
The Application of Formal Verification to SPW Designs

Behzad Akbarpour and Sofiène Tahar
Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3H 1M8, Canada

Email:�behzad, tahar�@ece.concordia.ca

Abstract

The Signal Processing WorkSystem (SPW) of Cadence is
an integrated framework for developing DSP and commu-
nications products. Formal verification is a complementary
technique to simulation based on mathematical logic. The
HOL system is an environment for interactive theorem prov-
ing in a higher-order logic. It has an open user-extensible
architecture which makes it suitable for providing proof
support for embedded languages. In this paper, we pro-
pose an approach to model SPW descriptions at different
abstraction levels in HOL based on the shallow embedding
technique. This will enable the formal verification of SPW
designs which in the past could only be verified partially
using conventional simulation techniques. We illustrate this
novel application through a simple case study of a Notch
filter.

1 Introduction

Simulation-based methods are currently used by the in-
dustrial community for system-level verification, since it
can handle the entire design at a time. Simulation, how-
ever, cannot provide a high coverage ratio due to the ex-
ponential number of test cases to be developed and veri-
fied. Therefore, new methods are needed for the economical
and reliable verification of digital systems. Formal verifica-
tion [6] has recently paved a path, showing the utility of
finding bugs early in the design cycle. Formal verification
techniques are usually classified in two categories [6]: in-
teractive theorem proving and automatic decision diagram
based model checking and equivalence checking. In model
checking, one checks if the design satisfies some proper-
ties (formal specification). With equivalence checking, we
check if two designs exhibit the same behavior. The lat-
ter techniques have been successfully applied to real indus-
trial design. However, since most tools are based on Binary
Decision Diagrams (BDDs), they require the design to be
described at the Boolean level. In practice, they often fail

to verify a large-scale design because of the so-called state
space explosion [6].

The overall aim for this paper is to propose the applica-
tion of formal methods for modeling SPW (Signal Process-
ing WorkSystem) descriptions at different abstraction lev-
els to enable the formal verification of SPW designs in the
theorem proving environment HOL. We propose a shallow
embedding for SPW descriptions in which we translate the
intended meaning of SPW design blocks into HOL and then
complete the formal proof in the theorem proving environ-
ment.

The HOL theorem prover is an interactive proof assis-
tant for higher order logic, developed by Gordon [3]. It was
explicitly designed for the formal verification of hardware,
though it has also been applied to other areas including soft-
ware verification and formalization of pure mathematics.
HOL implements a small set of primitive inference rules,
and all theorems must be derived using only these rules.
This guards against the assertion of false “theorems”. How-
ever, it is possible to automate the translation of higher-level
proof techniques into the low-level primitives. In this way,
HOL users can call on an extensive selection of automated
tools or write special-purpose inference rules for a given ap-
plication domain.

In the present work, several features of HOL are particu-
larly significant. The higher-order logic allows circuit mod-
ules to be expressed simply as predicates over inputs and
outputs, allowing a very natural and direct mapping from
the gate level and RTL (Register Transfer Level) descrip-
tions into the logic. In addition, the extensive infrastruc-
ture of real analysis is essential to verify (or even state) the
highest level of specification [4]. Finally, the adherence to a
small set of primitive rules, gives us a high confidence that
the final result is indeed valid.

The rest of this paper is organized as follows: Section 2
describes the SPW tool and its different modules and design
development steps. Section 3 introduces our modeling and
verification methodology. Section 4 is a case study contain-
ing the details of the verification of a Notch filter. Finally,
Section 5 concludes the paper.

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03) 
0-7695-2003-0/03 $17.00 © 2003 IEEE 



2 The SPW Tool

The Signal Processing WorkSystem (SPW) of Cadence
[9] is an integrated framework for developing DSP and
communications products. It graphically represents a sys-
tem as a network of functional blocks and comes with a
vast library of DSP blocks and users can also add their own
blocks or build IP (Intellectual Property) blocks by com-
position of primitive blocks. SPW provides all the tools
needed to interactively capture, simulate, test, and imple-
ment a broad range of DSP designs. Typical design appli-
cations include digital communication systems, image pro-
cessing, multimedia, radar systems, control systems, digital
audio, and high-definition television. SPW can be used to
evaluate various architectural approaches to a design and to
develop, simulate, and fine-tune algorithms.

SPW consists of several modules. The main modules
are the File Manager, Block Diagram Editor (BDE), Sig-
nal Calculator, and Signal Simulator. The File Manager is a
unified tool that lets users create and manage SPW libraries,
access all types of SPW data files, and invoke the various
SPW tools. The BDE graphically represents a system as
a set of functional blocks connected by wires. Each block
is a symbol that represents an operation, and the intercon-
necting wires symbolize the flow of signals between blocks.
The Signal Calculator creates input signals for simulation
and analyzes the output signals from a design. It can also
perform signal calculations, fixed-point and floating-point
operations, signal filtering, and analysis functions such as
Fast Fourier Transform (FFT) and cross correlation. The
Signal Simulator is a tool that simulates the operation of
a signal flow system designed with BDE. Given the BDE
block diagram and a set of input signals, the simulator de-
termines the output signals of the system over a specified
interval. It writes the results into a set of signal files that
can be displayed and analyzed in the Signal Calculator.

The Hardware Design System (HDS) is an optional SPW
software package which adds fixed-point simulation and
hardware synthesis to SPW. The combination of SPW and
HDS is a system-level design tool that bridges the gap be-
tween system specification and hardware implementation.
Using HDS, the designer can accurately model the behavior
of a fixed-point, bit-limited digital signal-processing system
or logic design and directly generate an optimized VHDL or
Verilog HDL (Hardware Description Language) of the de-
sign for simulation and synthesis. HDS provides a main
library which is a comprehensive set of blocks used for var-
ious fixed-point signal processing functions: bit manipula-
tion, clocking, signal flow control, logic functions, math-
ematical functions, simulation I/O, and vector processing.
Using this set of blocks, one can build, simulate, and syn-
thesize a wide range of fixed-point signal-processing algo-
rithms and architectures.

A design project in SPW typically consists of the follow-
ing steps (Figure 1):

� Floating-Point Algorithm: Design and build a high-
level system using SPW’s standard floating-point li-
brary blocks to specify the signal processing algo-
rithm. Then verify the integrity of the algorithm by
simulating it as a floating-point system in SPW.

� Fixed-Point Algorithm: When the algorithm works
as intended, replace the floating-point blocks such as
adders, multipliers, and delays with their fixed-point
counterparts from the standard HDS block library (ei-
ther manually or using the Float-to-Fixed-Point con-
version utility). Determine the optimum fixed-point
attributes and word lengths appropriate for the system.
Then run the simulation again to see the quantization
and overflow effects.

� Hardware Architecture: Create a block diagram us-
ing HDS architectural blocks such as shift registers,
flip-flops, buffers, multiplexers, and memory elements
to specify the architecture of the system. Once again,
check the functionality of the design with the SPW
simulator.

� Generation of VHDL Code: Using the same archi-
tectural design that we already simulated, generate a
design description in a standard HDL using the Ver-
ilog Link or VHDL Link tool. An HDL simulator can
be used to verify the integrity of the hardware descrip-
tion and to determine timing effects not modeled by the
SPW simulator. The HDL simulation can be directly
run from the SPW environment, and the results of both
SPW and HDL simulations can be viewed in the Sig-
nal Calculator. From the verified HDL description, we
can use any of several synthesis tools for implement-
ing the design in hardware, such as data path compilers
and logic synthesis tools available from Cadence, Syn-
opsys, and other vendors. The result is a netlist from
which we can generate a chip layout.

3 Formal Verification Methodology

We propose a methodology for the specification and ver-
ification of the SPW designs at different abstraction levels
using higher-order logic (Figure 2). For this purpose, we
first specify the design at different abstraction levels such
as floating-point (FP), fixed-point (FXP), register transfer
(RT), and gate levels, as predicates in higher-order logic.
The process of specifying a hardware description language
in higher-order logic is commonly known as semantic em-
bedding. There are two main approaches [2]: deep embed-
ding and shallow embedding. In deep embedding, the ab-
stract syntax of a design description is represented by terms,

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03) 
0-7695-2003-0/03 $17.00 © 2003 IEEE 



Floating-Point
Algorithm

Fixed-Point
Algorithm

Test
Bench

Hardware
Architecture

Behavioral
HDL

Schematic
Capture RTL

Datapath
Compilers

Netlist

Place and
Route

Logic
Synthesis

HDL
Editors

Usign SPW / HDS
System Design

IC Design Using
External Tools

Figure 1. SPW Design Flow

which are then interpreted by semantic functions defined
in the logic that assign meaning to the design. With this
method, it is possible to reason about classes of designs,
since one can quantify over the syntactic structures. How-
ever, setting up HOL types of abstract syntax and seman-
tic functions can be very tedious. In a shallow embedding
on the other hand, the design is modeled directly by a for-
mal specification of its functional behavior. This eliminates
the effort of defining abstract syntax and semantic func-
tions, but it also limits the proofs to functional properties.
In this project, since our main concern is to check the cor-
rectness of designs based on their functionality, we propose
shallow embedding for SPW descriptions: translate the in-
tended meaning of SPW design blocks into HOL and then
complete the formal proof in HOL theorem prover. The em-
bedding is done once and for all, not on a per design basis
because often similar operations are involved in the imple-
mentation of different systems.
In the SPW design flow, we first focus on the conversion

between floating-point and fixed-point algorithmic levels.
All blocks are embedded in HOL through representing the
behavior of the blocks by HOL predicates which can be ma-
nipulated to verify the correctness of the conversion with re-
spect to a requirement specification in HOL. Floating-point
data types are stored in SPW as standard IEEE 64 bit dou-

FP

(Convert)

( SPW )
FXP

(Convert)

( SPW )

Behavioral
( SPW )

(Synthesize)

RTL
( SPW )

(Synthesize)

Netlist
( SPW ) Embedding

Shallow

Embedding

Shallow

Embedding

Shallow

Embedding

Shallow

Embedding

Shallow FP
( HOL )

FXP
( HOL )

Behavioral
( HOL )

RTL
( HOL )

Netlist
( HOL )

Implication
Logical

Implication
Logical

Implication
Logical

Result
Real

Analysis
Error

Result
Real

Figure 2. Verification Methodology

ble precision format. In the definition of the floating-point
blocks, we used the formalization of the IEEE standard de-
veloped in [4]. For fixed-point blocks, we use the formal-
ization of SPW fixed-point arithmetic developed in [1]. For
the verification of the transition from floating-point to fixed-
point levels, the best approach is to establish an error anal-
ysis. When digital signal processing operations are imple-
mented on a computer or with special-purpose hardware,
errors and constraints due to finite word length are unavoid-
able. The main categories of finite register length effects
are errors due to quantization of input samples, errors due
to roundoff in the arithmetic, constraints on signal levels im-
posed by the need to prevent overflow, and quantization of
system coefficients. These error sources can be considered
separately and quantized in higher-order logic.

For example, consider a digital filter specified by the
input-output relationship:

�� �

��

���

�� ���� �

��

���

�� ���� (1)

where ���� is the input sequence and ���� is the output
sequence. There are three common sources of errors asso-
ciated with the filter in (1) namely [8]:

1) Input quantization — caused by the quantization of
the input signal into a set of discrete levels.

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03) 
0-7695-2003-0/03 $17.00 © 2003 IEEE 



2) Coefficient accuracy — caused by the fact that the
coefficients ���� and ���� are realized with finite word
length.

3) Round-off accumulation — caused by the accumula-
tion of errors committed at each arithmetic operation be-
cause these operations are carried out with only finite bit
accuracy.

Therefore, for the digital filter of (1) the actual computed
output reference is in general different from ����. We de-
note the actual output by ���� and define:

�� � �� � �� (2)

as the output error at the ��� sample. It is important for the
designer and the user of a digital filter to be able to deter-
mine some measure of the error ��. A real number can be
represented using a finite number of bits in either the fixed-
or the floating-point form [10]. The error introduced in such
a representation is different in each case. Consider first the
fixed-point format. Suppose a number v which has been
normalized so that � � � � � has the binary expansion in
two’s complement representation as :

� � � �� �

��

���

���
��� �� � � �	 � (3)

The quantity �� is referred to as the sign bit. If �� �
�, then � � � � �, and if �� � � then �� � � 
 �. An
arbitrary real number v would require an infinite number
of bits for its exact binary representation. If we use only a
finite number of bits (B + 1), then the representation of
equation (3) must be modified to:

����� � � �� �
��

���

���
�� (4)

The resulting binary representation is quantized so that
the smallest difference between numbers is:

� � ��� (5)

The operation of quantizing a number to (B + 1) bits
can be implemented by rounding or by truncation, but in ei-
ther case quantization is a nonlinear memoryless operation.
Figures 3(a) and 3(b) show the input/output relation for
two’s complement rounding and truncation, respectively.

Considering the effects of quantization, we often define
the quantization error as:

� � �� ��� � � (6)

for the case of two’s-complement rounding,���� 
 � �
���, and for two’s complement truncation,�� 
 � � �.
In [1], we have proved a theorem in higher-order logic

(a)

-B2

-B2     / 2

2-B

2-B

(b)

Q Q
BB

(X) (X)

X X

Figure 3. Transfer Characteristics for Round-
ing and Truncation

for bounding the error in fixed-point arithmetic operations
against their abstract mathematical counterparts. An al-
ternative to fixed-point arithmetic is a floating-point repre-
sentation. A floating-point number is written in the form

 � ����� ���� , where M, the mantissa, is a fraction be-
tween ��� and 1, and c, the characteristic, can be either pos-
itive or negative. For the case of floating-point arithmetic,
the effect of truncation or rounding is reflected only in the
mantissa. It is convenient in the floating-point case to de-
scribe the error in a multiplicative rather than in an additive
sense as is done in fixed-point arithmetic. In other words,
for a floating-point word, if x represents the value before
truncation or rounding and Q(x) represents the value af-
ter, then we express Q(x) as equal to � �� � ��, and the
relative error � is bounded by ���� � � � ��� where
p is the precision of the floating-point format. This essen-
tially describes the “� � �” property in the error analysis
of floating-point arithmetic [5].

DSP algorithms are often tuned by experimenting, e.g.,
using C-level implementations with IEEE floats. Therefore,
for the original verification goal between floating-point and
fixed-point levels, we may consider the IEEE floats as the
reference for fixed-point implementations and then compute
the output error as given in equation (2). A simpler ap-
proach is to consider the infinitely precise domain as the
reference for both floating-point and fixed-point levels, and
then compare the relative errors in each case. With this ap-
proach we can treat the uni-directional data flow which usu-
ally occurs in the implementation of finite impulse response
(FIR) filters. Besides, the method is applicable to bidirec-

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03) 
0-7695-2003-0/03 $17.00 © 2003 IEEE 



tional data flows in infinite impulse response (IIR) struc-
tures with at most a fixed number of loops. Larger designs
can be treated as a cascade or parallel combination of first
and second order terms. Then the total error is computed by
accumulating the error in all internal sub-blocks.

After handling the transition from floating-point to fixed-
point levels, we turn on to the HDL representation. Using
the HDS tool, we generate the corresponding description
of the design at the behavioral and/or RT levels and then
synthesize the code using, e.g., Synopsys tools to reach the
logic gate level netlist. At this point, we can use well known
formal techniques to model the design in each of these lev-
els in higher-order logic within the HOL environment. The
next step is to verify these different levels using a classical
hierarchical proof approach in HOL [7].

Let X, Y and Z be the set of input and output signals and
constant parametes corresponding to a typical design. Then,
our final goal is to prove the following theorem in HOL:

� X Y Z � Error. GATE_IMP X Y Z ��
FLOAT_SPEC Float �X� Float �Y� Float �Z� �
Error �X,Y,Z�

Error is a general expression to cover all sources of er-
ror due to the finite precision effects in the implementa-
tion of the design as discussed before. This goal cannot
be reached directly, due to the very high abstraction gap be-
tween the gate and floating-point algorithmic levels. The
proof scheme hence needs to be changed to hierarchically
prove that the gate level implies the more abstract RTL.
Then this RTL was related, by a formal proof to a mod-
ular behavioral specification. The latter is used to imply
the high level fixed-point algorithmic specification which
has already been related to the floating-point description
through the error analysis. This can be formalized as fol-
lows in HOL, where Float and Fxp are data abstrac-
tion functions which map binary words to floating-point and
fixed-point numbers, respectively:

� X Y Z. GATE_IMP X Y Z �� RTL_IMP X Y Z

� X Y Z. RTL_IMP X Y Z �� BEHAVIORAL_IMP X Y Z

� X Y Z. BEHAVIORAL_IMP X Y Z ��
FIXED_IMP Fxp �X� Fxp �Y� Fxp �Z�

� X Y Z � Error. FIXED_IMP Fxp �X� Fxp �Y� Fxp �Z�
�� FLOAT_SPEC Float �X� Float �Y� Float �Z� �
Error �X,Y,Z�

There is usually a high level of regularity and modular-
ity in DSP designs so that primitive blocks such as adders,
multipliers, and delays can be used to build larger and more
complicated designs such as filters. So, each design can
be modeled in HOL as a conjunction of lower level blocks.

This will help us in the reuse of the developed models and
theories in building the higher levels of specification. Also,
the verification goals of large circuits can be broken to the
verification proofs of sub-level modules. These proofs are
then composed to yield the original goals.

4 Application Case Study

In this section, we demonstrate how the methodology
presented in the previous section can be used for the ver-
ification of a second order Notch filter (Figure 4) designed
in SPW. The filter is first designed and simulated using the
floating-point blocks and parameters (Figure 4(a)). The de-
sign is composed of Add, Gain (multiply by a constant),
and Delay blocks together with signal source and sink ele-
ments. Figure 4(b) shows the converted fixed-point design.
Fixed-point blocks are shown by double circles and squares
to distinguish them from floating-point counterparts. Fixed-
point signal values are expressed as a binary stream and a set
of attributes. The attributes specify how the binary stream is
interpreted. In this example, the attributes of all fixed-point
block outputs are set to <64,31,t>. This means that we
have used sixty four bits to represent the signal values, the
numbers are in two’s complement format in which the most
significant bit is the sign bit, and the binary point is fixed at
the thirty first position following the sign bit.

-1 -1

SIGNAL
SOURCE

-1 -1
SIGNAL
SINK

a3 = 
0.997137

a2 =
-1.95895

a1 = 
0.997137

a5 = 
-0.993727 1.9584

IN

CONVERT

SIGNAL
SOURCE

b) Fixed-Point Design

a3’ = 
0.997137 -1.95895

a2’ =
0.997137
a1’ = 

<64,31,t> IN’

a) Floating-Point Design

<64,31,t><64,31,t>

<64,31,t> <64,31,t> <64,31,t>

-0.993727 1.9584
a5’ = 

SIGNAL
SINK

S6’

S6 S7 S8 S9 OUT
S3 S2 S1

S4S5

S3’ <64,31,t> S2’ S1’
S7’ S8’ S9’ OUT’

S5’ S4’

a4 = 

a4’ = 

Figure 4. SPW Design of a Second Order
Notch Filter

Based on the proposed methodology, we first modeled
the design in each level as predicates in higher-order logic.

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03) 
0-7695-2003-0/03 $17.00 © 2003 IEEE 



Primitive blocks are defined using the corresponding func-
tions in floating-point and fixed-point theories in HOL.
The whole filter is then implemented as a conjunction of
floating-point blocks as follows:

���� Float_Gain_Block a b c �
�� n. c �n� � a �n� float_mul b�

���� Float_Delay_Block a b �
�� n. b �n� � a �n � 1��

���� Float_Add_Block a b c �
�� n. c �n� � a �n� float_add b �n��

���� Float_3IN_Add_Block a b c d �
�� n. d �n� �
a �n� float_add b �n� float_add c �n��

���� Notch_60_Float_Imp a1 a2 a3 a4 a5 IN OUT �
� S1 S2 S3 S4 S5 S6 S7 S8 S9.
�Float_Gain_Block IN a1 S1� �
�Float_Gain_block IN a2 S2� �
�Float_Gain_block IN a3 S3� �
�Float_Add_block S3 S5 S6� �
�Float_Delay_block S6 S7� �
�Float_3IN_Add_block S2 S7 S4 S8� �
�Float_Delay_block S8 S9� �
�Float_Add_block S1 S9 OUT� �
�Float_Gain_block OUT a4 S4� �
�Float_Gain_block OUT a5 S5�

A similar description using fixed-point blocks is given as:

���� FXP_Gain_Block a� b� c� �
��n. c� �n� � a� �n� fxp_mul b��

���� FXP_Delay_Block a� b� �
�� n. b� �n� � a� �n � 1��

���� FXP_Add_Block a� b� c� �
�� n. c� �n� � a� �n� fxp_add b� �n��

���� FXP_3IN_Add_Block a� b� c� d� �
�� n. d� �n� �
a� �n� fxp_add b� �n� fxp_add c� �n��

���� Notch_60_Fxp_Imp a1� a2� a3� a4� a5� IN� OUT� �
� S1� S2� S3� S4� S5� S6� S7� S8� S9�.
�Fxp_Gain_Block IN� a1� S3�� �
�Fxp_Gain_block IN� a2� S2�� �
�Fxp_Gain_block IN� a3� S1�� �
�Fxp_Add_block S1� S5� S6�� �
�Fxp_Delay_block S6� S7�� �
�Fxp_3IN_Add_block S2� S7� S4� S8�� �
�Fxp_Delay_block S8� S9�� �
�Fxp_Add_block S3� S9� OUT�� �
�Fxp_Gain_block OUT� a4� S4�� �
�Fxp_Gain_block OUT� a5� S5��

Separately and independently from the actual implemen-
tations, we described the designs as a difference equation
relating the input and output samples.

���� Notch_60_Float_Spec a1 a2 a3 a4 a5 IN OUT �
�n. OUT �n� �
�IN �n� float_mul a1� float_add
�IN �n � 1� float_mul a2� float_add
�IN �n � 2� float_mul a3� float_add
�OUT �n � 1� float_mul a4� float_add
�OUT �n � 2� float_mul a5�

���� Notch_60_FXP_Spec a1� a2� a3� a4� a5� IN� OUT� �
�n. OUT� �n� �
�IN� �n� fxp_mul a1�� fxp_add
�IN� �n � 1� fxp_mul a2�� fxp_add
�IN� �n � 2� fxp_mul a3�� fxp_add
�OUT� �n � 1� fxp_mul a4�� fxp_add
�OUT� �n � 2� fxp_mul a5��

Next, we proved that the implementation in each case
implies the corresponding specification (Theorems 1 and 2).

Theorem 1: Notch_60_FLOAT_IMP_TO_SPEC_THM

� Notch_60_Float_Imp a1 a2 a3 a4 a5 IN OUT ��
Notch_60_Float_Spec a1 a2 a3 a4 a5 IN OUT

Theorem 2: Notch_60_FXP_IMP_TO_SPEC_THM

� Notch_60_FXP_Imp a1� a2� a3� a4� a5� IN� OUT� ��
Notch_60_FXP_Spec a1� a2� a3� a4� a5� IN� OUT�

For the error analysis of floating-point and fixed-point
arithmetic, we proved the following theorem (Theorem
3) which states the error between the real values of the
floating- and fixed-point precision output samples.

Theorem 3: NOTCH_60_FXP_TO_FLOAT_THM

� Notch_60_Float_Imp a1 a2 a3 a4 a5 IN OUT �

NOTCH_60_Fxp_Imp a1� a2� a3� a4� a5� IN� OUT� �

Isvalid IN� �n� � Isvalid IN� �n � 1� �
Isvalid IN� �n � 2� � Isvalid OUT� �n � 1� �
Isvalid OUT� �n � 2� � Finite IN �n� �
Finite IN �n � 1� � Finite IN �n � 2� �
Finite OUT �n � 1� � Finite OUT �n � 2�
��
Finite OUT �n� � Isvalid OUT� �n� �
Val �OUT �n�� � value �OUT� �n�� �
�Val �IN �n�� * Val �a1� �
value �IN� �n�� * value �a1��� +
�Val �IN �n � 1�� * Val �a2� �
value �IN� �n � 1�� * value �a2��� +
�Val �IN �n � 2�� * Val �a3� �
value �IN� �n � 2�� * value �a3��� +
�Val �OUT �n � 1�� * Val �a4� �
value �OUT� �n � 1�� * value �a4��� +
�Val �OUT �n � 2�� * Val �a5� �
value �OUT� �n � 2�� * value �a5��� +
Floaterror �n,a1,a2,,a3,a4,a5,IN,OUT� +
Fxperror �n,,a1�,a2�,a3�,a4�,,a5�,IN�,OUT��

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03) 
0-7695-2003-0/03 $17.00 © 2003 IEEE 



According to this theorem, for a valid and finite set of in-
put and output sequences at times (n-1) and (n-2), we
can have finite and valid outputs at time n. The difference
between the output real values at time n is expressed as the
difference in input and output values at previous time in-
stances multiplied by the corresponding coefficients, taking
into account the effects of finite precision in coefficients and
arithmetic operations. The finiteness of floating-point num-
bers and the validity of fixed-point numbers are checked us-
ing the predicates Finite [4] and Isvalid [1], respec-
tively. The functions Val [4] and value [1] return the real
number values corresponding to floating-point and fixed-
point numbers, respectively. The functions Floaterror
and Fxperror represent the errors resulting from round-
ing the real operation results to a fixed-point and floating-
point number, respectively. These errors are already quan-
tified using the theorems mentioned in [1] for fixed-point
arithmetic, and the corresponding theorems for error analy-
sis in the floating-point case [4].

Next, we generated with SPW the VHDL code corre-
sponding to the Filter design, and used Synopsys to synthe-
size the gate level netlist. The resulting codes are then trans-
lated into HOL notation and the corresponding correctness
theorems established as follows (Theorems 4 and 5):

Theorem 4: NOTCH_60_Netlist_TO_RTL_THM

� NOTCH_60_Netlist_Imp
a1�� a2�� a3�� a4�� a5�� IN�� OUT��

�� NOTCH_60_RTL_Imp
a1�� a2�� a3�� a4�� a5�� IN�� OUT��

Theorem 5: NOTCH_60_RTL_TO_FXP_THM

� NOTCH_60_RTL_Imp
a1�� a2�� a3�� a4�� a5�� IN�� OUT��

�� NOTCH_60_FXP_Imp
Fxp �a1��,64,31,1� Fxp �a2��,64,31,1�
Fxp �a3��,64,31,1� Fxp �a4��,64,31,1�
Fxp �a5��,64,31,1� Fxp �IN��,64,31,1�
Fxp �OUT��,64,31,1�

Here the input and output signals IN’’ and OUT’’ are
Boolean words. To relate them to the corresponding spec-
ifications in fixed- and floating-point, we make use of the
bijection functions Fxp [1] and Float [4], respectively.
The fixed-point attributes are set to <64,31,t>. In the
proof of these theorems we used the modular behavior of
the circuit, so that we proved separate lemmas for different
modules such as adder, multiplier, and delay and then used
these lemmas in the proof of the original theorems.

Finally, using the obtained Theorems 1 to 5, we can eas-
ily deduce our ultimate theorem (Theorem 6) proving the
correctness of the floating-point specification from the gate

level implementation, taking into account the error analysis
computed beforehand.

Theorem 6: NOTCH_60_Netlist_TO_FLOAT_THM

� NOTCH_60_Netlist_Imp
a1�� a2�� a3�� a4�� a5�� IN�� OUT�� �

Isvalid Fxp �IN�� �n�,64,31,1� �
Isvalid Fxp �IN�� �n � 1�,64,31,1) �

Isvalid Fxp �IN�� �n � 2�,64,31,1) �

Isvalid Fxp �OUT�� �n � 1�,64,31,1) �

Isvalid Fxp �OUT�� �n � 2�,64,31,1) �

Finite Float �IN�� �n�� �
Finite Float �IN�� �n � 1�� �
Finite Float �IN�� �n � 2�� �
Finite Float �OUT�� �n � 1�� �
Finite Float �OUT�� �n � 2��
��
Notch_60_Float_Spec Float �a1��� Float �a2���
Float �a3��� Float �a4��� Float �a5��� Float �IN���
Float �OUT��� � Finite Float �OUT�� �n�� �
Isvalid Fxp �OUT�� �n�,64,31,1� �
Val �Float �OUT�� �n��� �
value �Fxp �OUT�� �n�,64,31,1�� �
�Val �Float �IN�� �n��� * Val �Float �a1���� �
value �Fxp �IN�� �n�,64,31,1�� *
value �Fxp �a1��,64,31,1��� +
�Val �Float �IN�� �n � 1��� * Val �Float �a2���� �
value �Fxp �IN�� �n � 1�,64,31,1�� *
value �Fxp �a2��,64,31,1��� +
�Val �Float �IN�� �n � 2��� * Val �Float �a3���� �
value �Fxp �IN�� �n � 2�,64,31,1�� *
value �Fxp �a3��,64,31,1��� +
�Val �Float �OUT�� �n � 1��� * Val �Float �a4���� �
value �Fxp �OUT�� �n � 1�,64,31,1�� *
value �Fxp �a4��,64,31,1��� +
�Val �Float �OUT�� �n � 2��� * Val �Float �a5���� �
value �Fxp �OUT�� �n � 2�,64,31,1�� *
value �Fxp �a5��,64,31,1��� +
Floaterror �n, Float �a1���, Float �a2���,
Float �a3���, Float �a4���, Float �a5���,
Float �IN���, Float �OUT���� +
Fxperror �n, Fxp �a1��,64,31,1�,
Fxp �a2��,64,31,1�, Fxp �a3��,64,31,1�,
Fxp �a4��,64,31,1�, Fxp �a5��,64,31,1�,
Fxp �IN��,64,31,1�, Fxp �OUT��,64,31,1�� +

5 Conclusion

In this paper we describe a novel approach for the
application of formal specification and verification to
SPW designs at different abstraction levels. We provided
a shallow embedding of SPW descriptions at different
levels in the HOL theorem proving environment. For
the verification of the transition from floating-point to
fixed-point levels, we propose an error analysis approach
in which we consider the effects of finite precision in the
implementation of DSP systems. The verification from
fixed-point to RTL and netlist levels is performed using
hierarchical hardware verification in HOL. We believe this

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03) 
0-7695-2003-0/03 $17.00 © 2003 IEEE 



is the first time a complete formal verification framework
from floating-point algorithm to netlist implementation is
considered, hence opening new avenues in using formal
methods for the specification and verification of DSP
systems as complement to traditional simulation. We
demonstrated our methodology using the example of a
second order Notch filter in SPW. In future work, we
will intend to extend our case studies to larger industrial
designs.

References

[1] B. Akbarpour, S. Tahar, and A. Dekdouk, “Formaliza-
tion of Cadence SPW Fixed-Point Arithmetic in HOL,”
In Integrated Formal Methods, Lecture Notes in Com-
puter Science, Vol. 2335, Springer-Verlag, pp. 185-204,
2002.

[2] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Her-
bert, and J. Van-Tassel, “Experience with Embedding
Hardware Description Languages in HOL,” In Theo-
rem Provers in Circuit Design, pages 129-156. North-
Holland, 1992.

[3] M. J. C. Gordon and T. F. Melham, Introduction to
HOL: A Theorem Proving Environment for Higher-
Order Logic, Cambridge University Press, 1993.

[4] J. R. Harrison, “Floating-Point Verification in HOL
Light: The Exponential Function,” Formal Methods in
System Design 16(3): 271-305 (2000).

[5] J. R. Harrison, “Formal Verification of Floating Point
Trigonometric Functions,” In Formal Methods in
Computer-Aided Design, Lecture Notes in Computer
Science, Vol. 2152, Springer-Verlag, pp. 217-233,
2000.

[6] C. Kern and M. Greenstreet, “Formal Verification in
Hardware Design: A Survey,” ACM Transactions on
Design Automation of Electronic Systems, Vol. 4, pp.
123-193, April 1999.

[7] T. Melham, Higher Order Logic and Hardware Verifi-
cation, Cambridge Tracts in Theoretical Computer Sci-
ence 31, Cambridge University Press, 1993.

[8] A. V. Oppenheim and C. J. Weinstein, “Effects of Finite
Register Length in Digital Filtering and the Fast Fourier
Transform,” Proc. IEEE, pp. 957-976, August 1972.

[9] Signal Processing WorkSystem (SPW) User’s Guide,
Cadence Design Systems, Inc., July 1999.

[10] J. H. Wilkinson, Rounding Errors in Algebraic Pro-
cesses, Englewood Cliffs, N. J., Prentice-Hall, 1963.

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03) 
0-7695-2003-0/03 $17.00 © 2003 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


