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Abstract. Expectation (average) properties of continuous random vari-
ables are widely used to judge performance characteristics in engineer-
ing and physical sciences. This paper presents an infrastructure that
can be used to formally reason about expectation properties of most of
the continuous random variables in a theorem prover. Starting from the
relatively complex higher-order-logic definition of expectation, based on
Lebesgue integration, we formally verify key expectation properties that
allow us to reason about expectation of a continuous random variable in
terms of simple arithmetic operations. In order to illustrate the practical
effectiveness and utilization of our approach, we also present the formal
verification of expectation properties of the commonly used continuous
random variables: Uniform, Triangular and Exponential.

1 Introduction

Probabilistic analysis is a tool of fundamental importance to virtually all scien-
tists and engineers as they often have to deal with systems that exhibit random
or unpredictable elements. Traditionally, computer simulation techniques [6] are
used to perform probabilistic analysis. However, they provide less accurate re-
sults and cannot handle large-scale problems due to their enormous processing
time requirements. Due to the recent increase in the usage of hardware and soft-
ware systems in safety-critical applications, such as medicine and transportation,
the precision and accuracy of their analysis has become imperative. Therefore,
simulation should not be relied upon for the analysis of such systems.

To overcome the above mentioned limitations, it has been recently proposed to
conduct probabilistic analysis of systems in a higher-order-logic theorem prover
[11]. The main idea behind this approach is to formally specify the behavior of
systems, with random or unpredictable components, in higher-order logic, while
representing the random components as formalized random variables. The prob-
abilistic and statistical properties of random variables are then used to formally
reason about systems characteristics, such as downtime, availability, number of
failures, capacity, and cost, in a theorem prover. The analysis carried out in this
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way is free from any approximation issues or flaws due to the mathematical na-
ture of the models and the inherent soundness of the theorem proving approach.
The milestones achieved so far, in this endeavor of developing a complete theo-
rem proving based probabilistic analysis framework that is capable of analyzing
any hardware or software system, include the formalization of probability theory
[15], the ability to formalize discrete and continuous random variables and verify
their probabilistic properties [15,11] and the ability to verify statistical proper-
ties of discrete random variables [11]. Whereas, to the best of our knowledge,
the formal reasoning about statistical properties regarding continuous random
variables has not been tackled in the open literature so far.

In this paper, as a first step towards filling the above mentioned gap, we
present an infrastructure that allows us to formally reason about the expecta-
tion properties of most of the commonly used continuous random variables in
a higher-order-logic theorem prover. Expectation plays a major role in decision
making as it tends to summarize the probability distribution characteristics of a
random variable in a single number. Thus, the contribution of this paper paves
the way to formally analyze many engineering and physical science systems with
continuous random components in a theorem prover. Some of the interesting
examples include the performance analysis of computer arithmetic systems like
floating-point arithmetic [19], where the Uniform random variable can be used to
model the roundoff error, algorithms that utilize continuous random variables,
such as the Balls and Bins with feedback [16] and network protocols by modeling
the request arrival rates by the exponential random variables.

The most commonly used definition of expectation, for a continuous random
variable X , is the probability density-weighted integral over the real line [16].

E[X ] =
∫ +∞

−∞
xf(x)dx (1)

The function f in the above equation represents the probability density function
(PDF) of X and the integral is the well-known Reimann integral. The above
definition is only limited to continuous random variables that have a well-defined
PDF. A more general, but not so commonly used, definition of expectation for
a random variable X , defined on a probability space (Ω, Σ, P ) [7], is as follows:

E[X ] =
∫

Ω

XdP (2)

This definition utilizes the Lebesgue integral and is general enough to cater
for both discrete and continuous random variables. The reason behind its lim-
ited usage in the probabilistic analysis domain is the complexity of solving the
Lebesgue integral, which takes its foundations from the measure theory that
most engineers and computer scientists are not familiar with.

The obvious advantage of using Equation (1) is the user familiarity with
Reimann integral that facilitates the reasoning process regarding the expectation
properties in the theorem proving based probabilistic analysis approach. On the
other hand, it requires extended real numbers, R = R ∪ {−∞, +∞}, whereas
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all the foundational work regarding theorem proving based probabilistic analy-
sis has been built upon the standard real numbers R, formalized by Harrison
[10]. Thus, the formalization of the expectation definition, given in Equation
(1), and making it compatible with the available formal probabilistic analysis
infrastructure would require creating a new data type R, and re-verifying the
already proven results in a theorem prover for this new data-type, which is a
considerable amount of work. Now, the expectation definition, given in Equation
(2), does not involve extended real numbers, as it accommodates infinite limits
without any ad-hoc devices due to the inherent nature of the Lebesgue integral.
It also offers a more general solution. The limitation, however, is the compromise
on the interactive reasoning effort, as it is not a straightforward task for a user to
build on this definition to formally verify the expectation of a random variable.

In this paper, we address the above mentioned limitation of using Lebesgue in-
tegration for defining expectation. Starting from Equation (2), we mainly utilize
the properties of the Lebesgue integral to formally verify two simplified expres-
sions for the expectation. The first one is for the case when the random variable
X is bounded in the positive interval [a, b]

E[X ] = lim
n→∞

[
2n−1∑
i=0

a +
i

2n
(b − a)P

{
a +

i

2n
(b − a) ≤ X < a +

i + 1
2n

(b − a)
}]

(3)
and the second one is for an unbounded positive random variable [7].

E[X ] = lim
n→∞

[
n2n−1∑

i=0

i

2n
P

{
i

2n
≤ X <

i + 1
2n

}
+ nP (X ≥ n)

]
(4)

Both of the above expressions do not involve any concepts from Lebesgue in-
tegration theory and are based on the well-known arithmetic operations like
summation, limit of a real sequence, etc. Thus, users can simply utilize them,
instead of Equation (2), to reason about the expectation properties of their ran-
dom variables and gain the benefits of the original Lebesgue based definition.
It is also important to note that we have a different expression for the bounded
case in order to facilitate the formal reasoning about the probability term, which
becomes very challenging to reason about if the unbounded expectation equation
is used for a bounded random variable.

To demonstrate the effectiveness of the above expressions, we utilize them for
the formal verification of the expected values for the commonly used continuous
random variables Uniform, Triangular and Exponential. Besides being illustra-
tive examples, these results can be essentially utilized in conducting the formal
performance analysis of many system that utilize these random variables.

The work described in this paper is done using the HOL theorem prover [8],
which is based on higher-order logic. The main motivation behind this choice
is the fact that most of the work that we build upon is developed in HOL,
such as the formalization of the real number theory [10], probability theory [15],
continuous random variables [11] and Lebesgue integration [4]. Though, it is
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important to note here that the ideas presented in this paper are not specific
to the HOL theorem prover and can be adapted to any other higher-order-logic
theorem prover as well, such as Isabelle, Coq or PVS.

The rest of the paper is organized as follows: Section 2 provides a review of
related work. Then, in Section 3, we present some foundations regarding higher-
order-logic based probabilistic analysis approach, such as the formalization of
probability theory, random variables and Lebesgue integration. Next, Section 4
outlines the formal proof details regarding Equations (3) and (4). We utilize these
theorems to illustrate the formal reasoning process regarding the expectation
properties of the above mentioned three continuous random variables in Section
5. In Section 6, we present the formal probabilistic analysis of rounding error in
floating-point numbers, in order to demonstrate the usefulness of our results in
the domain of probabilistic analysis. Finally, Section 7 concludes the paper.

2 Related Work

Early foundations of probabilistic analysis in a higher-order-logic theorem prover
were laid down by Nȩdzusiak [17] and Bialas [3] when they proposed a for-
malization of measure and probability theories in higher-order logic. Hurd [15]
implemented their work and developed a framework for the verification of prob-
abilistic algorithms in the HOL theorem prover. Random variables are basically
probabilistic algorithms and thus can be formalized and verified, based on their
probability distribution properties, using the methodology proposed in [15]. In
fact, building upon Hurd’s formalization, most of the commonly used discrete
[15] and continuous [11] random variables have been formalized. The above men-
tioned formalization of probability theory has also been used to formally reason
about statistical properties, such as expectation and variance, of discrete random
variables [11]. Due to the fact that the discrete random variables can only attain
a countable number of values, the expectation in this case has been formally
defined using a summation rather than integration. Obviously such a definition
cannot be used with continuous random variables, which have an uncountable
range. The probabilistic analysis foundations, mentioned above, have been suc-
cessfully used to conduct precise probabilistic analysis of many systems, such as
computation algorithms [15,11], real-time systems [11], communication protocols
[13], wireless systems [14], and hardware components [12].

As mentioned in the last section, Lebesgue integration is the core concept
in the definition of expectation. Richter [18] formalized a significant portion of
the Lebesgue integration theory in higher-order logic using Isabelle/HOL. But,
this formalization can only handle functions that map subsets of real numbers
to real numbers. This limitation somewhat restricts the usage of this formaliza-
tion to define the expectation, where the function that needs to be integrated
is the random variable that in its most general form maps the subsets of an
arbitrary sample space to real numbers. More recently, Coble [4] formalized the
Lebesgue integration theory in HOL. This formalization overcomes the limita-
tion of Richter’s work as it allows integration over functions that are measurable
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from a space of any arbitrary data-type to any subset of the real numbers.
Coble’s formalization of the Lebesgue integral has been used to formally define
expectation of a random variable [4]. But in this formalization, some theorems
have been verified under the assumption that measurable sets have to be equal
to the power set of the sample space. This fact restricts Coble’s formalization
for sample spaces that do not contain any non-measurable subsets. Whereas,
this condition is not satisfied for sample spaces for continuous random variables.
Daumas et. al. [5] have also formalized some Lebesgue integration theory in the
PVS theorem prover. The authors claim to have formally defined expectation
based on this formalization, but no details were given in [5]. Moreover, to the
best of our knowledge, no information regarding the utilization of this definition
to formally reason about the expectation of continuous random variables has
been provided in this work, which is the main contribution of our paper.

In this paper, we extend the measure theoretic formalization infrastructure,
based on the works, presented in [15,11], available in the HOL theorem prover,
with the ability to formally reason about expectation properties of continuous
random variables. This would be a novelty that to the best of our knowledge has
not been presented in the open literature so far. The main motivation behind
using the measure theoretic approach instead of the one proposed by Aude-
baud [2] is to be able to utilize the Lebesgue integral, which has a foundational
relationship with the measure theory. We utilize the Lebesgue integral formal-
ization, presented in [4], for our work because it is available in the HOL theorem
prover and is thus compatible with the other theories [15,11] that we build upon.
Though, we make it general enough to tackle sample spaces for continuous ran-
dom variables as well.

3 Preliminaries

In this section, we provide an overview of the higher-order-logic formalizations
of probability theory, continuous random variables and Lebesgue integration
theory. The intent is to introduce the main ideas along with some notation that
is going to be used later in this paper.

3.1 Probability Theory and Random Variables in HOL

A measure space is defined as a triple (Ω, Σ, μ), where Ω is a set, called the
sample space, Σ represents a σ-algebra of subsets of Ω and the subsets are
usually referred to as measurable sets, and μ is a measure with domain Σ [7]. A
probability space is a measure space (Ω, Σ, P ) such that the measure, referred to
as the probability and denoted by P , of the sample space is 1.

Hurd [15] formalized some measure theory to define a measure space as a pair
(Σ, μ). Whereas the sample space, on which this pair is defined, is implicitly
implied from the higher-order-logic definitions to be equal to the universal set
of the appropriate data-type. Building upon this formalization, the probability
space was also defined in HOL as a pair (E , P), where the domain of P is the set
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E , which is a set of subsets of infinite Boolean sequences B
∞. Both P and E are

defined using the Carathéodory’s Extension theorem, which ensures that E is a
σ-algebra: closed under complements and countable unions.

Now, a random variable, which is one of the core concepts in probabilistic
analysis, is fundamentally a probabilistic function and thus can be modeled in
higher-order logic as a deterministic function, which accepts the infinite Boolean
sequence as an argument. These deterministic functions make random choices
based on the result of popping the top most bit in the infinite Boolean sequence
and may pop as many random bits as they need for their computation. When
the functions terminate, they return the result along with the remaining portion
of the infinite Boolean sequence to be used by other programs. Thus, a random
variable which takes a parameter of type α and ranges over values of type β can
be represented in HOL by the function F .

F : α → B∞ → β × B∞

As an example, consider the Bernoulli(1
2 ) random variable that returns 1 or 0

with equal probability 1
2 . It can be formalized in HOL as follows

� bit = (λs. if shd s then 1 else 0, stl s)

It accepts an infinite Boolean sequence, where shd and stl are the sequence
equivalents of the list operation ‘head’ and ‘tail’. The formalized P and E can
be used to verify the basic laws of probability as well as probabilistic properties
regarding random variables in the HOL theorem prover. For example:

� P {s | fst (bit s) = 1} = 1
2

where the HOL function fst selects the first component of a pair and {x|C(x)}
represents a set of all x that satisfy the condition C. It is important to note here
that, since the probability measure P is only defined on sets in E , it is absolutely
necessary to verify that the set that appears in a probabilistic property is in E
before we can formally verify that property in HOL. For the above example, this
condition translates to the verification of {s | fst (bit s) = 1} ∈ E .

The above approach has been successfully used to formalize and verify most of
the commonly used discrete random variables [15]. The sampling algorithms for
discrete random variables are either guaranteed to terminate or satisfy proba-
bilistic termination, meaning that the probability that the algorithm terminates
is 1. On the other hand, the formalization of continuous random variables in-
volves non-terminating algorithms and hence require a different approach than
discrete random variables.

Building upon the above mentioned probability theory framework, an ap-
proach for the formalization of continuous random variables has been presented
in [11]. The main idea is based on the concept of the Inverse Transform Method
(ITM) [6], according to which, the random variable X , for any continuous cu-
mulative distribution function (CDF) F , can be defined as X = F−1(U), where
F−1 is the inverse function of F , and U represents the Standard Uniform random
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Table 1. Continuous Random Variables in HOL

Distribution CDF Formalized Random Variable

Uniform(a, b)

0 if x ≤ a;
x−a
b−a

if a < x ≤ b;

1 if b < x.

� ∀s l. uniform rv a b s =
(b − a)(std unif rv s) + a

Triangular(0, a)

0 if x ≤ 0;

( 2
a
(x − x2

2a
)) if x < a;

1 if a ≤ x.

� ∀s a . triangular rv l s =
a(1 −√

1 − std unif rv s)

Exponential(l)
0 if x ≤ 0;

1 − e−lx if 0 < x.
� ∀s l. exp rv l s =

− 1
l
ln(1 − std unif rv s)

variable. The formal proof of this proposition is based on the CDF characteris-
tic of the Standard Uniform random variable and some of the CDF properties
[11]. ITM allows us to formalize any continuous random variable, which has a
well-defined CDF, in terms of a formalized Standard Uniform random variable
(std unif rv). Based on this approach, the CDFs and higher-order-logic defi-
nitions of three continuous random variables are given in Table 1 [11]. In this
paper, we will utilize formally verified expressions, corresponding to Equations
(3) and (4), to verify the expectation relations for these random variables in
Section 5.

3.2 Lebesgue Integration in HOL

Lebesgue integration is based on the concept of measure and is defined for a
class of functions called measurable functions, which are well-behaved functions
between measurable spaces. Coble [4] formalized the Lebesgue integration theory
in HOL based on a generalized measure space (S, S, λ). It is important to note
here that, unlike Hurd’s formalization of the measure space, we do have the
flexibility to choose any sample space S in this case. The higher-order-logic
definition of the Lebesgue integral utilizes the concepts of indicator function
and positive simple-function [7]. The indicator function is defined as follows for
a set A

IA(a) =
{

1 if a ∈ A;
0 otherwise. (5)

Whereas, a function g is said to be a positive simple-function for the measure
space (S, S, λ) iff it can be expressed as follows

g =
n∑

i=0

ciIai (6)

where ci is a sequence of positive real values and ai is a sequence of disjoint
measurable sets such that

⋃n
i=0 ai forms a partition of S. Now the integral for

such a positive-simple function g can be defined as follows.
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∫
S

g dλ =
n∑

i=0

ci(λai) (7)

The next step towards the formal definition of the Lebesgue integral is to define
the integral for a positive function f that is measurable from (S, S) to (S′, S′)

∫
S

f dλ = sup

{∫
S

gdλ

∣∣∣∣ (∀x.g(x) ≤ f(x))
}

(8)

where g is a positive-simple function w.r.t the measure space (S, S, λ).
The Lebesgue integral of a real-valued measurable function from (S, S) to

(S′, S′) can now be formalized in terms of Equation (8) as follows
∫

S

f dλ =
∫

S

f+ dλ −
∫

S

f− dλ (9)

where f(x) = f+(x) − f−(x) and f+ and f− are the positive and negative
portions of f , respectively, and are both positive functions. It is also important
to note that the integral of f is well-defined iff both f+ and f− are measurable
from (S, S) to (S′, S′) and their integrals do not both diverge to infinity.

Besides the formalization of the above definitions, many useful properties
regarding the Lebesgue integral have also been verified in [4] as higher-order-
logic theorems. For example, we utilize the following convergence of a positive
measurable function to the Lebesgue integral property.

(∀x ∈ S.(∀n x.fn(x) ≤ f(x)) ∧ ( lim
n→∞ fn(x) = f(x)

) ∧ (
lim

n→∞

∫
S

fn dλ = r
)

⇒
∫

S

f dλ = r

(10)

The function f , in the above equation, is a positive real-valued function that
is measurable from (S,P(S)) to (S′,P(S′)), where P(A) denotes the power set
of the set A. Whereas, the sequence fn is a monotonically increasing sequence
of positive simple-functions. It is important to note here that this theorem and
many others in Coble’s work [4] have been verified for the case when the mea-
surable sets S is equal to the power set of the sample space S. This restricts
the usage of these theorems to sample spaces for which all possible subsets are
measurable. This condition is not satisfied for sample spaces that are used to
model continuous random variables.

4 Verification of Expectation Relations

In this section, we utilize the probability and Lebesgue integration theories,
described in the previous section, to formally verify the expectation relations for
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the bounded and unbounded random variables, given in Equations (3) and (4),
respectively.

The first step in this regard is to formally define the expectation in terms
of the Lebesgue integral. For this purpose, we utilize the definition of Lebesgue
integral, given in Equation (9), as follows:

Definition 1. Expectation of a Random Variable
� ∀ f. expec (U , E , P) f =

∫
U f dP

The function expec accepts a probability space, (U , E , P), and a random variable
f that maps infinite Boolean sequences to real numbers. It is important to note
that by using Hurd’s formalization of the probability space (U , E , P), where U
represents the universal set of all Boolean sequences, as outlined in Section 3, we
can utilize the above definition to reason about expectation of random variables
formalized in [15,11]. Though, we had to generalize the Lebesgue integration the-
orems, proposed in Coble’s work [4]. Since, the existing theorems are based on the
assumption S = P(S), which is not true for our probability space (U , E , P), where
the power set of the set of all Boolean sequences do contain non-measurable sets
as has been formally verified in [15]. Our more generalized version of these theo-
rems are based on the assumption that S = {x|(x ∈ P(S))∧ (x is measurable)},
which is obviously true for our probability space (U , E , P).

4.1 Bounded Random Variables

The expectation property, given in Equation (3), can be expressed as a higher-
order-logic theorem using Definition 1 as follows:

Theorem 1. Expectation of Bounded Random Variables
� ∀ a b f. (0 ≤ a) ∧ (a < b) ∧ (∀ s. a ≤ f s ≤ b) ∧
(∀ x y. x < y ⇒ {s ∣∣ x ≤ f s < y} ∈ E) ⇒(
expec (U , E , P) f =

lim
n→∞

[∑2n−1
i=0 (a + i

2n
(b − a))P

{
s

∣∣∣∣ a + i
2n

(b− a) ≤ f s < a + i+1
2n

(b − a)
}])

The first three assumptions ensure that the random variable f is bounded in
the positive interval [a, b]. Whereas, the fourth assumption ensures that the set
involved in this verification is measurable.

In order to utilize any definition or property of Lebesgue integration theory
with the above theorem, we first need to show that the triple (U , E , P) is a
measure space with a positive measure. We verified these conditions based on the
corresponding theorems available in Hurd’s formalization of the probability space
(E , P) along with the definition of measure in [4] under the given assumptions.

Since our random variable f is a positive-valued real number, we do not have
the term involving the f− term in the Lebesgue integral definition and thus, for
this specific case, Equations (8) and (9) become equivalent. This allows us to
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use the convergence of a positive measurable function to the Lebesgue integral
property, given in Equation (10), to reason about Theorem 1. Using Modus
Ponens (MP) rule, we can split the proof goal of Theorem 1 to the following
five subgoals, corresponding to the monotonicity and positive simple-function
requirement on fn and the three assumptions of Equation (10):

mono increasing

⎡
⎢⎢⎣
2n−1∑
i=0

(a +
i

2n
(b − a))I⎧⎨

⎩s

∣∣∣∣ a+ i
2n

(b−a)≤f s<a+ i+1
2n

(b−a)

⎫⎬
⎭

(x)

⎤
⎥⎥⎦
(11)

(∀i.(i < 2n) ⇒
{
s

∣∣∣∣ a +
i

2n
(b− a) ≤ f s < a +

i + 1

2n
(b− a)

}
∈ E) ∧

(∀i.0 ≤ a +
i

2n
(b − a)

) ∧ (
FINITE{i|i < 2n})

(12)

⎡
⎢⎢⎣
2n−1∑
i=0

(a +
i

2n
(b − a))I⎧⎨

⎩s

∣∣∣∣ a+ i
2n

(b−a)≤f s<a+ i+1
2n

(b−a)

⎫⎬
⎭

(x)

⎤
⎥⎥⎦ ≤ f(x) (13)

lim
n→∞

⎡
⎢⎢⎣
2n−1∑
i=0

(a +
i

2n
(b− a))I⎧⎨

⎩s

∣∣∣∣ a+ i
2n

(b−a)≤f s<a+ i+1
2n

(b−a)

⎫⎬
⎭

(x)

⎤
⎥⎥⎦ = f(x) (14)

∃y. lim
n→∞

[
2n−1∑
i=0

(a +
i

2n
b− a)P

{
s

∣∣∣∣ a +
i

2n
b − a ≤ fs < a +

i + 1

2n
b− a

}]
= y

(15)

The monotonically increasing property in the first subgoal is verified based on the
facts that (1) the indicator function is 1 in only one interval or for one particular
value of i and (2) as the argument of the sequence increases, i.e., n, the intervals
become finer and thus the resulting value of the sequence increasingly gets closer
to the value of f x. The second subgoal corresponds to the pre-conditions for
the positive simple-function function fn and consists of three subgoals. These
three subgoals are discharged based on the fourth assumption of Theorem 1,
arithmetic reasoning and set theory principles, respectively. The third subgoal
is true as there is only one i, say i′, for which the real value of f x falls in the
interval [a+ i

2n (b−a), a+ i+1
2n (b−a)) out of the 2n possible values for i. Thus the

indicator function is 1 for this particular i only and 0 otherwise, meaning that
the summation is equal to (a + i′

2n (b − a)). Now, substituting this value for the
summation in the third subgoal along with the fact that f x lies in the interval
[a + i′

2n (b − a), a + i′+1
2n (b − a)) leads to its verification. The fourth subgoal is

discharged based on reasoning similar to the previous subgoal, the monotonicity
of the given sequence and the definition of the limit of a real sequence. Finally,
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the real sequence in the fifth subgoal is verified to be convergent by verifying
that it is monotonic and that the probability term in the sequence is non-zero
for only one particular value of i. The sequence thus has an upper bound b since
the value of i is always less than 2n and the maximum value for the probability
term is 1. The verification of these five subgoals also concludes the verification
of Theorem 1.

4.2 Unbounded Random Variables

The expectation property, given in Equation (4), can be expressed as a higher-
order-logic theorem using Definition 1 as follows:

Theorem 2. Expectation of Unbounded Random Variables
� ∀ f. (∀ s. 0 ≤ f s) ∧ (∀ x. {s ∣∣ f s ≥ x} ∈ E)
(∀ x y. x < y ⇒ {s ∣∣ x ≤ f s < y} ∈ E) ⇒(
expec (U , E , P) f =

lim
n→∞

[∑n2n−1
i=0 ( i

2n
)P

{
s

∣∣∣∣ i
2n

≤ f s < i+1
2n

}
+ nP

{
s

∣∣∣∣ f s ≥ n

}])

The first assumption ensures that the random variable f is positive. The second
and third guarantee that the sets that arise in this verification are measurable
events. The summation range has been extended to [0, n2n − 1] so that the
first probability term in the above theorem covers the interval [0, n). While, the
second probability term covers the rest of the positive unbounded interval.

The verification steps for Theorem 2 are very similar to the ones for Theorem
1. The major step is to split this goal into subgoals using Equation (10). These
subgoals are then verified using arithmetic reasoning, set theory principles and
the fact that the events in the two probability terms of the proof goal are disjoint,
which means that one of the probability term is always equal to 0.

Our verification results matched the paper-and-pencil analysis counterpart for
Theorem 2, which is available in [7], and confirmed the correctness of Theorem 1,
which we had worked out ourselves and were not able to find it in any published
texts. Besides checking for correctness for these mathematical relationships, the
major motivation behind their verification is to utilize them to reason about
the expected values of continuous random variables and thus in turn use these
results for conducting formal probabilistic analysis of systems.

5 Expectation of Continuous Random Variables

To illustrate the effectiveness of the expectation relations, proved in the previous
section, we now utilize them to verify the expectation of three continuous random
variables, i.e., Uniform, Triangular and Exponential.
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5.1 Uniform Random Variable

The expectation relation for the continuous Uniform random variable bounded
in the interval [a, b] can be formalized as follows:

Theorem 3. Expectation of the Uniform(a,b) Random Variable
� ∀ a b. (0 ≤ a) ∧ (a < b) ⇒(

expec (U , E , P) (uniform rv a b) = a+b
2

)

In order to utilize Theorem 1 to reason about the correctness of the above theo-
rem, we first verify that the Uniform random variable satisfies all pre-conditions,
given in Theorem 1, based on the theorems given in [11]. Next, we rewrite the
probability term in Theorem 1, using the CDF for the Uniform random variable,
given in Table 1, to simplify our proof goal as follows:

lim
n→∞

[
2n−1∑
i=0

(a +
i

2n
(b− a))

(
a + i+1

2n
(b − a) − a

b− a
− a + i

2n
(b− a) − a

b− a

)]
=

a + b

2

(16)
The above subgoal can now be discharged using arithmetic reasoning, along with
the properties of summation of a real sequence and the limit of a real sequence.
This also concludes the verification of Theorem 3.

5.2 Triangular Random Variable

The expectation relation for the continuous Triangular random variable bounded
in the interval [0, b] can be formalized as follows:

Theorem 4. Expectation of the Triangular(b) Random Variable
� ∀ b. (0 < b) ⇒ (

expec (U , E , P) (triangular rv b) = b
3

)

The verification steps are similar to the ones for Theorem 3 and are primarily
based on Theorem 1 and the CDF of the Triangular random variable.

5.3 Exponential Random Variable

The expectation for the continuous Exponential random variable, which is un-
bounded at the upper end, i.e., defined in [0,∞), can be formalized as follows:

Theorem 5. Expectation of the Exponential(l) Random Variable
� ∀ a. (0 < a) ⇒ (

expec (U , E , P) (exp rv a) = 1
a

)

Due to its unbounded nature, we use Theorem 2 to reason about the expectation
of Exponential random variable. Now, after rewriting the probability term and
some arithmetic simplification, we get the following subgoal:

lim
n→∞

[(
1− e−

a
2n

)( n2n−1∑
i=0

i

2n
e−a i

2n

)
+ ne−an

]
=

1

a
(17)
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which can be broken into the following two subgoals.

lim
n→∞

(
ne−an

)
= 0 (18)

lim
n→∞

[(
1− e−

a
2n

2n

)( n2n−1∑
i=0

i(e−
a
2n )i

)]
=

1

a
(19)

We proceed with the verification of the first subgoal by rewriting the exponential
term e−an as (1 + x)−n, where x > 0. Next, we verify that the term (1 + x)n is
greater than 1 + nx+ 1

2
n(n− 1)x2, for all values of n, as the latter represents a

truncated form of its Binomial expansion. This fact leads us to verify that the
value of the real sequence (λn.n(1 + x)−n) will be less than the real sequence
(λn.n( 1

2
n(n− 1)x2)−1) for all values of n. This reasoning allows us to discharge

the first subgoal, given in Equation (18), as the limit value of the real sequence
(λn.n( 1

2
n(n− 1)x2)−1) = (λn. 2

x2(n−1)) is 0.
In order to simplify the verification of the second subgoal, given in Equation

(19), we first evaluate the summation term by verifying the summation of a finite
arithmetic-geometric series in HOL.

n∑
k=0

kqk =
q

(1− q)2
(1 − qn) − nqn+1

1− q
(20)

The above relationship allows us to rewrite the second subgoal as follows:

lim
n→∞

(
e−

a
2n (1 − e−an)

2n(1− e−
a
2n )

− ne−an

)
=

1

a
(21)

Now, Equation (18) and the already proved fact that the limit value of the real
sequence (λn.e−ln) is 0 allows us to simplify the above subgoal as follows.

lim
n→∞

(
e−

a
2n

2n(1− e−
a
2n )

)
=

1

a
(22)

We reason about the correctness of the above limit by first evaluating the fol-
lowing limit relationship.

lim
x→0

(
xe−ax

(1− e−ax)

)
=

1

a
(23)

The proof of the above equation is primarily based on the L’Hopital’s Rule, which
we also verified in HOL as part of this project. Now, the variable x in Equation
(23) can be specialized to 1

2n
. This expression along with the definitions of limit

of a real sequence and the limit of a function when its arguments approaches a
real value leads to the verification of the remaining subgoal, given in Equation
(22). This also concludes the proof of Theorem 5.

The verification of the above three expectation properties does not involve
any reasoning based on the Lebesgue integral. As a consequence, the verification
process, which just took around 80 man hours with approximately 3500 lines of
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HOL code, was very straightforward and quick in comparison to the verification
of Theorems 1 and 2, which took around 350 man-hours and approximately 5000
lines. This clearly demonstrates the strength of our work, which is to provide the
ability to build upon Theorems 1 and 2 and reduce the interactive reasoning ef-
forts regarding the expectation properties of continuous random variables. Also,
our theorems are quite general and can be built upon to reason about expected
values of many other random variables as well, such as the Rayleigh and Pareto.

6 Round-Off Error in Floating-Point Representation

Algorithms involving floating-point numbers are extensively used these days in
almost all digital equipment ranging from computer and digital processing to
telecommunication systems. Due to their complexity and wide spread usage in
safety critical domains, formal methods are generally preferred over traditional
testing to ensure correctness of floating-point algorithms. A classical work in
this regard is Harrison’s error analysis of floating-point arithmetic in higher-order
logic [9]. Harrison presents a formalization of floating point numbers, verification
of upper bounds on the error in representing a real number with floating-point
system and the error in floating-point arithmetic operations. Even though this
analysis is very useful in identifying the worst case conditions, it doest not reflect
upon the typical or average errors. In fact, the assumed worst case conditions
rarely occur in practice. So the error analysis, based under these worst-case
conditions can improperly suggest that the performance of the algorithm is poor.

In paper-and-pencil analyses, probabilistic techniques are thus utilized in the
error analysis of floating-point algorithms [19]. The main idea behind this prob-
abilistic approach is to model the error in a single floating-point number by an
appropriate random variable and utilize this information to judge the expected
value of error while representing a real number in floating-point system. This
expected value of error can then be used to find the expected value of error in
different floating-point arithmetic operations.

The above mentioned probabilistic analysis involves reasoning about the ex-
pectation value of a continuous random variable, since the error between a real
number and its corresponding floating-point representation is continuous in na-
ture. Thus, our proposed infrastructure can be directly utilized to conduct such
analysis, something that to the best of our knowledge was not possible before.

We built upon Harrison’s error bounds for floating-point representations of
big (|x| ∈ [2k, 2k+1), small (|x| ∈ [ 1

2k+1 , 1
2k ] : k < 126), and tiny (|x| ∈ [0, 1

2126 ])
real numbers [9]. The error is defined as the difference between the real value
of the floating-point representation and the actual value of the corresponding
real number (error(x) = float(x)− x), with round-to-nearest rounding mode.
Based on this definition, upper bounds on the absolute value of error are verified
to be equal to 2k

224 , 1
2k+1224 and 1

2150 , for the three cases above, respectively.
Assuming any value of error to be equally likely [19], we constructed formal

probabilistic models for representing the above mentioned rounding errors us-
ing Uniform random variables defined in the intervals [0, 2k

224 ], [0, 1
2k+1224 ] and
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[0, 1
2150 ], respectively. Theorem 3 was then used to verify the expectation values

of these floating-point errors using the HOL theorem prover.

Theorem 6. Expectation of Floating-Point Errors
� ∀ k x.

(
expec(uniform rv 0 2k

224 ) = 2k−1

224

) ∧(
expec(uniform rv 0 1

2k+1224 ) = 1
2k+1225

) ∧(
expec(uniform rv 0 1

2150 ) = 1
2151

)

The above theorem plays a pivotal role in the statistical error analysis of floating-
point arithmetic. Based on these average values of error in a single floating-point
number, the average errors in floating point operations, like addition, subtrac-
tion and multiplication, that involve multiple floating-point numbers, can be
evaluated. Similarly, this information can be further utilized in conducting the
statistical error analysis of basic digital signal processing (DSP) systems by
building on top of the DSP verification framework in HOL [1], which as of now
does not include any probabilistic and statistical considerations.

7 Conclusions

In this paper, we have presented an infrastructure to reason about expectation
properties of continuous random variables using a higher-order-logic theorem
prover. This capability allows us to conduct formal statistical analysis of systems
with continuous random components, a novelty, which is not supported by most
of the existing probabilistic analysis tools.

We built upon a formalized Lebesgue integration theory to define expecta-
tion and based on this definition we verified two alternate expectation relations.
These relations do not involve any concepts from the mathematically complex
Lebesgue integration theory and thus facilitate reasoning about expected val-
ues of continuous random variables significantly. We utilized these relations to
verify the expected values of the extensively used continuous random variables
Uniform, Triangular and Exponential. To the best of our knowledge, this is the
first time that the formal reasoning about the expectation of these continuous
random variables has been presented in a higher-order-logic theorem prover.

Our formally verified expectation relations are valid for discrete random vari-
ables as well, due to the generic nature of the Lebesgue integral. In fact, we plan
to link these relations to the summation based definition of expectation [11] in
order to come up with a unified reasoning framework for both discrete and con-
tinuous random variables. Also, the presented results can be extended to be used
for random variables that are not positive functions, since the Lebesgue integral
allows integration over negative functions, as can be observed from Equation
(9). Other interesting future research directions, that benefit from this work,
include the formal reasoning frameworks for variance properties and tail distri-
bution bounds and the ability to reason about statistical properties of systems
that involve multiple continuous random variables.
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