
Combining Symbolic Simulation and Interval

Arithmetic for the Verification of AMS Designs

Mohamed H. Zaki∗, Ghiath Al-Sammane∗, Sofiène Tahar∗, and Guy Bois ‡

∗Electrical & Computer Engineering

Concordia University, Montreal, Quebec, Canada

Email: {mzaki, sammane, tahar}@ece.concordia.ca
‡Genie Informatique

Ecole Polytechnique de Montreal, Montreal, Quebec, Canada

Email: guy.bois@polymtl.ca

Abstract—Analog and mixed signal (AMS) designs are impor-
tant integrated circuits that are usually needed at the interface be-
tween the electronic system and the real world. Recently, several
formal techniques have been introduced for AMS verification.
In this paper, we propose a difference equations based bounded
model checking approach for AMS systems. We define model
checking using a combined system of difference equations for
both the analog and digital parts, where the state space explo-
ration algorithm is handled with Taylor approximations over
interval domains. We illustrate our approach on the verification
of several AMS designs including ∆Σ modulator and oscillator
circuits.

I. INTRODUCTION

Analog and mixed signal (AMS) designs are important

integrated circuits used at the interface between an electronic

system and its real world. Several computer aided design

tools for AMS systems have been developed to overcome

challenges in the design process of such designs. Simulation

based verification approaches are usually applied to check that

an AMS design is robust with respect to different types of

inaccuracies. However, with circuits growing in complexity,

simulation is not enough to validate complex properties. Actu-

ally, it is reported that in recent chips about 50% of errors that

implied redesign are due to errors in analog or mixed portions

[19]. Therefore, introducing new verification methodologies

for these systems is growing in importance.

Boosted by previous successes in the verification of corner

cases in digital designs, formal methods became a serious

candidate for the verification of AMS systems. In fact, they

promise a complete verification and a high level of confidence.

Usually, one is interested in global properties connected to the

dynamic behavior of the AMS systems. For example, we might

be interested in reachability properties, like “can we reach

from the initial state a state where a certain condition holds?”

or “will the circuit oscillate for giving parameters?”. Unfortu-

nately, a direct application of formal methods on AMS systems

is very difficult. Unlike digital designs, the functionality of

AMS systems is defined in terms of continuous quantities

and in terms of continuous time, as they deal usually with

factors like voltage level, signal noise and current leakage,

in addition to higher order physical effects when designing in

deep submicron. In fact, while the behavior of AMS systems is

generally modeled using differential equations over continuous

quantities, formal methods, however, are defined using models

based on discrete events and automata. Today, an important

gap remains in linking these two mathematical approaches.

Most research efforts concentrate on how to abstract dif-

ferential equations in order to be adopted inside automata

based algorithms. In this paper, we propose an alternative

approach, based on bounded model checking [5] for AMS

systems modeled in terms of recurrence equations. Discrete

and continuous time based analog systems are described

using ordinary differential equations or difference equations,

respectively, while the digital parts of the AMS design are

described using event based models. We then define a model

checking method using a combined system of difference equa-

tions for both the analog and digital parts, where state space

exploration algorithms are handled with Taylor approximations

over interval domains. Such modeling allows the computation

over continuous quantities while avoiding the unsoundness

inherent in the numerical Taylor approximation. We illustrate

the proposed method on the verification of a variety of designs

including a ∆Σ modulator design and oscillator circuits.

The rest of the paper is organized as follows: In Section II,

we give an overview of the proposed methodology, followed

by system model description in Section III. Interval based

analysis and Taylor models are described in Section IV. The

verification algorithm along with symbolic simulation are then

presented in Section V. Experimental results are shown in

Section VI, and finally, in Section VII, we present related work

before we conclude the paper with Section VIII.

II. PROPOSED METHODOLOGY

The principle of bounded model checking (BMC) is the

search for a counter-example of the property checked against

the model for a bounded k steps. If such counter-example

is found or a fixpoint is reached, the verification task is

achieved, else the number of steps can be increased for further

verification.

An AMS system is a hybrid system composed in general

of a digital part described using logical primitives and an

analog part which can be described directly using recurrence



Temporal 

Property

Symbolic 

Simulation

Interval based Bounded Model Checking

Symbolic  Rewriting Phase

Verification Phase

Property is False 

(Counterexample Generated)

Property is Proved True for 

a Bounded Time

Next Interval  
States

Combined SRE

Recurrence

Equations

AMS System

Continuous-
Time Digital

Discrete-
Time

Taylor 
Approximation

Temporal 

Property

Temporal 

Property

Symbolic 

Simulation

Interval based Bounded Model Checking

Symbolic  Rewriting Phase

Verification Phase

Property is False 

(Counterexample Generated)

Property is Proved True for 

a Bounded Time

Next Interval  
States

Combined SRE

Recurrence

Equations

AMS System

Continuous-
Time Digital

Discrete-
Time

AMS System

Continuous-
Time Digital

Discrete-
Time

Taylor 
Approximation

Fig. 1. Overview of the AMS Verification Methodology

equations or a set of differential equations. We propose to con-

vert differential equations into an equivalent set of recurrence

equations using the Taylor approximation method. Therefore

the recurrence model gives the possibility to handle continuous

behaviors like that of current and voltages, but in discrete time

intervals, which cover a non-trivial class of mixed behaviors.

The properties are temporal relations between signals of the

system and are described using a basic subset of Linear

Temporal Logic (LTL).

The proposed methodology is composed of two steps as

shown in Figure 1. In the first step, the AMS description and

LTL property of interest are input to a symbolic simulator

that performs a set of transformations by rewriting rules in

order to obtain a mathematical representation called System

of Generalized Recurrence Equations (SRE) (to be described

later). These are recurrence relations that give a description of

the property of interest in terms of the system equations. The

next step is to prove the properties using a verification engine

that performs bounded model checking over interval Taylor

model forms. The interval Taylor model form is a combined

symbolic numerical representation of the system equations

using polynomials and interval terms that ensure enclosure

of the reachable states, hence providing a sound abstraction

of the reachable sets.

We have implemented this verification algorithm using the

computer algebra system Mathematica, which provides special

functions for symbolic simplification, manipulation and proof

of algebraic relations.

III. AMS DESIGN MODELING

Different formalisms have been proposed for modeling

systems with combination of discrete and continuous (hybrid)

behavior, for instance, hybrid automata [14]. Such formalisms

have been applied for AMS modeling. In this paper, we

propose to use a generalization of recurrence equations to

model different aspects of the AMS designs; mainly the

continuous and discrete time behaviors.

A. Systems of Recurrence Equations

The notion of recurrence equation was extended in [1]

to describe digital circuits using what is called generalized

If-formula. Such formalization was found practical in

modeling hybrid systems like discrete-time AMS design

[2]. In the remaining of this paper, we will show how such

recurrence equations can be suitable under certain conditions

for modeling continuous-time AMS systems, hence allowing

a unified modeling framework for discrete and continuous

time AMS designs.

Definition 1: Generalized If-formula

In the context of symbolic expressions, the generalized

If-formula is a class of expressions that extend recurrence

equations to describe digital systems. Let K be a numerical

domain (N, Z, Q, R or B), a generalized If-formula is one

of the following:

• A variable xi(n) ∈ x(n), with i ∈ {1, . . . , d}, n ∈ N and

x(n) = {x1(n), . . . , xd(n)}.

• A constant C ∈ K

• Any arithmetic operation ⋄ ∈ {+,−,÷,×} between

variables xi(n) ∈ K

• A logical formula: any expression constructed using

a set of variables xi(n) ∈ B and logical operators:

not, and, or, xor, nor, . . ., etc.

• A comparison formula: any expression constructed using

a set of xi(n) ∈ K and comparison operator α ∈ {=, 6=
, <,≤, >,≥}.

• An expression IF (X,Y,Z), where X is a logical formula

or a comparison formula and Y,Z are any generalized

If-formula. Here, IF (x, y, z) : B × K × K −→ K

satisfies the axioms:

(1) IF (True,X, Y ) = X
(2) IF (False,X, Y ) = Y

Definition 2: A System of Recurrence Equations (SRE)

Consider a set of variables xi(n) ∈ K, i ∈ {1, . . . , d}, n ∈ N,

an SRE is a system consisting of a set of equations of the

form:

xi(n) = fi(xj(n − γ)), (j, γ) ∈ εi,∀n ∈ Z

where fi(xj(n− γ)) is a generalized If-formula. The set

εi is a finite non-empty subset of 1, . . . , d×N. The integer γ
is called the delay.

Example 1: Figure 2 shows a first-order ∆Σ modulator of

one-bit with two quantization levels, +1V and −1V. Consider

the constraint that the quantizer (input signal y(n)) should be

between −2V and +2V in order to not be overloaded. The

SRE of the ∆Σ is then described as:

y(n) = y(n − 1) + u(n) − v(n − 1)
v(n − 1) = IF (y(n − 1) > 0, 1,−1)



+ +

Z-1

Z-1

u[n]

-

v[n]y[n]++ +

Z-1

Z-1

u[n]

-

v[n]y[n]+

Fig. 2. First-order ∆Σ Modulator

B. Taylor Approximation

A large class of AMS and analog designs have continuous

time behavior, usually described using a system of ordinary

differential equations (ODE). Unfortunately, a closed form

solution is generally not available for ODE systems and

discrete approximate models are used. One basic idea is to

use the approximation x[tk+1] = f(x[tk]) + Rm of the ODE

ẋ = f(x) as truncated Taylor series for x(t), expanded about

time instant tk, with a remainder term Rm.

Theorem 1: Taylor Approximation. Suppose a function f :
Rd → R over states vector x ∈ Rd is m + 1 time partially

differentiable on the interval [a, b]. Assume x0 ∈ [a, b], such

that a, b ∈ Rd, then for each x ∈ [a, b], ∃λ ∈ R, 0 ≤ λ ≤ 1,

such that:

f(x) =

m
X

k=0

[(x − x0).∇]kf(x)|x=x0

k!
+

[(x − x0).∇]m+1f(x)|x=Λ

(m + 1)!

where ∇ = i1
∂
∂x i

+ . . . + id
∂
∂x d

and Λ = x0 + λ(x − x0)

In general, to obtain an approximate solution of the ODE

system, we consider a sequence of discrete time points

t0, t1, . . . , tm for which the solution is approximated, with

hi = ti+1 − ti. If the solution x(t) of an ODE system

ẋ = f(x) is a function which is p + 1 times continuously

differentiable on the open interval (ti..ti+1), then, from the

Taylor approximation theorem, we have:

x(ti+1) = x(ti) +

p∑

k=1

(
hk

k!
x(k)(ti)) + (

hp+1

(p + 1)!
x(p+1)(ξ))

with h = ti+1−ti and ξ = [ti, ti+1] and ∀k ∈ [1, p+1].x(k) =
f (k−1)(x(t), t), where the vector function f is composed by

d elementary functions fq(x1, . . . , xd), q ∈ {1, . . . , d}, such

that:

f (k)
q (x1, . . . , xd) =

d∑

m=1

(
∂f

(k−1)
q (x1, . . . , xd)

∂xm

fm(x1, . . . , xd))

Such representation allows giving an approximate

polynomial description of the behavior of an ODE system

using generalized SRE. To preserve the inherited behavior

of the actual solution, the remainder term should not be

discarded and instead bounds must be specified. We use

interval arithmetic methods to obtain such bounds. Interval

arithmetic provides an over-approximation of the original

vc

f2= −2(vc1)+(vc1)^3+2(vc2)

Electronic Switch

i1= f1(vc1,vc2) i2’= J2(vc1,vc2)i1’= J1(vc1,vc2)

i2= f2(vc1,vc2)

J1 = vc1 + (vc2)^3

f1= vc1

vc2
g1 = 1

c2’ = 1

c2 = 1

g2 = 1 g2’ = 1

c1’ = 1c1 = 1

vc1

J2 = −2(vc1)+0.5(vc1)^3+2(vc2)

Fig. 3. Switched Analog Circuit

behavior of the system as will be shown later on.

Example 2: Consider the analog circuit in Figure 3, com-

posed of a network of passive components (capacitors and

conductances), along with non-linear current sources and

two switches. The switches can be designed using CMOS

transistors working in saturation mode as shown in the figure.

This circuit exhibits an oscillatory behavior when the initial

capacitor voltages are within a specified range, based on the

switches positions. The voltages across the capacitors can be

described using ODEs as follows:

{
˙vc1 = vc2 or ˙vc1 = vc2 + v3

c2

˙vc2 = −vc1 + v3
c1 or ˙vc2 = −vc1 + (1/2)v3

c1

Suppose that we specify the switching conditions as

Cond1 = Cond2 := vc1(n − 1) ≤ vc2(n − 1)

For illustration purposes and for clarity, we use Taylor approx-
imation limited to order 2 to obtain the corresponding SREs:

vc1(n) := IF (Cond1, X1, X2) and vc2(n) := IF (Cond2, Y 1, Y 2)

with:

• X1 := h
2
vc1(n−1)3

2
−

h
2
vc1(n−1)

2
+vc1(n−1)+hvc2(n−1)+

Rm1[ fvc1, fvc2]

• X2 := h
2
vc1(n−1)3

4
+ 3

4
h2vc2(n − 1)2vc1(n − 1)3−

h
2
vc1(n−1)

2
−

3
2
h2vc2(n − 1)2vc1(n − 1) + vc1(n − 1) +

hvc2(n − 1)3 + hvc2(n − 1) + Rm2[ fvc1, fvc2]

• Y1 := hvc1(n − 1)3 + 3
2
h2vc2(n − 1)vc1(n − 1)2−

hvc1(n − 1) − h
2
vc2(n−1)

2
+ vc2(n − 1) + Rm3[ fvc1, fvc2]

• Y2 := hvc1(n−1)3

2
+ 3

4
h2vc2(n−1)3vc1(n−1)2 + 3

4
h2vc2(n−

1)vc1(n − 1)2− hvc1(n − 1) − h
2
vc2(n−1)3

2
−

h
2
vc2(n−1)

2
+

vc2(n − 1) + Rm4[ fvc1, fvc2])

where Rmi[ṽc1, ṽc2] are the Taylor approximation remainders,

i = {1, . . . , 4} and h is the time step.



IV. INTERVAL ANALYSIS

Interval domains are numerical domains that enclose the

original states of a system of equations at each discrete

step [20]. Algorithms supporting such numerical domains

are used to produce bounded envelopes for the reachable

states not only at some discrete time points but also for all

continuous ranges of intermediate states between any two

consecutive time discrete points. These algorithms, generally

known as validated methods, are an attractive tool to use in

the verification of the behavior of systems with uncertainty on

the design parameters or initial conditions. The fact that the

generated bounds provide a sound abstraction for the reachable

states, makes it attractive to be used with formal verification

techniques. The basic interval arithmetics is defined as follows:

Let I1 = [a, b] and I2 = [a′, b′] be two real intervals

(bounded and closed), the basic arithmetic operations on

intervals are defined by:

I1ΦI2 = {r1Φr2|r1 ∈ I1 ∧ r2 ∈ I2}

with Φ ∈ {+,−,×, /} except that I1/I2 is not defined if

0 ∈ I2 [20].

In addition, other elementary functions can be included as

basic interval arithmetic operators. For example, exp may be

defined as exp([a, b]) = [exp(a), exp(b)].
The guarantee that the real solutions for a given function

are enclosed by the interval representation is formalized by

the following property.

Definition 3: Inclusion Function.[20] Let f : Rd → R be

a continuous function, then F : Id → I is an interval extension

(inclusion function) of f if

{f(x1, . . . , xd)|x1 ∈ X1, . . . , xd ∈ Xd} ⊆ F (X1, . . . ,Xd)

where I is the interval domain and Xi ∈ I, i ∈ {1, . . . , d}.

Inclusion functions have the property to be inclusion mono-

tonic (i.e., XI ⊆ YI → F (XI) ⊆ F (YI)), hence allowing the

checking of fixpoints.

Unfortunately, due to the over-approximation nature of

interval analysis, a quick divergence in the reachability calcu-

lation may happen. This is mainly due to the following issues

[20]:

• The dependency problem which is the lack of interval

arithmetic to identify different occurrences of the same

variable. For example, x−x = 0 holds for each x ∈ [1, 2],
but X − X for X = [1, 2] yields [−1, 1].

• The wrapping effect which appears when the results

of a computation are overestimated when enclosed into

intervals, hence leading to error accumulation at each

time step.

To overcome the above mentioned drawbacks of interval

computation, Taylor model arithmetics were developed

recently by Berz et. al [3], [18] as an interval extension to

Taylor approximations allowing the non-linear approximation

of system reachable states using non-convex enclosure sets.

Formally, a Taylor model Tf := pn(x) + I for a given

function f consists of a multivariate polynomial pr(x) of

order r in d variables, and a remainder interval I , which

encloses Lagrange remainder of the Taylor approximation.

Hence, the Taylor model arithmetics use interval computation

to obtain reliable enclosures not only for the error term but

also for every term of the series, allowing the computation

of an over-approximation of the solution function at each

time point. In addition, symbolic simplifications are applied

at each step, hence reducing the interval calculations

and consequently delaying divergence problems, usually,

associated with interval based techniques.

Definition 4: Taylor Model Tf := (Pr,f , Ir,f ) is

called a Taylor model of order r of a function f ⇔
∀x ∈ X : f(x) ∈ Pr,f (x−x0)+ Ir,f , where X is an interval,

Pr,f (x − x0) is a Taylor approximation polynomial of order

r around the point x0. An interval Ir,f is called a remainder

bound of order r of f on X ⇔ ∀x ∈ X : Rr,f (x−x0) ∈ Ir,f .

The basic arithmetic rules on Taylor models are defined as

follows [3], [18]:

• Addition: Tr,f+g := Tr,f +Tr,g , (Pr,f +Pr,g, Ir,f +Ir,g)
• Scalar multiplication: Tr,αf = αTr,f , (αPr,f , αIr,f ),

(α ∈ R)
• Multiplication: Tr,fg , Tr,fTr,g := (Pr,fg, Ir,fg)

with:

– Pr,fPr,g = Pr,fg + Pe

– Pe ∈ IPe

– Pr,f ∈ IPr,f

– Pr,g ∈ IPr,g

– Ir,fg := IPe
+ IPr,f

Ir,g + Ir,f (IPr,g
+ Ir,g)

Based on the above rules, the Taylor model method extends

mathematical operations and functions to Taylor models

such that the inclusion relationships are preserved. This is

demonstrated by the following theorem:

Theorem 2: [18] Let f : Rd → R be a continuous function,

and f ∈ T , where T is the Taylor model of f , then T ⊆ F ,

where F is the inclusion function of f . Moreover, for two

functions f1 ∈ T1 and f2 ∈ T2, we have (f1 + f2) ∈ TS and

(f1.f2) ∈ TP , where TS and TP are Taylor models for the

sum and product of T1 and T2, respectively.

In practice, the evaluation of a function is transformed to

symbolically computing the Taylor polynomial pr(x) of the

function, which will be propagated throughout the evaluation

steps, thus hardly affected by the dependency problem or

the wrapping effect. Only the interval remainder term and

polynomial terms of orders higher than r, which are usually

small, are bounded using intervals as described by the rules

mentioned above and are processed according to the rules

of interval arithmetic. This will be demonstrated by the

following example:



Example 3: In non-linear analog circuits, voltages and cur-

rents can be described using analytic functions. For example,

in a BJT transistor [10], the collector current is described

as iC = ISe
VBE
VT (1 + VCE

VA
), with VCE is the output voltage

of a differential stage. In such case, VCE = tanh(y) + K,

where K is an arbitrary voltage. Consider the Taylor models

T1 and T2 of the functions ex, and tanh(y), respectively,

where x = VBE

VT
, the multiplication extanh(y) can be done

using Taylor model arithmetic of two Taylor models of order

3. Let x, y ∈ W = [−0.693, 0.693] and T1(x) := 1+x+ x2

2 +

[−0.11, 0.11] and T2(y) := y− y3

3 + [−0.108, 0.108]. It holds

that:

T1(x)T2(y) ∈ (1 + x + x2

2 )(y − y3

3 ) + (1 + x + x2

2 )

[−0.108, 0.108] + (y − y3

3 )[−0.11, 0.11]+

[−0.11, 0.11][−0.108, 0.108]

⊆ − 1
6x2y3 − xy3

3 − y3

3 + x2y
2 + xy + y+

(1 + W + W 2

2 )[−0.108, 0.108]+

(W − W 3

3 )[−0.11, 0.11] + [−0.22, 0.22]

≃ −y3

3 + x2y
2 + xy + y + [−0.62, 0.54]

In order to deal with the discrete part of the AMS design,

as a generalization of the inclusion function, interval analysis

provides efficient and safe methods for checking truth values

of Boolean propositions over intervals by using the notion of

inclusion test.

Definition 5: Inclusion Test. Given a constraint c : Rd →
B, we define CI : Id → BI to be an inclusion test of

c, with an interval domain defined with three values set;

BI = {0, 1, [0, 1]}, where 0 stands for false, 1 for true and

[0, 1] for indeterminate, iff:

{c(x1, . . . , xd)|x1 ∈ X1, . . . , xd ∈ Xd} ⊆ CI(X1, . . . ,Xd)

where Xi ∈ I, i ∈ {1, . . . , d}.

Inclusion test can be used during the verification algorithm

to prove whether the reachable interval states satisfy a given

property, or not. We define the inclusion test as follows:

CI(X) = 1 ⇒ ∀x ∈ X, c(x) = 1 and CI(X) = 0 ⇒ ∀x ∈
X, c(x) = 0. For instance, given a set of reachable interval

states and a property predicate, we remove the states that do

not satisfy

1 ∈ CI(X1, . . . ,Xn)

Therefore, if CI(X1, . . . ,Xn) = ∅, then we have a guarantee

that the property is not satisfied.

Let xI = [a, b] and yI = [a′, b′] be two real intervals

(bounded and closed), a set of the main logical rules that

define the inclusion test is given as follows:

xI ≤
ι yI = 1 ⇔ b ≤ a′

xI ∈
ι yI = 1 ⇔ xI ∈ yI

⇔ a ≥ a′ and b ≤ b′

Example 4: Consider the switching condition in the circuit

of Figure 3 defined as Cond1 := vc1(n − 1) ≤ vc2(n − 1),
then we have the following:

(vc1(n − 1) := [1, 3]) ≤ (vc2(n − 1) := [3, 5]) = 1

(vc1(n − 1) := [1, 3]) ≤ (vc2(n − 1) := [2, 5]) = [0, 1]

V. INTERVAL BASED BOUNDED MODEL CHECKING

In this section, we present bounded model checking (BMC)

algorithm to support AMS designs. We explore a solution

relying on symbolic and interval computational methods. Our

BMC approach is based on modeling the transition function as

SREs over the Taylor models forms. We proceed on the SREs

traces using a time step ~ which implies that our answer is

relative to a limited time interval. For recurrence equations, we

have ~ = 1. For differential equations, we approximate them

using Taylor model with ~ ∈ R, ensuring the accumulated

error due to ~-approximation is confined in the Interval part

of the Taylor model. We consider properties specified in a LTL

like language.

In the remaining of this section we will describe the

symbolic simulation, and the property checking algorithm of

the proposed methodology.

A. The Symbolic Simulation Algorithm

The generation of the SREs and the evaluation of Taylor

model forms rely on rewriting rules based on the symbolic

simulation algorithm developed in [1] for digital systems and

extended for discrete-time AMS designs in [2]. The symbolic

simulation algorithm ReplaceRepeated(Expr,R) shown in

Algorithm 1 is based on rewriting by repetitive substitution,

which applies recursively a set of rewriting of rules R on an

expression Expr until a fixpoint is reached.

Algorithm 1 ReplaceRepeated(Expr,R)

1: Expr = expr
2: repeat

3: Exprt = ReplaceList(Expr,R)
4: Expr = Exprt

5: until FP (Exprt, R)

ReplaceList(Expr, R): The substitution function ReplaceList
takes as arguments an expression Expr and a list of

substitution rules R = {R1, R2, . . . , Rn}. It applies each rule

sequentially on the expression.

FP(Expr, R): A substitution fixpoint FP (Expr,R) is ob-
tained, if:

ReplaceList(expr, R) ≡ ReplaceList(ReplaceList(expr, R), R)



The correctness of this rewriting algorithm as well as the

proof of termination and confluence of the rewriting system is

discussed in [1].

Depending on the type of expressions, we distinguish the

following kinds of rewriting rules over Boolean and Real

domains:

• Polynomial symbolic expressions: RMath for the simpli-

fication of polynomial expressions (Rn[x]).
• Logical symbolic expressions: RLogic for the simplifica-

tion of Boolean expressions and to eliminate obvious ones

like (and(a, a) → a) and (not(not(a)) → a).
• If-formula expressions: RIF for the simplification of

computations over If-formulae. The definition and

properties of the IF function, like reduction and distri-

bution, are used.

– IF Reduction: IF (x, y, y) → y
– IF Distribution: f(A1, . . . , IF (x, y, z), . . . , An) →

IF (x, f(A1, . . . , y, . . . , An), f(A1, . . . , z, . . . , An))
For example a + IF (x > 0, b, a) → IF (x > 0, b +
a, a + a)

For Taylor model generation and evaluation over intervals,

we used the following rules which where developed based on

the properties described in Section IV

• Taylor expressions: RTlr are rules intended for the sim-

plification of Taylor model expressions (Tr,f ).
• Interval expressions: RInt are rules intended for the

simplification of interval expressions.

• Interval-Logical symbolic expressions: RInt−Logic are

rules intended for the simplification of Boolean expres-

sions over intervals.

B. Temporal Properties

We use an LTL like syntax to represent the properties.

The syntax is composed of formulae P (n) defined recursively

and built using Boolean expressions over atomic propositions

with temporal operators: eventually F and always G. To

describe properties on analog signals like current and voltages,

atomic propositions encode predicates (inequalities) over reals;

p(n) ∼ c, where p(n) is a polynomial over the state variables,

∼∈ {<,≤, >,≥,=, 6=}, c ∈ R. As in traditional BMC, we

define temporal operators regarding a bounded time step k.

Always operator G: GP (n) specifies that a property P (n)
holds in the current time step of a given path iff the property

and the operand hold at the current state and all previous states.

Iteratively, we write:

GP (n + 1) =

n+1∧

k=1

P (k)

Eventually operator F: FP (n) specifies that a property

holds at the current state or at a previous state. Iteratively,

we write:

FP (n + 1) =
n+1∨

k=1

P (k)

In fact, the inverse of the property (¬P ) under verification

is used in the BMC algorithm. When a satisfying valuation is

returned by the solver, it is interpreted as a counterexample

of length k and the property P is proved satisfied (¬P
is satisfied). However, if the problem is determined to be

unsatisfiable, the solver produces a proof (of unsatisfiability)

of the fact that there are no counterexamples of length k.

C. Verification Algorithm

The bounded forward reachability algorithm starts at the

initial states and at each step computes the image, which

is the set of reachable interval states. This procedure is

continued until either the property is falsified in some state

or no new states are encountered. We define the interval

based transition system denoting the behavior of the system

as follows:

Definition 6: Interval based state machine. An Interval

based state machine is a tuple TI = (SI , SI,0,→Tf
), where

SI is the interval state space, SI,0 ⊆ SI is the set of initial

interval states, →Tf
⊆ SI×SI is a relation defined using Taylor

model forms Tf and capturing the abstract transition between

interval states such that:

{s →Tf
s′|∃a ∈ s,∃b ∈ s′ : b = f(a) and f ∈ Tf}

where a, b ∈ Rd, s, s′ ∈ SI , f = {f1, . . . , fd},

T = {Tf1
, . . . , Tfd

} with fi : Rd → R is a continuous

function, i ∈ {1, . . . , d} and fi ∈ Tfi
, where Tfi

is the Taylor

model of fi.

Bounded model checking over interval domains is then

defined as follows:

Definition 7: BMC Given a natural number k ≥ 0, an

interval based state machine (SI , SI,0,→Tf
) as defined above,

and a property Prop, we say that property Prop is verified

for k steps if:

∀s ∈ Rk(S0) : s |= Prop

where S0 is the set of initial states.

The different steps for checking safety properties is shown

in Algorithm 2. The system equations and the (negated)

property ¬Prop[n] to be verified are given, with the

equations initialized are provided. The loop in lines (1-13)

describes the verification procedure for Nmax time steps. At

each step n, we use an evaluation over the Taylor model

forms (line 2) to check whether the property is satisfied or

not (line 3). If ¬Prop[n] is satisfied then a counterexample

is generated (line 10), if not, then check for fixpoint (line 5),

otherwise update the reachable states (line 12) and go to the

next time step verification.

SRE(A, r): Given an AMS system (A) and an order r,

SRE(A, r) returns the generalized SREs by applying the

symbolic rules described earlier. For the case of a continuous

function, the Taylor approximation of order r is applied to



Algorithm 2 Safety Verification

Require: x[n] := SRE(A, r)
Require: ¬Prop[n]
Require: R0 = S0

1: for n = 1 to Nmax do

2: Tot,x[n] := TM Form(x[n], ot)
3: if Prop Check(¬Prop[n], Tot,x[n]) == False then

4: if Reach[Tot,x[n]] ⊆ Rn−1 then

5: return fixpoint reached

6: else

7: Inc Step(n)

8: end if

9: else

10: Generate CE

11: end if

12: Rn−1 = Update Reach(Rn−2, Reach[Tot,x[n−1]])
13: end for

generate the SREs.

TM Form(x[n],ot): Given a set of SREs, TM Form returns

the corresponding Taylor model with order ot at the specified

time step. Such model will be checked against properties for

satisfaction using Prop Check

Prop Check: Given the Taylor model forms representing the

transition function and the property ¬Prop(), apply algebraic

decision procedures to check for satisfiability. The safety

verification at a given step n can be defined with the following

formula:

Prop Check , x[n] = Tot,x[n](x[n − 1], ~) ∧ ¬Prop(x[n])

Reach[Tot,x[n]]: Given the Taylor model form at an arbitrary

time step, Reach evaluates the reachable states at according

to the following definition:

Definition 8: 1-Step Reachable states. The set of reachable

states in 1 step from a given set of states Sk ⊆ Id, is denoted

by R1(Sk) and is defined as:

R1(Sk) , {s′ ∈ Sk+1|∃s ∈ Sk :
−→
F 1(s) = s′}

where Sk+1 ⊆ Id,
−→
F = (F1, . . . , Fd), with Fi : Id → I is

an interval evaluation of Taylor model form of the function

fi : Rd → R, i ∈ {1, . . . , d}.

Update Reach(R1, R2): The function returns the union of

the states in the sets R1 and R2 according to the following

definition:

Definition 9: The set of reachable states in less than k steps

(0 < l < k), from a given set of S0 of states, is denoted by

R<k(S0), and is defined as:

R<k(S0) ,
⋃

l<k

Rl(Sl−1)

-0.4 -0.2 0.2 0.4
Vc1

-0.4

-0.2

0.2

0.4

Vc2

Fig. 4. Oscillation Behavior for Circuit in Example 2

For instance, in Algorithm 2 (line 12) we have Rn−2 =
R<n−1(S0) and Reach[Tot,x[n−1]] = R1(sn−1)

VI. EXPERIMENTAL RESULTS

We have applied the verification algorithm on the analog cir-

cuit described in Example 2 and a third-order ∆Σ modulator.

For the analog circuit, we checked the oscillation property for

given set of initial voltages and for all switching conditions.

We formally describe the oscillation property as:

Prop1 : G((p1 ⇒ Fp2) ∧ (p2 ⇒ Fp1))

where p1 = ¬p2 := Vc1 < Vc2. For instance, when the analog

circuit is described by ˙vc1 = vc2 and ˙vc2 = −vc1 + v3
c1,

the reachable states for the oscillation behavior are shown in

Figure 4, bounded by the corresponding Taylor model. We

also checked several safety properties, e.g.,

Prop2 : G(−0.5 < Vc1 < 0.5) ∧ (−0.5 < Vc2 < 0.5)

and

Prop3 : G(−1 < Vc2 < 1)

Details on initial conditions are shown below:

Parameters1 →





a → [−0.03, 0.03] b → [−0.03, 0.03]

h → 0.01

x[0] = 0.3 + a y[0] = −0.3 + b

Parameters2 →





a → [−0.03, 0.03] b → [−0.03, 0.03]

h → 0.01

x[0] = 1 + a y[0] = 0.2 + b

The verification results for 2 possible switching cases of

this circuit (we refer to as circuit 1 and circuit 2) are shown

in Table I. For the first set of initial conditions, we find that

the circuit is behaving in accordance with the properties,

hence the properties are satisfied. For the second set of

initial conditions, the safety properties Prop2 and Prop3 are

violated while divergence prevent us to check whether the



circuits are oscillating or not 1.

Table II shows the verification results for a third-order ∆Σ
modulator 2. A ∆Σ modulator is said to be stable if the

integrator output remains bounded under a bounded input

signal, thus avoiding that the quantizer in the modulator

becomes overloaded which leads to instability. The stability

properties is written as: P (k) := G(−1 < x3(k) < 1),
where x3 is the input to the quantizer. For a first set of initial

constraints, the modulator loses stability after 5 time steps.

For the second, set of constraints the modulator was proved

stable for 45 time steps.

TABLE II
VERIFICATION RESULTS FOR 3rd ORDER ∆Σ MODULATOR

Initial Property Evaluation CPU time

Constraints for n = 0 to Nmax Cycles Used

Initial constraints 1 Nmax = 15 3.89 sec

n = 0 to 5 True

n > 5 False

Initial constraints 2 Nmax = 45 120.8 sec

True

VII. RELATED WORK

We can identify two classes of verification techniques

for AMS designs, namely state exploration methods (e.g.,

reachability analysis) and algebraic methods (e.g., constraint

solving). Common to the proposed state based methods is

the necessity of the explicit computation of either exact or

approximate reachable sets corresponding to the continuous

dynamics, hence deducing properties about the properties of

the design under verification. In the constraint based methods,

the AMS design is described by a set of equations (algebraic or

difference equations) along with a set of constraints. Algebraic

and logical rules are then applied to check whether the system

satisfies such constraints or not.

For instance, model checking and reachability analysis were

proposed for validating AMS designs over a range of parame-

ter values and a set of possible input signals. Several methods

for approximating reachable sets for continuous dynamics

have been proposed in the open literature. They rely on the

discretization of the continuous state space by using over-

approximating domains like polyhedra and intervals. In [15],

the authors construct a finite-state discrete abstraction of elec-

tronic circuits by partitioning the continuous state space into

fixed size hypercubes and computed the reachability relations

between these cubes using numerical techniques. In [11], the

authors tried to overcome the expensive computational method

in [15], by combining discretization and projection techniques

of the state space, hence reducing its dimension. While the

approach in [11] is less precise due to the use of projection

techniques, it is still sound. Variant approaches of the latter

analysis were proposed. For instance, the model checking

1The experiments were performed on Intel Core2 1900 MHz processor and
2GB of RAM

2Details about the design can be found in [22]

tools d/dt [6], Checkmate [9] and PHaver [8] were adapted

and used in the verification of a biquad low-pass filter [6], a

tunnel diode oscillator and a ∆Σ modulator [9], and voltage

controlled oscillators [8]. In [13], the authors used intervals

to construct the abstract state space, while used heuristics

to identify possible transition between adjacent regions, main

difference with [15], is that they allow variable sized regions.

Petri nets based models and algorithms have been developed

also for the reachability analysis of AMS designs in [17], [16].

The AMS verification we present in this paper is in the same

spirit as the above mentioned works in terms of requirement

for state exploration. However, we can identify two distinct

points. First, we rely on a recurrence equation form as a

way to model the design rather than automata, which provide

us with more compact representation. Second, we apply the

verification over Taylor model forms which provide tight

bounds for the reachable states by using non-convex over

approximation. In addition, Taylor models allow the symbolic

representation of the reachable states using polynomials terms,

therefore minimizing the risk of state explosion.

In [12], the author proposed an approach for specifying

and reasoning about digital systems that are described at

the analog level of abstraction. The approach relies upon

specifying the behaviors of analog components by piecewise-

linear predicates on voltages and currents. Theorem proving

and constraint based methods are then used to check for

the implication relation between the implementation and the

specification. In [7], the authors developed a bounded model

checking prototype tool (Property-Checker) for the verification

of the static behavior of AMS designs. The basic idea is

based on validity checking of first-order formulae over a finite

interval of time. In [7], the authors trade-off accuracy with

efficiency by basing the analysis on rational numbers rather

than real numbers, however affecting the soundness of the

verification. In addition to the loose approximations in [12],

[7], the verification is only possible for static behavior.

In [2], [23], the authors propose an induction verification

approach for AMS designs using symbolic methods. The

procedure is iterative in the sense that if the proof is obtained,

then the property is verified. Otherwise, generated counterex-

amples are analyzed and constraints refinement is applied

and verification is repeated until the property is verified or

a concrete counterexample is identified. Such methodology is

limited for AMS systems that can be described using discrete

time models, while our approach consider continuous time

systems. More details about the application of formal methods

to the verification of AMS designs can be found in [24].

VIII. CONCLUSION

In this paper, we have defined a bounded model checking

approach for AMS systems modeled in terms of combination

between SRE and differential equations. We have proposed a

semi-symbolic modeling of the state space using the principle

of Taylor models which provide a way for representing a com-

bination of representation using a combination of polynomials

and interval terms. The main advantage of such modeling is



TABLE I
VERIFICATION RESULTS

Circuit & BMC Verification CPU & Memory
Properties for k = 0 to Nmax Steps Used

Circuit 1 (Parameters 1) Nmax = 700 107.39 sec
Oscillation Property Proved True 7.93 MB

Prop2 Proved True
Prop3 Proved True

Circuit 1 (Parameters 2) Nmax = 700 108.41 sec
Oscillation Property Not Verified (Divergence) 7.14 MB

Prop2 Proved False at k = 18
Prop3 Proved False at k = 18

Circuit 2 (Parameters 1) Nmax = 1200 583.75 sec
Oscillation Property Proved True 51.15 MB

Prop2 Proved True
Prop3 Proved True

Circuit 2 (Parameters 2) Nmax = 1200 584.05 sec
Oscillation Property Not Verified (Divergence) 50.60 MB

Prop2 Proved False at k = 4
Prop3 Proved False at k = 9

the fact, that the polynomial representation helps slowing the

divergence due to the over-approximated intervals, meanwhile,

the interval part provides an important abstraction to handle

the continuous behavior.

We have developed and implemented this arithmetic as

a set of simplification rules a the bounded model checking

algorithm. Experimental results have proven the feasibility

and the utility of the approach. However, the method is still

limited in terms of capacity. In fact, we have implemented our

methodology using standard libraries for symbolic computa-

tion available in Mathematica.

Future research directions include investigating alternative

implementations to improve the experimental capacity over

more complex systems and to measure the limitation of the

proposed methodology. Also, an important effort is needed to

classify the kind of properties and AMS systems that can be

verified using this verification approach.

REFERENCES

[1] G. Al-Sammane. Simulation Symbolique des Circuits Decrits au Niveau
Algorithmique. PhD thesis, Université Joseph Fourier, Grenoble, France,
July 2005.

[2] G. Al Sammane, M. Zaki, and S. Tahar. A Symbolic Methodology for
the Verification of Analog and Mixed Signal Designs. IEEE/ACM Design
Automation and Test in Europe, pp. 249-254, 2007.

[3] M. Berz, G. Hoffsttter. Computation and Application of Taylor Polyno-
mials with Interval Remainder Bounds, Reliable Computing, 4(1): 83-97,
Springer, 1998.

[4] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press,
2000.

[5] E. M. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Computational
challenges in bounded model checking. International Journal on Software
Tools for Technology Transfer, 7(2): 174-183, Springer, 2005.

[6] T. Dang, A. Donze, O. Maler. Verification of Analog and Mixed-
signal Circuits using Hybrid System Techniques. In Formal Methods in
Computer-Aided Design, LNCS 3312, pp. 14-17, Springer, 2004.

[7] M. Freibothe, J. Schoenherr, and B. Straube. Formal Verification of the
Quasi-Static Behavior of Mixed-Signal Circuits by Property Checking,
Electr. Notes Theor. Comput. Sci., 153(3):23-35, Elsevier, 2006.

[8] G. Frehse, B.H. Krogh, R.A. Rutenbar. Verifying Analog Oscillator
Circuits Using Forward/Backward Abstraction Refinement. IEEE/ACM
Design Automation and Test in Europe, pp. 257-262, 2006.

[9] S. Gupta, B.H. Krogh, R.A. Rutenbar. Towards Formal Verification
of Analog Designs, IEEE/ACM International Conference on Computer
Aided Design, pp. 210-217, 2004.

[10] P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer. Analysis and Design
of Analog Integrated Circuits, Wiley, 2001

[11] M. R. Greenstreet, I. Mitchell. Reachability Analysis Using Polygonal
Projections. In Hybrid Systems: Computation and Control, LNCS 1569,
pp. 103–116, Springer, 1999.

[12] K. Hanna. Automatic Verification of Mixed-Level Logic Circuits. In
Formal Methods in Computer-Aided Design, LNCS 1522, pp.133-166,
Springer, 1998.

[13] W. Hartong, R. Klausen, and L. Hedrich. Formal Verification for Non-
linear Analog Systems: Approaches to Model and Equivalence Checking,
Advanced Formal Verification, pp. 205-245, Kluwer, 2004.

[14] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model Checker
for Hybrid Systems. Software Tools for Technology Transfer, 1(1–2):110-
122, Kluwer, 1997.

[15] R.P. Kurshan and K.L. McMillan. Analysis of Digital Circuits Through
Symbolic Reduction. IEEE Trans. on Computer-Aided Design, 10(11):
1356-71, 1991.

[16] S. Little, N. Seegmiller, D. Walter, C. Myers, and T. Yoneda. Verifica-
tion of Analog/mixed-signal Circuits using Labeled Hybrid Petri Nets,
IEEE/ACM International Conference on Computer Aided Design , pp.
275-282, 2006.

[17] S. Little, D. Walter, N. Seegmiller, C. Myers, and T. Yoneda. Verification
of Analog and Mixed-Signal Circuits Using Timed Hybrid Petri Nets. In
Automated Technology for Verification and Analysis, LNCS 3299, pp.
426-440, Springer, 2004.

[18] K. Makino, M. Berz. Remainder Differential Algebras and their Appli-
cations. In Computational Differentiation: Techniques, Applications, and
Tools, pp. 63-75, SIAM, 1996.

[19] C. J. Myers, R. R. Harrison, D. Walter, N. Seegmiller, S. Little. The
Case for Analog Circuit Verification. Electr. Notes Theor. Comput. Sci.,
Elsevier, 153(3):53-63, 2006.

[20] R.E. Moore. Methods and Applications of Interval Analysis, Society for
Industrial and Applied Mathematics, 1979.

[21] S. Wolfram. Mathematica: A System for Doing Mathematics by Com-
puter. Addison Wesley Longman Publishing, USA, 1991.

[22] M. Zaki, G. Al Sammane, S. Tahar, and G. Bois. A Bounded
Model Checking Approach for AMS Designs. Technical Report, ECE
Dept., Concordia University, Montreal, Quebec, Canada, May 2007.
http://hvg.ece.concordia.ca/Publications/TECH REP/ AMS BMC TR07

[23] M. Zaki, G. Al Sammane and S. Tahar. Formal Verification of Analog
and Mixed Signal Designs in Mathematica, Proc. International Conference
on Computational Science, LNCS 4488, pp. 263-267, Springer, 2007.

[24] M. Zaki, S. Tahar, and G. Bois. Formal Verification of Analog and Mixed
Signal Designs: Survey and Comparison, IEEE Northeast Workshop on
Circuits and Systems, pp. 281-284, 2006.


