
Automatic Generation of SystemC Transactors from AsmL Specifications

Tareq Hasan Khan, Ali Habibi§, Sofiène Tahar, Otmane Ait Mohamed

Dept. of Electrical & Computer Engineering, Concordia University
Montreal, Quebec, Canada

Email: {tare_kha, tahar, ait}@ece.concordia.ca
§MIPS Technologies

Mountain View, California, USA
Email: habibi@mips.com

Abstract

The SoC design flow consists of different levels of
abstraction. At Transaction Level Modeling (TLM)
different modules communicate with each other through
function calls. In contrast, at the Register Transfer Level
(RTL), different modules communicate through pin level
signaling. The notion of transactors has been introduced
recently in order to link modules (IP blocks) written at
different levels of abstraction. A transactor can be
modeled using a finite state machines (FSM) describing
the functional protocol behaviors. In this paper, we
propose to specify transactor behavior using the
Abstract State Machine Language (AsmL). We also
define a methodology and a tool that automatically
generates SystemC TLM-RTL transactors from these
AsmL specifications. The proposed approach has been
implemented and applied on several case studies
including an UTOPIA standard protocol.

1. Introduction
System-on-Chip (SoC) design methodologies involve the
integration of intellectual property (IP) blocks modeled
at different levels of abstraction. The ultimate goal in
developing SoC is to find a perfect match between all
system blocks in order to satisfy a set of predefined
requirements (cost, power, performance, etc.). In this
process, it is inescapable to face the problem of
integrating IPs designed at different levels of abstraction.
This, however, creates a crucial concern about the
communication mechanisms among the system
elements. For example, data transfer between an un-
timed block and a clocked module requires the definition
of an explicit interface. At the Transaction Level
Modeling (TLM), different modules communicate with
each other through functional calls. At the Register
Transfer Level (RTL), however, different modules
communicate through pin level signaling [3]. In order to
be able to link these two common levels of abstraction,
the notion of transactor has been recently introduced
[21]. A transactor is a module which is used between
blocks that are modeled at different levels of abstraction
so that they can communicate with each other. A TLM-
RTL transactor would have two interfaces, one at TLM
side and another at RTL side. The TLM interface
consists of virtual declarations of the TLM functions.

The RTL interface consists of the declaration of the RTL
ports. The implementation of each TLM function is done
inside the transactor module. To accomplish the task of a
TLM function on the RTL side, there can be a finite state
machine implemented inside the transactor [21].

Inside a TLM-RTL transactor, we need to implement
one or more RTL hardware protocols to accomplish a
particular task on the RTL module. These protocols are
generally specified by the protocol designers in natural
languages such as in English texts. But natural languages
are often incomplete and ambiguous. Also, informal
specification causes verification problem which stems
from the fact that there is no mathematical means to
prove its correctness. Moreover, a naturally expressed
specification cannot be executed or simulated in
different relevant scenarios thus creating the problem of
validation. These problems may cause more bugs and
faults in the product, delays for time to market, etc.

On the other hand, if we write the transactor in a
hardware description language such as VHDL or Verilog
[13] or even SystemC [12][17], we will not have the
feasibility to use high level abstract constructs to specify
the protocol early. In this paper, we propose to create
formal models of the transactor protocol taking the
natural language text as reference. We will use the
Abstract State Machine Language (AsmL) [16] as a
formal means for specification and communication
among the members of the SoC design team. AsmL
models are precise, concise and readable to a wide range
of people who have different areas of expertise due its
simple and intuitive language constructs [5]. This model
removes the language and communication problem of
natural languages and also provides efficient ways of
verification and validation. So, once the AsmL model is
completed and verified, it can be used to automatically
generate the transactors in other languages.

In the work presented here, we have developed a
methodology to automatically generate SystemC
transactors from AsmL specifications. We have defined
a set of syntax and semantics translation rules and
implemented them in the transactor generator tool. To
test the efficiency of our method, we have applied it on
several case studies including an UTOPIA standard
protocol.

The rest of the paper is organized as follows. The next
section introduces AsmL and SystemC. Section 3
discusses related work. Section 4 presents the proposed
methodology for AsmL to SystemC transactor
generation. Section 5 describes the SystemC Transactor
Generator Tool. Section 6 discusses the UTOPIA case
study and experimental results. Finally, Section 7
concludes the paper.

2. Preliminaries

2.1. AsmL
The Abstract State Machine Language (AsmL) is an
executable modeling language which is fully integrated
in the .NET framework and Microsoft development
tools. The most unique feature of AsmL is its foundation
on Abstract State Machines (ASMs) [4][7]. An ASM is a
state machine which in each step computes a set of
updates of the machines variables. Upon the completion
of a step, all updates are "fired" (committed)
simultaneously. The update semantics of AsmL is based
on the theory of partial updates [8][9].

ASM languages are used to specify both software and
hardware. A TLM-RTL transactor deals with
Transaction Level Model where the model is described
from programmer’s point of view (PV) and also with
Register Transfer Level where the model is described
from hardware design point of view. Thus ASM fits
properly to specify transactor as it has the ability to
describe both points of view [16]. ASM languages like
AsmL (Abstract State Machine Language) provide
powerful constructs and language features to model
finite state machines. For instance, inside a TLM-RTL
transactor, the hardware protocol can be modeled as a
finite state machine using language features such as step,
update semantics, etc.

In summary, an ideal AsmL specification presents
following advantages [5]:

• Precise at appropriate level of detailing yet flexible
and modifiable

• Simple and intuitive to be understandable by people
of different background, culture and expertise

• Concise specification which replaces hundreds of
pages of tedious specification expressed in natural
languages

• Verifiable model using mechanized or manual
proofs.

• Validation can be done for different scenarios due to
the machine executability of AsmL models.

2.2. SystemC
SystemC, one of the proposals of the electronic design
automation (EDA) community has become the IEEE
standard (IEEE1666-2005) library [12] for system level
design [14]. SystemC aims at bridging the gap between
hardware and software design flows. Furthermore, it
promotes the integration of different levels of abstraction

in a unique design process. SystemC provides hardware-
oriented constructs within the context of C++ as a class
library implemented in standard C++. Its use spans
design and verification from concept to implementation
in hardware and software. SystemC provides an
interoperable modeling platform which enables the
development and exchange of very fast system-level
C++ models. It also provides a stable platform for
development of system-level tools.

3. Related Work
Regular expressions and temporal logic [18] are the two
main formalisms that have been used for formal
interface specifications. Both formalisms can be
expressed with finite-state automata [11]. More recently,
standard languages have been proposed to specify
system properties (in particular, the Property
Specification Language (PSL) [1] and the System
Verilog Assertions (SVA)[13]. These languages are
based on temporal logic, but both of them also include a
capability to specify regular expressions. In PSL, such
an extension is called Sequential Extended Regular
Expressions (SEREs). Balarin et al. [3] proposed to
specify TLM-to-RTL transactors using PSL. They took
advantage from the SEREs aiming at generating
synthesizable transactors. This approach is limited by the
expressivity of SEREs and by the fact that the final
transactor has to be synthesized. Hence, it presents a
critical limitation of the use of transactors in the
SystemC design flow only at RTL. Several commercial
tools include features to generate SystemC transactors,
for example: SystemC Transactor Generation Wizard
from Aldec’s Active HDL [2], Catapult C from Mentor
Graphics [15], TransactorWizard from Structured
Design Verification [20], and Cohesive from Spiratech
[19]. For example, the Cohesive tool uses the CY
language as transactor specification. In Active HDL
v7.1, SystemC Transactor Generation Wizard creates the
interfaces and a template for the transactor. Then the
users have to write the transactor code in SystemC by
hand. In contrast to above related work, we do not
restrict our method to certain abstraction level. We also
propose a tool that automatically generates SystemC
transactors.

4. Methodology for AsmL to SystemC
Transactor Generation
The proposed methodology is depicted in Figure 1. We
create a formal model of the transactor protocol in AsmL
based on the natural language text. AsmL models are
precise, concise and unambiguous. This model also
provides an efficient way of verification and validation.
In fact, AsmL specifications are executable, thus can be
validated by simulation. Verification can be done by
theorem proving (e.g., HOL) and model checking (e.g.,
SMV). Once the AsmL model is completed and verified,
it can be used as input to the proposed SystemC
Transactor Generator Tool to automatically generate the
SystemC transactor.

Figure 1. Methodology for generating SystemC

Transactor from AsmL

4.1. Specifying Transactors in AsmL

4.1.1. AsmL Subset
We chose a subset of AsmL for transactor specification.
The subset contains constructs and symbols that can be
used for RTL hardware protocol specification.
Enumeration declaration, variable declaration, constant
declaration, comment lines, step statements, iteration
statements, conditional expressions, assignment
statements, assertion statements, mathematical and
logical symbols, etc. are included in the subset. Non-
deterministic and high level software specification
related keywords are not handled.

4.1.2. The Step Rule
In AsmL, we describe the behavior of a system in a step-
by-step correspondence. So, to describe an RTL protocol
in AsmL, the distinct steps to perform the task is
determined first. We define “each step corresponds to
one clock cycle. It means the codes between two
consecutive steps are considered to be executed in a
single simulation clock cycle in SystemC”. We will refer
to this rule as the step rule.

4.1.3. Hardware Data Types in AsmL
To represent hardware data types for RTL ports, we have
used strings composed of ‘1’, ‘0’, ‘X’, ‘Z’. We also put
length constraints on the string types according to the
port bus-width. We have also developed a dynamic
library which contains functions to convert binary strings
to their equivalent decimal value and vice versa. These
functions are frequently used inside a transactor where
we have to deal with both binary strings for the RTL
ports and decimal values for the TLM function
parameters and for other user defined variables.

4.2. Translation from AsmL to SystemC
The translation from AsmL to SystemC is done based on
several rules we defined so that the original behavior of
the AsmL code is preserved in the translated SystemC
code. In [10], some rules for AsmL to SystemC
translation have been proposed. We have expanded and
in some cases modified some of these rules according to
our definitions.

4.2.1. Data Type Mapping
AsmL basic data types are translated to their equivalent
SystemC data types, e.g., Boolean to bool, Byte to
unsigned char, Short to short, Integer to int.

4.2.2. Semantics
The AsmL variables behave different from other
sequential programming languages like C/C++. If we
assign a value with an AsmL variable and then read it in
the same step, we will get its old value, not the newly
assigned value. Whenever there is a step statement, the
variables are updated with the newly assigned values. In
SystemC, the signals declared as sc_signal <type> also
behave similar like AsmL variable. If we write a value to
a SystemC signal, it is not updated at that simulation
cycle. If we read that signal at the same simulation cycle,
we will get its old value, not the newly written value. For
SystemC THREAD process, the signals are updated with
newly written values whenever the program reaches a
wait () statement [6]. So we have found that there is a
semantical similarity between AsmL variables and
SystemC signals. For instance,

• AsmL variable declaration is translated in SystemC
like Var a as Integer to sc_signal<int> a ;

• step statement in AsmL is translated to SystemC as
wait(clk->posedge_event()), where clk is the
clock signal name. The posedge_event() method
makes the wait statement sensitive to the positive
edge event of the clock signal. This translation
satisfies the update semantics of AsmL and also
respects the step rule as this wait statement will
cause the SystemC scheduler to increment its
simulation time by one clock cycle [6].

For transactors that communicate with cycle accurate
RTL models through request-grant handshaking
protocols, sometimes it is necessary for them to update
the RTL ports a little time (setup time) before the clock
event occurs. In that case, we put a statement wait(tbs)
before the wait(clk->posedge_event()) where the
time, tbs = T – tsu [T=Clock period, tsu = setup time]

4.2.3. Syntactical Translation
The mapping of AsmL syntax to SystemC syntax for
different keywords and symbols are shown in Table 1.

Transactor
Specification in

Text

AsmL
Specification

Theorem Proving /
Model Checking

Simulation

Verification

SystemC
Transactor

Generator Tool

SystemC
Transactor

Validation

Table 1. Syntax Translation

Step Statement
AsmL SystemC
step

Update () ;

where, Update ()
{ wait (tbs) ;

 wait (clk-posedge_event(); }

Iteration Statement
AsmL SystemC
step while (exp)
 statement_1

 …

 statement_n

while (exp)
 {
 statement_1 ;
 ...
 statement_n ;
 Update () ;
 }

Conditional Statement
AsmL SystemC
if (exp1) then
 statement_1

elseif (exp2) then

 statement_2
else statement_3

if (exp1)
{ statement_1 ;}
else if (exp2)
{ statement_2 ; }
else
{ statement_3 ; }

match (exp)
 val_1:
 statement_1

 val_2:

 statement_2
 otherwise
 statement_3

switch (exp)
{
case val_1: statement_1;
 break;
case val_2: statement_2;
 break;
default: statement_3;
}

Assertion Statement

AsmL SystemC
require (exp) assert (exp);

Symbols and Operators
AsmL SystemC AsmL SystemC
= == - -

<> != * *

>= >= / /

<= <= mod %

((and &&

)) or ||

+ + not !

Assignment Statement
AsmL SystemC
a := b + c

a.write(b.read()+c.read());
where a, b, c are user defined
variables or RTL ports.

4.2.4. Generating Block
AsmL, in contrast to other programming languages does
not use braces or keywords like begin or end to specify
a block. AsmL uses appropriate number of white space
at the left of the line to determine a block. We have
developed a stack based algorithm to generate blocks in
SystemC.

5. SystemC Transactor Generator Tool
Figure 2 describes the general structure of the SystemC
transactor generator tool. The tool takes as input the
TLM Interface which is the declarations of the TLM
functions of the TLM module and the RTL Interface
which is the declarations of RTL ports of the RTL
module. Then the tool generates an AsmL Template in
DOC format so that can be edited and executed in MS
Word environment.

Figure 2. SystemC Transactor Generator Tool

The specification writer provides the transactor
specification in the AsmL template. This specification
can be executed and used for validation and verification
purposes. Also, the specification can be used to generate
transactors in languages other than SystemC. Then the
specification is given as input to the tool. The tool then
extracts ASCII AsmL code text from it and passes it to
the AsmL to SystemC Translator. The Lexer splits an
AsmL line to tokens. It uses white spaces, single
character symbols and double character symbols as
punctuators between words. Here, the grammar checking
is omitted because it is done once when the AsmL
specification is executed by the asmlc compiler [16].
After tokenizing, the Analyzer is used to recognize the
tokens as keywords, identifiers, constants, symbols etc.
Then the SystemC Code Generator translates the
analyzed AsmL tokens to SystemC according to the
rules discussed in Section 4. The Reverse Port block
reverses the ports direction of the transactor w.r.t. the
RTL unit. The integrator integrates the translated
SystemC code for all TLM functions and adds other
necessary SystemC codes to generate the complete
transactor.

Code Settings

AsmL Template

XML to Doc

AsmL
Template

AsmL
Specification

Doc to XML

AsmL Code

Lexer

Analyzer

SystemC

Code
Generator

Integrator

AsmL to SystemC Trans.

Reverse Ports

Specification Writer

SystemC Transactor

RTL Interface TLM Interface

Transactor Generator Tool

6. Case Study: UTOPIA Transactor1
We tested our tool on several samples provided in the
SystemC library. In this section, we discuss our
experiments on the generation of the transactor protocol
used in the UTOPIA standard [22] interface. UTOPIA is
a standard protocol used to connect devices
implementing ATM and PHY layers. We have modeled
the ATM layer at TLM and the PHY layer at RTL.
These two models are connected through a TLM-RTL
transactor as shown in Figure 3.

The protocol for transmitting one or more cells (each cell
consists of 53 bytes) from ATM to PHY in Cell Level
Handshake mode can be described by the following
procedure. The PHY module indicates that it can accept
a whole cell by asserting the TxClav. Then during a time
period termed the transmit window, the ATM module
drives data on to TxData and asserts TxEnb. TxSoC is
asserted during the transfer of the first byte of the cell. In
this way 53 bytes are sent in the successive 53 clock
cycles. If the PHY module becomes unable to accept
more cells, it deassert TxClav at least 4 cycle before the
end of a cell. The ATM module ends its transmission by
deasserting TxEnb.

Figure 3. UTOPIA Transactor

From the ATM module, when a TLM function like
SendCell () is called, the above protocol must be
followed by the transactor to complete the task. We can
express the entire procedure of sending cells in three
states namely WaitForCellAvailable, TransmitCell, and
CloseTxWindow.

At first, the state machine enters the initial state
WaitForCellAvailable. If TxClav is asserted then it sets
the next state as TransmitCell. At the state TransmitCell,
the transactor opens the transmit window by asserting
TxEnb. TxSoC is asserted when transmitting the first
byte of the cell. It also drives TxData with the
corresponding byte of the SrcCell array. Here two user
defined variables Bn and Cn are used to keep track of
byte and cell numbers respectively. When the last byte
of the cell is sent, it checks the TxClav whether any
more cell (if required) can be transmitted. If PHY is

1 The experiments were conducted on a PC having
Pentium Mobile processor (1.8 GHz) with 512 MB of
memory.

unable to accept more cells then it sets the next state as
CloseTxWindow. The AsmL specification of the state
TransamitCell for the function SendCell() is shown in
Figure 4.

Figure 4. AsmL Spec. of state TransmitCell

At the state CloseTxWindow, TxEnb is de-asserted and
thus the transmit window is closed. If all cells are
transferred, then the state machine breaks by setting the
next state as S_End and the SendCell function ends.
Otherwise it sets the next state as WaitForCellAvilable
and so on.

We wrote AsmL specification of the transactor functions
SendCell and GetCell for both blocking and non-
blocking [21] cases and executed them. Then the
specification was given as input to our SystemC
Transactor Generator Tool. The tool generated the
SystemC transactor and it was then simulated with the
ATM and PHY model in SystemC. The transactor gave
expected simulation result. The timing diagram of the
simulation matched with the UTOPIA specification
which verified the correct behavior of the generated
transactor.

Table 2. Experimental Results

No. of Lines Time / Cell SystemC Transactor
Function AsmL SystemC Sim (μs) CPU (ms)

SendCell 37 74 140

nb_SendCell 38 75
2.2

148

GetCell 27 56 78

nb_GetCell 31 62
2.2

78.5

The number of lines metric provided in Table 2 shows
that AsmL specifications is more concise (approximately
50%) than SystemC code yet preserving the accurate
transactor behavior. The number of SystemC line grows
linearly with AsmL line. This linear relationship

promises expected CPU execution time. Table 2 also
shows the time required for sending and receiving one
cell (53 bytes) in SystemC simulation. The simulation
time depends on the frequency of the UTOPIA model
clock signals. For our simulation, we set the frequency
of TxClk and RxClk as 25MHz. The CPU time validates
the very light overhead of the translation process from
AsmL to SystemC. For instance, it could be always
argued that such a process may introduce longer
execution time. However, the values displayed in Table
2 show a pretty fast execution of each of the transactor’s
functions. However, due to small size of the application,
a deeper investigation through more complex case
studies should be used to support this aspect of the
proposed approach.

7. Conclusion
In this paper, we proposed a methodology to use AsmL
specifications for specifying transactors and
automatically generating semantically equivalent
SystemC designs. We illustrated our approach on the
UTOPIA interface case study. For instance, our tool was
able to generate automatically the equivalent SystemC
code for the transactor originally specified in AsmL.
Along with the AsmL approach discussed in this paper,
the tool also provides other approach where the
transactor behavior is described by drawing graphical
finite state machines. The tool can also generate
templates for writing SystemC code by hand. The future
work includes providing a library for standard protocols
so they can be used in generating transactors that
implement standard protocol interfaces. Furthermore, it
is possible to define a monitor between the transactor
and the RTL unit where assertions can be easily plugged
and checked by simulation or verified formally using
model checking.

Reference
[1] Accellera Organization. Accellera Property

Specification Language Reference Manual, Version
1.01, 2006.

[2] Aldec Inc. Acctive-HDL Tool, 2007. Website:
http://www.aldec.com/.

[3] F. Balarin and R. Passerone. Functional Verification
Methodology based on Formal Interface
Specification and Transactor Generation. In Design,
Automation and Test in Europe, pages 1013–1018,
Munich, Germany, 2006.

[4] M. Barnett, E. Börger, Y. Gurevich, W. Schulte, and
M. Veanes. Using Abstract State Machines at
Microsoft: A Case Study. In Abstract State
Machines, Theory and Applications, LNCS 1912,
pages 367–379. Springer, 2000.

[5] E. Boerger and R. Stark. Abstract State Machines: A
Method for High-Level System Design and Analysis.
Springer Verlag, 2003.

[6] T. Grotker, S. Liao, G. Martin, and S. Swan. System
design with SystemC. Kluwer Academic Publishers,
2002.

[7] Y. Gurevich: Evolving Algebra 1993: Lipari
Guide, in Specification and Validation Methods,
Ed. E. Börger, Oxford University Press, 1995.

 [8] Y. Gurevich and N. Tillmann. Partial Updates:
Exploration. Journal of Universal Computer
Science, 11 (7): 917-951, Springer, 2001.

 [9] Y. Gurevich and N. Tillmann. Partial Updates
Exploration II. In Proc. Abstract State Machines
2003, LNCS, 2589, pages 57-86, Springer, 2003.

[10] A. Habibi and S. Tahar. Design for verification of
SystemC Transaction Level Models. In Proc.
Design Automation and Test in Europe, pages 560–
565, Munich, Germany, 2005.

[11] J. Hopcroft and J. Ullman. Introduction to
Automata Theory, Languages and Computation.
Addison Wesley, 1979.

[12] IEEE Standards Association. IEEE Std 1666TM
Open SystemC Language Reference Manual. 2005.
http://standards.ieee.org/.

[13] IEEE Standards Association. IEEE Std 1800TM,
SystemVerilog: Unified Hardware Description and
Verification Language (HDVL) Standard. 2005.
http://standards.ieee.org/.

[14] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A.
Sangiovanni-Vincentelli. System Level Design:
Orthogonalization of Concerns and Platform-Based
Design. IEEE Transactions on Computer-Aided
Design, 19(12), 2000.

[15] Mentor Graphics Corp. Catapult C Synthesis, 2006.
http://www.mentor.com/.

[16] Microsoft Corp. AsmL: Abstract state machines
Language, 2007 . research.microsoft.com/fse/asml/.

[17] Open SystemC Initiative. The SystemC Library,
2007. http://www.systemc.org/.

[18] A. Pnueli. The Temporal Logic of Programs. In I.
C. S. Press, editor, In Proc. Symposium on the
Foundations of Computer Science, pages 46–57,
Providence, Rhode Island, USA, 1977.

[19] SpiraTech Ltd. Cohesive, 2007. Website:
http://www.spiratech.com/.

[20] Structured Design Verification Inc.
TransactorWizard, 2006. http://www.sdvinc.com.

[21] A. Rose, S. Swan, J. Pierce, J.M. Fernandez:
Transaction Level Modeling in SystemC; Available
at Open SystemC Initiative Website, 2006.
http://www.systemc.org

[22] The ATM Forum Technical Committee. Utopia
Level 2, Version 1.0, June 1995.

