
ical modeling of the forward problem is relatively well under
stood, and relies on the Maxwell equations of magnetism [21]. 
Dutta et al. [J I], [20], [J6] make a number of assumptions 
however in order to derive their model. A summary of those 
assumptions, as well as a description of the model setting are 
provided next. 

a) Model Setting and Assumptions: The work in [II], 
[20], [16] considers a ferromagnetic specimen, for example 
a pipeline wall, with a surface breaking feature (e. g. , cor
rosion, pitting, dent, etc. ) .  The specimen is then subjected 
to a magnetic field using a device equipped with strong 
permanent magnets. The magnetic field results in a magnetic 
flux inside and outside the specimen, which can be quantified 
by measuring the density of magnetic flux. It is the pattern 
that the density of magnetic flux follows around the surface 
of the specimen that indicates the presence of metal loss 
features. More precisely, the presence of a metal defect results 
in a magnetic flux leakage (MFL). In [II], [20], [16], Dutta 
et al. present a model to predict MFL signals from known 
volumetric defects. Their model is based on Maxwell equations 
of magnetism [21], and makes the two following assumptions. 

I) Small size defects: Defects under considerations are 
small compared to the size of the magnetizing device, 
and the radius of the pipe. Therefore, it can be safely 
assumed that the applied magnetic field is uniform in 
the vicinity of the defect, including the defect cavity. 
In this case, the magnetizing device need not be part 
of the system being modeled. 

2) Static setting: There is no relative motion between 
the applied magnetic field and the defect, and hence 
the behavior of the MFL field is quasi-static. In 

particular free currents that might be possibly induced 
by the magnet motion are assumed to be null. 

b) Analytical Model: The model assumes a cylindrical 
defect of radius R and depth b, such as the one shown in 
Fig. 4. Let P denote a point in space above the surface of 
the ferromagnetic specimen, and let r = (xo, Yo, zo) denote 
its vector position in the Cartesian coordinate system X, Y, Z 
with orthonormal basis (i,j, k). Assume the applied magnetic 
field is in the same direction as the Y axis. This will result 
in the walls of cylindrical defect to be polarized as north for 
y < 0, and south for y > O. In Fig. 4, north poles are marked 
with a "+" sign, while south poles are marked with a "-". Let s 
denote the position vector of a point on the wall of the surface 
breaking defect, and let dS (s) denote the surface area of the 
small region around that point (See Fig. 4 for an illustration). 
Conceptually speaking, one can think of the surface element 
dS(s) as contributing a magnetic field dH(r) at P(xo, Yo, zo), 
and that the net total magnetic field at point P(xo, Yo, zo) is 
a summation of all elementary magnetic fields contributed by 
each of the surface elements found on the defect walls. 

z 
dH(r) 

r- P(xo,Yo,zO) 
dS(s) r 

Y 

x H 
� 

Fig. 4. Model of a cylindrical surface breaking defect [II], [20], [16] 

As shown in [J I], [20], [J6], the density of magnetic flux 
leakage is given by: 

MoM 

J
' . r - s BMFdr) = -4- n(s) . J 1 13 dS(s) 7f s r-s (1) 

where Mo denotes the magnetic permeability of free space, M 
the magnetization inside the ferromagnetic material, and n(s) 
the surface normal vector at position s. 

Let e denote the angle between s and unit vector j (as 
shown in Fig. 4) ,  and let zo be the Z coordinate of surface 
element dS(s). Then we have 

t = r - s 

= txi + tyj + tzi 

= (xo - Rcose) i + (Yo + Rsine)j + (zo -z) i 

Let t denote the distance between point P and surface 
element dS (s) 

The density of magnetic flux leakage is then given by 



where 

fL MR 1
2
71" j' o t 

Bx(r) = _
0

__ � sinB dz dB 
47r 0 -b t 

fL MR 1
2
71" fO t 

By(r) = _0__ � sinB dz dB 
47r 0 -b t 

fL MR 1
2
71" fO t 

Bz(r) = _
0__ � sinB dz dB 

47r 0 -b t 

(2) 

(3) 

(4) 

(5) 

Equations (2) ,  (3),  (4) ,  and (5) represent the analytical 
model of the Magnetic Flux Leakage density generated by a 
cylindrical surface breaking defect of radius R and depth b. 
Bx(r), By(r), and Bz(r) are the tangential, axial, and radial 
components, respectively, of the MFL density field. Analytical 
models for other simple defect geometries are also available 
in the literature [12], [II], [20], [16]. 

2) MFL Modeling based on the Finite Element Method: 
Models of MFL fields generated by known defect topologies 
can also be derived by using the Finite Element Method 
(FEM) [22] to solve Maxwell's equations of magnetism [21]. 
The FEM-based approach is more general than Dipole Mod
eling (shown in the previous subsection) however, makes 
fewer simplifying assumptions, and can be applied to arbitrary 
defect shapes and sizes (albeit at an additional computational 
cost). For arbitrarily shaped, and large defects, the following 
assumptions are not valid anymore. 

1) Uniformity of the applied magnetic field in the vicin
ity of the defect cavity. 

2) Uniformity of magnetization on the surface of the 
defect cavity. 

3) Uniformity of magnetic permeability inside ferro
magnetic material. 

Using the FEM approach, one does not need to make 
any of the above assumptions. Maxwell's equations, in their 
general form, are fed into an FEM computation software, 
along with a representation of the topology of defects under 
consideration. For large defects, where the applied magnetic 
field in the defect cavity is not necessarily uniform, the FEM 
approach makes it possible to model the magnetizing device 
along with the pipeline and the defect feature. Several FEM 
computation software are used in practice. The COMSOL 
Multiphysics® simulation environment [23] and the ANSYS 
Maxwell® electromagnetic field simulation software [24] are 
two notable examples of such tools. 

MFL field data simulated using the FEM approach is used 
both to better understand the MFL behavior with respect to 
different defect shapes, and also as a substitute to experimental 
sensor data when studying the inverse problem. 

B. Solving the Inverse Problem 

In [11], Dutta presents two approaches to solving the 
inverse problem. The first is based on linear algebra and 
works only for certain configurations of the inverse problem, 
while the second is more general and uses neural networks. 
Sections IV-Bl and IV-B3 are dedicated to describing each 
approach. 

1) The Linear Algebra Approach: This approach consists 
of reducing the inverse problem to a matrix inversion problem. 
The reduction is obtained as follows. Assuming the setting in 
Fig 4, the MFL field density contributed by magnetized surface 
element dS(s) at point P(xo, Yo, zo) is given by 

fLoM . r -s 
dBMFL(r) = -- n(s) . J 1 13 dS(s) 

47r r -s 

fLo r -s = 
-4 

1 13 dp(s) 
7r r -s 

(6) 

where dp(s) = M x (n(s) . j) x dS(s) can be thought of as 
the magnetic charge of surface element dS(s). It should be 
noted however that the concept of "magnetic charge" is just 
a convenient way to mathematically represent magnetization. 
Magnetic monopoles have not been shown to actually exist in 
nature. 

It follows from Equation (6) that 

fLo l r-s 
BMFL(r) = -

4 
1 13 dp(s) 

7r S r-s 
(7) 

In practice, the position vector r in expression (7) is drawn 
from a discrete domain, called the measurement domain, 
since MFL measurements are made at discrete intervals along 
the pipeline. Furthermore, because integrals are computed as a 
discrete sum by numerical tools, position vector s, specifying 
the position of surface element dS (s), also needs to be 
discretized. The domain from which s is chosen is called the 
defect domain. Dutta [1]] discretizes these two domains as 
shown in Fig. 5. 

Defect 
Surface 

Measurement 

I," 
f)om,;, 

I" Dof,", Dom,;, 

Fig. 5. Discretization of the measurement and defect domains [II] 

Let M and N be the sizes of the measurement domain and 
the defect domain respectively. Using the notation in Fig. 5, it 
can be stated that M = I x m x nand N = a x b. Using the 
above, the discrete version of Equation (7) can be written as 



(8) 

where rj denotes the ith position vector in the measurement 
domain, Sj the jth position vector in the defect domain, 

Bi(rj) the ilh measurement, and dp(sj) the magnetic charge 
at position vector Sj. 

For 1 :s; j :s; N, if dp(sj) i- 0 then surface element dS(sj) 
is part of the defect surface, and has magnetic charge equal 
to dp(sj). If dp(sj) = 0 then the point specified by position 
vector Sj is not part of the defect surface. In other words, 
identifying the surface of the defect boils down to computing 
dp(sj), for 1 :s; j :s; N. 

More precisely, let G be an M by N matrix, such that 

for 1 :s; i :s; M, and 1 :s; j :s; N, Gi,j = �� I�I=-s�jI3. Let 

B and D denote the vectors of size M and N, resp�ctively, 
containing Bi(ri) for 1 :s; i :s; M, and dp(sj) for 1 :s; j :s; N. 
Equation (8) can then be written as 

(9) 

Solving the inverse problem boils down to finding a vector 
[D]N that satisfies Equation (9).  Usually, the size of the 
defect domain is greater than that of the measurement domain 
(N » M). Therefore, for a given measurement vector [B]M, 
there may exist several defect shape vectors [D]N that satisfy 
Equation (9).  In order to find the actual defect shape, or at 
least to zero in on the most plausible one, Dutta [II] proposes 
using prior knowledge, about the instance of the problem at 
hand, as an additional constraint along with Equation (9) .  This 
extra knowledge may consist of information about the context 
of the application, the defect space, or parameters, or any other 
information that is not already included in matrix G from 
Equation (9) .  

A note on computational complexity: Finding a solution 
to the inverse problem using the linear algebra approach 
reduces to solving the linear system in Equation (9) .  Since 
matrix G in Equation (9) is not square, it is not directly 
invertible. A generalized inverse may exist however. Let G* 
denote the generalized inverse of matrix G, if it exists. Then 
we have 

[G*]NXM· [G]MXN = [I]NxN (10) 

where [I]NxN is the the identity matrix of size N. Matrix 
G * can be obtained using the Singular Value Decomposition 
(SVD) method [25] for example. The defect geometry is then 
given by 

(11) 

The cost of computing the generalized inverse and recov
ering the defect vector D is in the order of O(N3 + M N2) = 

O(N3), assuming that M « N. Consequently, for large values 
of N, the computational cost of the linear algebra method can 
become prohibitively high. The next section will explore a 
more efficient approach based on neural networks. 

2) Assessment of Previous Approaches: All methods pre
sented so far have limitations when it comes to solving the 
inverse problem. The analytical method of Section IV-AI, for 
instance, expresses the MFL field as the value of an integral 
that depends on the geometry of the defect. More precisely, 
the MFL field is modeled by an expression of the form 

B = Is F(s) dS(s) (12) 

where S denotes the surface of the defect, S the position vector 
of surface element dS, and F a function of s. Solving the 
inverse problem reduces to finding a surface S that satisfies 
Equation (12) for the measured MFL field B. However, 
because of the non-injective nature of integrals, there may exist 
several surfaces, Sl, S2,··· , SN, that satisfy Equation (12) for 
the observed MFL field. Since it is not possible to come up 
with a unique solution to Equation (12),  one cannot rely solely 
on the analytical method to solve the inverse problem. 

The same limitation, namely of the existence of multiple 
solutions, applies to the FEM and linear algebra methods 
(Sections IV-A2 and IV-B1, respectively) which makes them 
ineffective at solving the inverse problem. In addition, all three 
methods have high computational costs. The linear algebra 
method has a computational cost in the order of O(N3), where 
N is the size of the defect vector. Similarly, the FEM and 
analytical methods need to be run several times in the forward 
direction, on different defect geometries, until the simulated 
MFL signal coincides with the measured one. Therefore their 
complexity is at least proportional to the size of the defect 
space. 

3) The Neural Networks Approach: 

a) General Overview: Several authors have tried solv
ing the inverse problem using neural networks in a supervised 
learning setting [3]. The general approach in supervised learn
ing works as follows. In the training phase, the neural network 
is given a pair of inputs and corresponding outputs. During this 
phase, with each learning iteration, the neural network adjusts 
its internal parameters in such a way that it will be able to 
predict the outputs of entries it has already seen with minimal 
errors. The underlying assumption is that by the end of the 
training phase, the neural network will be able to extrapolate 
knowledge it has already acquired, and correctly guess the 
outputs corresponding to non-previously seen inputs. 

b) Challenges Posed to the Direct Method: Applying 
neural networks directly to individual data records works 
effectively for so many applications (e. g. , prediction of home 
prices from size and location), but not for recovering defect 
geometry from MFL signals. One of the main reasons for that, 
is that a defect geometry (i. e. , the expected output of the neural 
network) is determined not by individual MFL measurements, 
but rather by a set of consecutive measurements. In addition, 
the size of such sets of consecutive measurements, which 
corresponds in reality to the length of a defect, is variable, 
and cannot be pre-determined. 



c) Feature Extraction as an Enabling Step: To over
come the challenges posed by the direct method, many au
thors [9], [10], [11], [15] have added an extra step to pre
process the MFL data describing metal features, before feeding 
it to the neural network. The goal of this step is to derive a 
compact representation, that can accurately describe the MFL 
signals being analyzed. This preprocessing step is referred to 
as Feature Extraction in the literature [9], [10], [11], [15], 
and represents an essential building block in the defect sizing 
process. In the case of MFL signals analysis, components such 
as normalized signal amplitude, signal width, signal slope, and 
average frequency content proved to be among the best features 
to describe the data. 

d) Mechanics of the Defect Sizing using Neural Net
works: Fig. 6 shows the overall procedure used to predict 
defect geometries or classes from MFL signals. 

MFL Signals 

Predicted 
Class, or 

Size of Defect 

Features 
Extraction 

Neural Network 

Fig. 6. Predicting defect class and size from MFL signals 

The MFL signals at the beginning of the process can be 
either real experimental measurements, or simulated data using 
the FEM method or the analytical model. The MFL signals 
are then fed into a feature extraction engine, which processes 
them and extracts a compact representation that best describes 
those signals. The extracted representation, or set of features, 
is then passed on as an input to the neural network. As in 
any supervised learning setting, the neural network is provided 
both with inputs and the proper output (i. e. , the right defect 
class or geometry) during the training phase. Later on in the 
production phase, the neural network is only provided with 
features extracted from MFL signals, and it is left to predict 
the corresponding output on its own. 

e) Note on the Peiformance of Combining Feature 
Extraction and Neural Networks: The approach of combining 
feature extraction and neural networks to predict defect classes 
and geometries appears numerous times in the literature [9], 
[10], [15], [II], [16]. Most authors who used this method have 
reported high accuracy rates [10], [15], [16]. For example, the 
authors in [10], [15] report classification success rates in the 
85% to 91% range. Similar accuracy levels are achieved for 
the defect sizing problem [16], [11]. Across the board, per
formance levels are influenced by the quality of the extracted 
features, and in some cases also, by the internal structure of the 
neural network (e. g. , the number of neurons in the hidden layer, 
and the type of neural network being used: Backpropagation, 
Radial Basis, Wavelet Basis Function neural networks, etc. ) 

V. DEFECT SIZING USING THE SPACE MAPPING 

APPROACH 

The authors in [12] propose a slightly different approach 
to solve the defect sizing problem. The proposed approach is 
simpler than the one based on neural networks, but less general 
(i. e. , works only for specific geometric shapes) . The general 
idea is as follows. First, compute a coarse approximation of 
the defect geometry using the analytical model. Then, use a 
mapping to obtain a more accurate approximation, that is as 
precise as the solution that would have been obtained using 
the FEM. The computational cost of this approach, however, 
is much lower than that of the FEM, and achieves comparable 

levels of accuracy. 

A. Computing the Space Mapping 

Computing the space mapping is a one-time procedure, 
comparable to the initial training phase in neural networks. 
The space mapping is obtained as follows. First a hypothesis 
is made about the geometry of the defect (e. g. , a rectangular 
defect with staircase-like slopes). Then the corresponding 
analytical model is derived. This will result in a parametrized 
model that depends on the features of the geometric hypothe
sis. Next, for each experimental MFL measurement available, 
we do the following steps: 

1) Perform an exhaustive search on the defect geometry 
space, to find the optimal geometric configuration that 
would minimize the distance between the experimen
tal MFL measurements and the analytical model. 

2) Since the analytical model is not sufficiently accurate, 
repeat the search for the optimal defect geometry 
again, but using the Finite Elements Method. 

All geometric configurations obtained through the analyt
ical model and the FEM are recorded. Next, a mapping is 
established between the two sets. The result is a space mapping 
between solutions obtained using the analytical model and the 
FEM method. Fig. 7 summarizes the overall process. 

'"put defect geometry 
� ----------------- , 

, 

Recovered defect geometry 

Mapping 
Defect Sapce 

Fig. 7. Defect Space Mapping from analytical modeling and FEM simulation 

The Finite Elements Method is more accurate than the one 
based on the analytical model, but computationally more ex
pensive. The above space mapping makes it possible to obtain 
an accurate estimate of defect geometries without having to 
pay the high computational cost of the FEM method. This is 
done by using the less computationally expensive analytical 



model to obtain a first estimate of the defect geometry. The 
first estimate is then fed to the mapping to obtain a more 
accurate one. The latter is shown to be as accurate as a solution 
computed directly through the FEM method [12]. Using this 
approach the authors in [12] report significant savings in CPU 
time compared to the Finite Elements Method (10 to 15 times 
faster in some cases), and an average error as low as 5%. 

VI. SUMM ARY 

The paper presents a survey of machine learning techniques 
used to assess the safety of oil and gas pipelines. Following 
a review of the literature, we note four major classes of 
problems where these techniques are used: (1) the prediction 
of probability of failure of a pipeline, (2) the prediction of 
causes of failure, (3) the classification of metal defects, and 
(4) the detection and sizing of metal defects. 

The fourth class is by far the most challenging. A major 
portion of the paper is therefore dedicated to it. We have 
first presented the Magnetic Flux Leakage (MFL)-based in
spection, and the physical principle behind it. Next, we have 
explained how MFL measurements can be used to detect and 
estimate the size of metal loss defects. We then split the 
defect sizing problem into two smaller, more manageable sub
problems: the forward problem and the inverse problem. We 
have first presented techniques to solve the forward problem, 
and highlighted their advantages and limitations. The presented 
techniques are namely the analytical modeling, and the Fi
nite Elements Method. Next, we have considered the inverse 
problem, and presented two approaches to solve it. The first, 
based on linear algebra, is conceptually simple but has a high 
computational cost and a low success rate. The second, based 
on neural networks, leverages knowledge from the analytical 
model and FEM-based simulations, and is able to achieve high 
levels of accuracy. The neural network approach requires some 
pre-processing work initially to extract features and train the 
network. 

In addition to the neural network-based techniques, we 
have also presented an approach based on space mappings. 
This approach combines analytical modeling and FEM simu
lations. The space mapping approach achieves high levels of 
accuracy similar to those of the Finite Elements Method, but 
at a much lower computational cost. Space mapping, however, 
works only for simple defect geometries. In cases where prior 
knowledge about the defect shape is available, and where the 
defect shape is approximable by a simple geometry, it might be 
appropriate to use the space mapping technique. In all other 
cases, however, it is better to rely on neural networks. The 
neural network approach is more general, and can be more 
convenient to work with in a real-world setting. 
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