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ABSTRACT

This paper presents an approach for enhancing analog cir-
cuit sizing using Satisfiability Modulo Theory (SMT). The
circuit sizing problem is encoded using nonlinear constraints.
An SMT-based algorithm exhaustively explores the design
space, where the biasing-level design variables are conser-
vatively tracked using a collection of hyperrectangles. The
device dimensions are then determined by accurately relat-
ing biasing to geometry-level design parameters. We demon-
strate the feasibility and efficiency of the proposed method-
ology on a two-stage amplifier and a folded cascode am-
plifier. Experimental results show that our approach can
achieve higher quality in analog synthesis and unrivaled cov-
erage of the design space.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids
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1. INTRODUCTION
The pressing need for robust analog circuit sizing is driven

by increased design complexity as well as long and costly
analog design cycles. However, circuit sizing remains a sig-
nificant challenge because of the large design search space,
the complexity of analog characteristics and the increasing
performances stringent.

Available techniques for circuit sizing are based on the
introduction of a performance evaluator within an iterative
optimization loop. While simulation-based approaches in-
corporate circuit simulators to evaluate the performances
leading to yet, accurate but time consuming process [13],
equation-based methods assume a set of design equations
in the evaluation procedure to assess the performances. If a
priori understanding and an accurate modeling of the circuit
behaviors can be acquired, this approach is faster, able to
capture the global structure of the problem and thus delivers
a higher-quality solution.
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Optimization methods such as deterministic and stochas-
tic search algorithms have been largely applied for analog
synthesis [13] [3]. However, their search ability and conver-
gence rate have been criticized [12]. Indeed, these techniques
do not guarantee the non-existence of other potential can-
didates of design parameters that satisfy the circuit spec-
ification. Moreover, the quality of the solution is crucially
dependent on the starting conditions. Their efficiency is also
highly related to the algorithm parameters and the dimen-
sion and convexity of the solution space. Another approach
describes the design problems as posynomial functions [8]
that are fed into convex optimization using geometric pro-
gramming. However, this method requires the generation of
performance models in terms of posynomials, which are in-
accurate in nanometer scale technology [13]. Besides, even
when the circuit is optimized, there is no assurance that it
will still satisfy its specifications over a range of operating
conditions. Owing to this, there is a real need for a more
powerful search process able to explore a large range of de-
sign variables towards improving sizing quality.

Enormous performance gains have been recently achieved
on automated reasoning of large Boolean combinations of
nonlinear arithmetic constraints [5]. These techniques pro-
vide a tight integration of recent Conflict-Driven Clause
Learning (CDCL) satisfiability (SAT) solving with interval
based arithmetic constraints solving within a SAT modulo
theory (SMT) framework [9]. The particular strength of
these approaches is their ability to handle large constraints
system that may contain nonlinear functions. Therefore,
they can effectively serve for analog circuit sizing. However,
the cost of solving nonlinear SMT problems increases expo-
nentially with the problem dimension and the resolution of
the determined solution. While potentially powerful, SMT
solvers are not practical in a generic or naive implementa-
tion.

In this paper, we propose to enhance analog circuit sizing
using SMT solving techniques. The sizing problem, formu-
lated using nonlinear constraints, is input to an SMT-based
design space exploration algorithm. Given a set of speci-
fications, the algorithm outputs a rough approximation of
the biasing design variables as well as the space of reachable
performances. The key innovation of this work is a parallel
exploration of diverse performance metrics that allows the
simultaneous finding of multiple satisfiable solutions and sig-
nificantly speeds up the search process. The integration of
the interval arithmetic solver INTLAB [15] to remove the
undesirable over-approximation, intelligently trades off be-
tween the computational cost and the conservativeness of



SAT. The determined range of biasing variables are then
mapped to a continuous set of transistor sizes. For that,
an accurate model that relates the device operating point
to the device dimension is constructed by coupling cluster-
ing [6] and polynomial regression. The prediction ability of
the proposed modeling technique is excellent when compared
to other regressors.

To the best of our knowledge, this is the first work that at-
tempts to integrate SMT and interval arithmetic techniques
in analog synthesis. Our method is able to ensure a com-
plete coverage of the design search space and outputs guar-
anteed bounds on the feasible performance range. In what
follows, all the used circuits are in 0.18µm technology based
on BSIM3 models. The length of all transistors are kept
constant and set to 0.36µm. The transistors widths are al-
lowed to vary from 1µm to 40µm. The approach has been
implemented via a link between Matlab and the SMT solver
iSAT [9].

The rest of the paper is organized as follows: Section 2
reviews existing techniques for circuit sizing. Section 3 de-
tails our circuit sizing methodology. In Section 4, we pro-
vide experimental results for two analog circuits: a two-stage
amplifier and a folded cascode amplifier. In Section 5, we
present our conclusions and future work.

2. RELATED WORK
Evolutionary Computation (EC) algorithms (genetic al-

gorithms, differential evolution, etc) have been employed as
optimization routines for analog circuits. EC for global op-
timization mimics the biological mechanisms of evolution
to approximate global optimal points of a problem [13].
In [2], the authors employ a genetic algorithm for simultane-
ous optimization of multiple performance parameters. The
performances were evaluated using Support Vector Machine
(SVM) [17] based models. In [12], the authors introduce the
so-called Memetic Single-Objective Evolutionary Algorithm
(MSOEA), which combines operators from the differential
evolution and the genetic algorithm. MSOEA is specialized
in handling large sizing problems with severe constraints.
However, the outcome of both mentioned works is very sen-
sitive to various search parameters and may not meet the
designer specifications. The main contributions for analog
design techniques are surveyed in [13].

An early attempt to use formal techniques in analog cir-
cuit sizing has been made in [10]. Using affine arithmetic,
the authors calculate guaranteed bounds on the worst case
behavior and determine the global optimum of the sizing
problem by means of branch and bound optimization. How-
ever, the feasibility of the method was only demonstrated
on small circuits. SMT solvers have been employed for for-
mally verifying properties of analog circuits [16]. In [11] a
parallel hierarchical SMT-based reachability analysis tech-
nique based on circuit decomposition to verify the lock time
specification of a PLL is proposed. However, the computed
set of reachable states is an over approximation that may in-
clude non real solutions. In this work, we smartly employ an
SMT solver to track a rough approximation of the feasible
performance space and design variables.

In operating point driven (OPD) circuit sizing [7], the
biasing-level design variables are first selected then converted
to geometry-level design variables. When using OPD for-
mulation, convergence problems are avoided and the design
search space is highly decreased. However, the available

methods face significant challenges on accuracy and mem-
ory requirements. This work proposes a novel approach for
enabling OPD analog circuit sizing.

3. CIRCUIT SIZING METHODOLOGY
An overview of our proposed methodology for circuit siz-

ing is shown in Figure 1. Technology information are first
collected in order to characterize device models. For this
purpose, the transistor small signal parameters are mapped
into bias voltages and currents variables via polynomial re-
gression. Given a set of specifications, the circuit design
constraints are derived and input to an SMT-based design
space exploration algorithm. This step uses interval arith-
metics with SMT solving techniques to ensure a complete
coverage of the design space. The outputs of this block are
the interval solutions of the biasing design variables as well
as the feasible performance space. The next step consists
in converting the biasing-level design variables into a range
of transistor dimensions using an accurate analytical model.
The goal of the last step is to verify whether the circuit
satisfies the feasible performance space given the generated
ranges of devices sizes. For that, Monte Carlo simulation is
performed at the circuit level. If the requirement in terms of
accuracy is not met, then the design constraints can be fur-
ther investigated and the SMT solver parameters adjusted.
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Figure 1: Circuit sizing methodology

3.1 Design Constraints Extraction
At the beginning of our methodology, an abstraction of the

transistor small signal parameters (gm, gds) as a function of
the biasing variables (Ids, Vg, Vd, Vs) is performed (Figure 2).
First, small signal parameters and biasing-level design vari-
ables of n-MOS and p-MOS transistors are swept during
Monte Carlo simulation in SPICE using the Latin Hyper-
cube Sampling (LHS). Then, only feasible variables ensuring
that the transistors are biased in saturation are retained. All
training pairs of transistor operating points and small signal
parameters are then formulated as a least square error prob-
lem and fed into a third order polynomial regression step to
determine the fitting parameters. High degree polynomials
are avoided to prevent prohibited complex equations and ill-
conditioning. The extracted models can be reused multiple
times for a given technology which ensures the generality of
our approach. The problem formulation can be written as
follows:

min
α

N∑

n=1

(yn − f(xn, α))
2 (1)



where y is the transistor small signal parameter, x is the set
of biasing variables values, f(x, α) represents the regression
model, α the fitting parameters and N the number of data
samples.
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Figure 2: Mapping small signal parameters to bias
variables

The SMT problem is a conjunction of the initial space of
each design variable, the performance equations, the specifi-
cations and other design constraints, such as restricting the
transistors to operate in the saturation region, symmetry
constraints and Kirchhoff’s Current Law (KCL). In general,
the problem formulation can be written as follows:

Xmin ≤ X ≤ Xmax

Ymin ≤ Y ≤ Ymax

Zmin ≤ Z ≤ Zmax (2)

yj = fj(X, αj)

zp = g(k)
p (X,Y)

k(X) ⊕ 0

• X = {xi, i = 1 . . . l} are the biasing-level design vari-
ables.

• Y = {yj, j = 1 . . .m} are the transistors small signal
parameters.

• [Xmin,Xmax] are the ranges of the biasing-level design
variables.

• [Ymin,Ymax] are the ranges of the small signal pa-
rameters.

• yj = fj(X, αj), j = 1 . . .m, are the mapping equations
from X to Y and αj the fitting parameters.

• Z = {zp, p = 1 . . . P} are the performance metrics,
(e.g., Av, BW, . . . .) and P is the number of perfor-
mance metrics.

• [Zmin,Zmax]p, p = 1 . . . P , are the boundary values
specifications of the performance metrics zp.

• zp = g
(k)
p (X,Y), k = 1 . . .K, are the performance equa-

tions of the pth performance metric.

• k(X)⊕ 0, are the set of device matching constraints
and saturation conditions, KCL, where ⊕ stands for
=,≤,≥, <, or >.

3.2 SMT-based Design Space Exploration
The aim of the search is to determine a space of feasi-

ble performance as well as the transistors operating points
ranges given the sizing constraints constr and a set of speci-
fications [Zmin, Zmax]p. Our approach is summarized in Al-
gorithm 1. The cost of solving nonlinear SMT problems in-
creases exponentially with the problem dimension. It would
be then infeasible to run the search over a large initial space
of performance. For these reasons, we propose first to split
the problem into NS=SP subproblems that we solve simul-
taneously (Line 2). Each subproblem is limited to a pos-
sible combination of performance boundaries. That is, for
each subproblem, a possible combination of the performance
metrics is traversed zp∈[zpmin, zpmax]ind, p=1 . . . P (Line 3).

For example, if the circuit requires two performance metrics
(P=2) with S=5 discretization steps, then the overall combi-
nations of performance space to be explored is NS=SP=52.
Obviously, we can observe that the complexity increases
with more specs and greater precision in sampling. How-
ever, a parallel enhancement is adopted to reduce the com-
putation timing.

Alg. 1 SMT-based design space exploration

Require: S, P, constr, [Zmin, Zmax]p
1: Xf=∅, Zf=∅, NS=SP

2: for ind=1→NS do in parallel

3: zp⊆[zpmin, zpmax]ind

4: repeat

5: InvokeiSAT(constr)
6: if Locate candidate then

7: InvokeINTLAB(constr, candidate)
8: if Locate box then

9: Xf←Xf ∪Xbox
10: Zf←Zf ∪ Zbox
11: Update(zp , Zbox)
12: end if

13: end if

14: until Unsatisfiable
15: end for

16: return Zf : Feasible performance space
Xf : Biasing-level design variable space

The solver returns a set of continuous range of each de-
sign variable that forms a candidate hyperrectangle (Line
5). However, the set of interval solutions is only an over-
approximation that can be devoid of any real solution to
the constraints. The uncertainty can be alleviated by set-
ting a high resolution of the returned candidate. Still, this
will dramatically increase the computation time. Owing to
this, the size of the interval solution (resolution) is adjusted
on the fly for a tradeoff between computational cost and
over-approximation. Also, for each set of intervals proposed
by iSAT, we use the Matlab toolbox for interval arithmetic
INTLAB [15] to further refine the solution (Line 7). That is,
given the candidate solution as interval initial condition and
the sizing equations, INTLAB either refutes the existence of
any solution or produces an hyperbox that is contained in
the candidate region and guaranteed to contain the solution
(Line 8). Though, INTLAB may also fail to either confirm
or refute the existence of a solution. One possible reason of
this non-determinism case is that the candidate returned by
iSAT may contain multiple roots. In this case, the hyper-
rectangle can be returned to the SMT solver to be further
analyzed.

The feasible performance space Zbox and biasing-level de-
sign variables Xbox are then merged into Zf andXf , respec-
tively (Lines 9 and 10). The function Update removes Zbox
from the search space by adding the constraint Zbox*zp.
This will force the solver to search for new solutions [16].
Finally, when all possible solutions are found, the solver will
return Unsatisfiable, providing a guarantee on complete cov-
erage of the search space.

3.3 Conversion from Bias to Size Variables
The aim of this step is to allow the conversion from de-

vice operating point to device size. For this purpose, we
propose to approximate the width parameter as piecewise
polynomial over a number of regions. Our approach is il-
lustrated in Figure 3. First, we use K-means clustering to
subdivide the multidimensional scattered data of width and



bias voltages and currents samples, generated using Monte
Carlo simulation in SPICE, into R regions. The number of
clusters is set to an initial guess as the first and is updated
after that to guarantee the accuracy of the model.
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Figure 3: Macromodeling of the transistor width

The result of the clustering procedure is a discrete version
of the data. Each region is represented by its centroid xr.
A polynomial model of third order is then generated at each
region using multivariate nonlinear regression. The regres-
sion problem for each region r=1 . . .R, can be written as a
least square minimization problem as follows:

min
βr

N∑

n=1

(w
(n)
r − f̂r(x

(n), βr))
2 (3)

where wr and x are the sets of width and bias values ob-
tained from circuit level simulation respectively, f̂r(x, βr)
represents the regression model that approximates wr, and
βr are the fitting parameters. To avoid overfitting even
more, a weighted model evaluation is proposed. The value
of the weight function weightr should be close to one when
the vector of bias values x approaches the centroid xr, and
should attenuate to zero when x leaves xr. We propose to
choose a Gaussian function [4] where σ=0.01 is a predefined
constant given as:

f̂w=

R∑

r=1

weightr ∗ f̂r (4)

weightr=e
−(xr−x)

σ

The performance of the proposed modeling method is com-
pared to four multidimensional regression approaches [17]
available in Matlab for the same n-dimensional test case as
shown in Table 1. In this comparison, we consider 10000
Monte Carlo data samples with 75% of them for training
and 25% for testing. The prediction ability of each regres-
sor is tested by calculating the normalized mean square error

(NMSE=
‖f̂−w‖22
‖w‖22

).

Table 1: Test Error (NMSE) Comparison
MOS CPR PR NN SVM MARS

n-MOS 0.48 10−2 9.3 10−2 2.2 - 7.1 10−2

p-MOS 0.37 10−2 9.6 10−2 2.5 - 6.2 10−2

While the least-squares Support Vector Machines (SVM)
was not able to converge to an exact solution and was run-
ning indefinitely, the Neural Networks (NN) are too inac-
curate (test error >200%) and then not suitable for high-
dimensional test cases. For Multivariate Adaptive Regres-
sion Splines (MARS) using piecewise cubic sampling, the
error is less than 10%, while for our clustered polynomial
regression (CPR) approach, it is below 1% and 10 times less
than using polynomial regression (PR) without clustering.
Combining data clustering with local multivariate polyno-
mial approximation is a robust means of approximating the
nonlinear function that relates multidimensional scattered

data. The model takes 120 seconds to be constructed and
can be reused multiple time for the same technology.

Alg. 2 Width range computation

Require: f̂w, w0,Xf , n, alg
1: for i=1→n do

2: x0=(Xi
f
(max) −Xi

f
(min))/2

3: [wimin, wimax]=GO(f̂w, x0, alg, Xf ) subject to

xi∈[X
i
f(min)

, Xi
f(max)

]

4: end for

5: return [wmin, wmax]

Once the macromodel is generated, the next step consists
in determining the size range of each transistor. Algorithm 2
provides a description of the global optimization (GO) based
approach. For each device (i from 1 to n), the algorithm

calculates, using f̂w , the minimum and the maximum of the
transistor width [wimin, wimax], when its bias voltages and
current xi are constrained to [Xi

f(min), X
i
f(max)] as well as

operating in the saturation region. The search algorithm
alg is the interior-point method [14] and x0 is a well-defined
starting point.

3.4 Validation
The goal of this step to verify whether the circuit per-

formances, when fed to the circuit simulator, are within the
performance space Zf or close with an acceptable level of er-
ror. Monte Carlo simulation is performed over the ranges of
sizes [wimin, wimax] to compute the reachable performances.
In case the level of accuracy is not acceptable, we refine the
discretization resolution (i.e. solution size). However, the
timing complexity is sacrificed as trade-off. The inaccuracy
can also raise from the fitting error, this can be targeted by
increasing the data samples or the order of the polynomials
models.

4. APPLICATIONS
In this section, we present the results of the application

of our circuit sizing methodology on the examples of a two-
stage amplifier [1] and a cascode amplifier [13]. All experi-
mental results were obtained using an 8-core Intel CPU i7-
860 processor running at 2.8 GHz with 32 GB memory and
Linux operating system.

4.1 Two-stage Amplifier
We consider a two-stage amplifier as shown in Figure 4.

The inputs voltages (V in−, V in+) are set to 1V and the
load capacitance to 10pF . In order to guarantee the stability
of the amplifier, we set Cc> gm1

gm6
1.7CL. Appropriate operat-

ing regions are ensured by imposing saturation constraints
on transistors. After considering symmetry constraints be-
tween transistors of the differential pair, the number of inde-
pendent biasing-level design parameters is 7. The analytical
expression of the performance metrics can be approximately
expressed as given in Equation 5. Column 2 of Table 3
reports the boundary values specifications on the gain Av,
gainbandwidth GBW and power PDC . Our aim is to study
the feasibility of the specification and determine the reach-
able performance space. We first apply Algorithm 1 and
traverse different combinaisons of the performance metrics.

In order to show the effectiveness of our approach in speed-
ing up the search process, we divided the SMT search prob-
lem into a different number of subproblems and compare
their run-times as shown in Table 2.



Av =
gm1gm6

(gds2 + gds4)(gds6 + gds7)

PDC = vdd(I1 + I2 + I3) (5)
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Figure 4: Two-stage amplifier

In fact, the run-time tends to decrease superlinearily when
the number of subproblems increases. A minimum run-time
can be achieved with a sampling density equal to 4. In this
case, SP= 43= 64 combinations of performance boundaries
have been explored and a speedup of ×10 is achieved. The
speedup comes from: (1) the reduction of the search space
allowed by the problem subdivision; (2) the capability of pro-
ducing multiple satisfiable solutions simultaneously thanks
to the parallel implementation; and (3) alleviating the reso-
lution problem by the use of INTLAB.

Table 2: Two-stage amplifier experimental results

Samples Run-time [s]
Candidate

Solutions
Spurious

regions regions
S=1 660 226 205 21
S=2 340 220 206 14
S=3 290 216 201 15
S=4 61 221 205 16

We report the number of regions reported by iSAT in Col-
umn 3 of Table 2. The number of solutions confirmed by
INTLAB is shown in Column 4. The regions found by iSAT
and not confirmed by INTLAB are spurious. In this case,
INTLAB refuted the existence of any solutions within the
candidate regions. These spurious regions were forwarded
to iSAT to be further analyzed with smaller discretization
resolution (i.e. solution size).

Table 3: Specification and results of our method
Perf metrics Specifications Our method MC

Av(dB) [60, 70] [60, 66.5] [59.7, 66]
GBW (MHz) [2, 6] [2.05, 3.62] [2.5, 3.6]
PDC(mW ) [0.9, 0.17] [0.12, 0.17] [0.12, 0.18]
PM(◦) - - [128, 135]

The generated feasible performance space is reported in
Column 3 of Table 3. In order to evaluate the accuracy of
our results, Monte Carlo simulation has been run with 1000
trials over the continuous ranges of transistors width values
and bias current I1. The resulting reachable performance is
reported in Column 4 of Table 3. During the whole simula-
tion, all transistors are kept in the saturation regions. Not
surprisingly, our sizing results are guaranteed to fulfill the
generated feasible performance with a small violation as the
device models used in the formulation of the constraints do
not totally match the sophisticated models utilized in the

validation step. Still, the violation is very small owing to
the accuracy of the extracted models.

We compare our results with an optimization-based method
using Genetic Algorithm (GA) [2] applied for the sizing of
the two-stage amplifier circuit in 0.18µm technology. The
goal of GA is to simultaneously optimize Av, GBW and
PM . The achieved performances are reported in Table 4
and the total computation time is 437.63 s. In fact, our
method is able to locate higher performances when com-
pared to the best design solution computed by GA. The
search ability of our SMT-based approach obviously out-
performs the GA optimization-based method thanks to an
exhaustive and complete coverage of the large design space,
as well as an accurate modeling of the circuit characteristics.
We are also able to generate guaranteed bounds on the per-
formances over a continuous safe subset of design variables.

Table 4: Specification and results of GA [2]
Perf metrics Specification GA SPICE

Av(dB) maximize 61.8 61.7
GBW (MHz) maximize 3.21 2.75

PM(◦) maximize 145 122

4.2 Folded Cascode Amplifier
In this subsection, we consider a folded cascode amplifier

circuit as shown in Figure 5. The inputs voltages (V in−,
V in+) are set to 0.9V and the load capacitance is set to
5pF . Appropriate saturation constraints are imposed on
each transistor. The expressions of the performance metrics
are given in Equation 6. The boundary values specifications
are shown in Column 2 of Table 6.

PDC = vdd(I1 + I2 + I3 + I4)

GBW =
gm2

2πCL

SR =
I2

CL

(6)

Av = gm2Rout

Rout =
gm11

gds11
(

1

gds2 + gds10
)‖

1

gds13
+

1

gds12
(1 +

gm12

gds13
))
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Figure 5: Folded cascode amplifier

The run-time for determining the performance space and
the continuous range of bias variables with different sam-
pling density is reported in Table 5. In fact, a minimum run-
time of 90s is reached with S=4 showing significant speedup
of ×10 when compared to the naive approach (S=1). This
result indicates the capability of our approach in reducing
the design space exploration computational time and im-
proving the efficiency in solving the SMT problem.



Table 5: Cascode amplifier experimental results

Samples Run-time [s]
Candidate

Solutions
Spurious

regions regions
S=1 960 186 176 10
S=2 440 181 175 6
S=3 290 188 176 12
S=4 90 190 174 16

The computed feasible performance space and the valida-
tion results (MC simulations) are shown in Columns 3 and 4
of Table 6, respectively. Our method successfully identifies
the true feasible design solutions with high confidence.

Table 6: Specification and results of our method
Perf metrics Specification Our method MC

Av(dB) [60, 70] [60, 65] [61.3, 67.5]
GBW (MHz) [80, 90] [80, 83] [79, 84]
PDC(mW ) [1, 1.29] [1.25, 1.28] [1.24, 1.27]
SR(V/µs) [60, 75] [64, 65.6] [61.2, 63]

We compared our experimental results with high-ability
algorithms including the Genetic Algorithm (GA), the Dif-
ferential Evolution (DE) algorithm and the Memetic Single
Objective Evolutionary Algorithm (MSOEA) [12] employed
to size the cascode amplifier circuit. The results are sum-
marized in Table 7.

Table 7: Specification and results of [12]
Perf metrics Specification GA DE MSOEA

Av(dB) ≥60 61.89 60 60.12
GBW (MHz) ≥80 3.13 51.13 80
PDC(mW ) minimize 0.03 0.74 1.29
SR(V/µs) ≥60 1.56 33.97 60.03

Run-time (s) - 173 161 185

For the above three methods, the objective is to mini-
mize the power while satisfying the constraints in Column
2 of Table 7. The evaluation of the performance is accom-
plished in the circuit simulator HSPICE [12]. While GA
and DE fail to find feasible solutions even with a different
set of initial parameters [12], our method is guaranteed to
determine a range of continuous solutions when they exist.
Indeed, less power consumption PDC is achieved while bet-
ter quality of Av,GBW , and slew rate (SR) are successfully
located thanks to an exhaustive parallel performance explo-
ration. Unlike these search algorithms that return one local
solution to the sizing problem, our approach determines all
possible solutions.

The results of the proposed algorithm are guaranteed to
comply with the interval boundary performances across a
range of design variables, while it is often computationally
expensive to size a circuit such that it obeys properties over
a range of parameters. The method also offers valuable in-
formation about the performances bounds when the circuit
variables are subject to variation. Thus, predictability is im-
proved over nominal point sizing results. Furthermore, the
SMT-based search technique highly relieves the sizing solu-
tion from the uncertainty inherited from optimization-based
method. Moreover, it can be applied to any circuit and does
not require special problem formulation.

5. CONCLUSIONS
In this paper, we proposed a novel method using SMT and

interval arithmetic solving techniques for circuit sizing. We

employed a search space sampling approach and a parallel
exploration to accelerate the sizing procedure. An operat-
ing point driven circuit sizing is enabled through a higher
fitting accuracy. Our results show high reliability to guaran-
tee complete coverage of the search space design and to meet
the performance constraints. Future work includes handling
larger circuits by developing a hierarchical sizing technique.
The idea is to decompose analog circuits into subcircuits
with lower dimensional design variables which can be solved
in parallel.
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