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1 Introduction

Abstract State Machines (ASMs) [6] are used for specifying wide ranges of applications
in a high abstraction level. ASMs bring together specification methods and computa-
tional models. Thus, they are a successful methodology for validating and verifying
any system. On the other hand, model checking [4] has been proven to be a valuable
approach for automatic formal verification. In spite of the successful use of this tech-
nique, model checkers have their limitations, in the sense that they cannot verify large
designs due to the state explosion problem [4].

A possible solution to overcome this limitation could be the reduction of the system
to an abstract model with a reduced state space. To start, an abstract ground model can
be obtained using ASMs. This will give an overview of the problem. The key point will
be the refinement of this abstract model in order to reach a version close to the actual
system. The refined model must operate in a state space allowed by model checkers and
in which requirements, e.g., safety properties can be expressed and verified.

This work can be viewed as an investigation on applying model checking and re-
finement mapping on ASM models, in the context of hardware design. We analyze the
applicability of automatic verification of ASM models using the ASM-Workbench and
its interface ASM-SMV [3]. The used example is a module of an ATM switch fabric,
the Timing block [7], on which we show how the validation and verification are per-
formed. A specification and an implementation of the Timing block are first specified in
the ASM-Workbench language [2]. These models are validated separately by simulation
using the Workbench. Then each ASM model is automatically transformed to the SMV
language using the ASM-SMV interface. The Model checker SMV [8] is used to verify
properties on both specification and implementation. Then refinement is performed to
prove that the implementation corresponds with the specification.

2 Fairisle ATM Switch Fabric

The studied case is the Fairisle ATM switch fabric, a real ATM switch designed and
in use at the University of Cambridge for multimedia applications [7]. This ATM



switch is composed of input port controllers, output port controllers and a switch fabric.
The fabric’s functionality is cyclic and consists of waiting for cells to arrive, read and
process them by switching data cells from the input ports to the output ports, and send
acknowledgments. The input port controllers receive acknowledgment signals from the
fabric and either send new data, retransmit the previous cell, or stop sending data. The
port controllers and switch fabric use the same clock. They also use a higher-level
cell frame clock: the frameStart signal. This ensures that cells arrive in a synchronous
manner. The cells from all the input ports start when the active bit of any input port
goes high. If no bit from the input ports is high, then the frame is inactive.
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Figure 1: Fairisle ATM Switch Fabric

The ATM switch’s implemention consists of an arbitration unit, an acknowledgment
unit and a data switch unit (see Figure 1). The arbitration unit consists of a Timing
module, a Decoder, a Priority Filter and a set of Arbiters.

The Timing block, our case study, controls the timing of the arbitration decision.
Figure 2 illustrates the abstract behavior model of the Timing block and its implemen-
tation. For more details about the implementation refer to [7].

els
e

frameStart = 0/routeEnable= 0 

RUN WAIT

else

els
e

ROUTE

fra
mStar

t =
 0 

& an
yA

cti
ve

 = 1/
 

 ro
ute

Ena
ble

 = 1

frameStart = 1/routeEnable=0 

x

x = routeEnable

4

act [0..3] anyActive

frameStart

AND

xBar
AND

yterm
dy y

dx

OR

INV

INV
DFFd

DFFd

OR

frameStartBar

Figure 2: Timing Block: Specification and Implementation



3 ASM Modelling and Validation

The ASM modelling is done as follows: the state of the machine is represented by
nullary dynamic functions. The behavior of the machine is modelled by transition rules.
During each cycle of execution, the state machine evaluates the incoming signals, that
is the inputs provided by the environment by means of external functions. It then com-
putes the new state and the outgoing signals.

Validation is carried out by tests, ensuring that desirable scenarios were allowed
by our model, and undesirable ones forbidden. The key success of validation is the
executability of our model, since ASMs describe systems by transitions. This was per-
formed by simulating the ASM models, specification and implementation (Figure 2) of
the Timing block, using the ASM Workbench.

4 Model Checking and Refinement Mapping

Once an ASM model is transformed into the model checker language, we can perform
the model checking of safety and liveness properties. For example, in the Timing block,
we are interested in the verification of a liveness property stating that arrived cells are
eventually routed. We formalize this requirement in CTL:
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Proving that an ASM model satisfies its requirements does not depend only on states
and transition rules but also on some additional assumptions. We provide examples of
that during the Timing block’s verification. For instance, the verification of the abstract
model, i.e., comparing the abstract model against the CTL property stated above, needs
a fairness requirement [8]. Fairness conditions are used to constrain the nondeterminis-
tic choices present in abstract models.

Moreover, the verification of the Timing block implementation requires an addi-
tional assumption about the environment. Indeed, we have abstracted the environment
by means of external functions in the ASM model. However, and in the next lower
level ASM, these functions must be assumed to satisfy some logical properties. These
assumptions must be reasonable in order to guarantee the correctness of the verifica-
tion. Finally, we use assume-guarantee paradigm [5] to prove the correctness of our
implementation by splitting the proof in two parts. First, we must show that the imple-
mentation satisfies our CTL requirement, assuming that the environment behaves like
our CTL environment assumption. Then, this assumption is discharged by proving that
the actual environment indeed meets the CTL assumption. Using SMV, the first step is
proved while we hold the assumption about the environment until we tackle the actual
implementation of the environment.

The last step of our verification consists of proving that our abstract ASM model is
correctly implemented by our ASM implementation. This is usually done by introduc-
ing refinement maps [1] that translate the behavior of the abstract model into the behav-
ior of given interfaces and structures in the low design. SMV supports this methodology
by including a construct called layer. Using this feature, we succeeded the verification
of the translated ASM models of the timing block specification and implementation.



5 Conclusions

In this work, we investigated model checking and refinement of a piece of hardware
modeled with ASMs. Validation and translation of the ASM models into SMV were
done using existing tools. Then, model checking and refinement techniques available in
SMV were used to prove that the implementation corresponds to the specification.The
specification and implementation of our case study were validated and verified sepa-
rately.

From our case study, we suggest that the ASM language should be extended with
features for expressing fairness assumptions, assume-guarantee paradigm and refine-
ment. Further, it should be equipped with a powerful formal specification language like
CTL.
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